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ABSTRACT

Identifying the acoustical modes of a resonant object can be achieved

by expanding a recorded impact sound in a sum of damped sinu-

soids. High-resolution methods, e.g. the ESPRIT algorithm, can

be used, but the time-length of the signal often requires a sub-band

decomposition. This ensures, thanks to sub-sampling, that the sig-

nal is analysed over a significant duration so that the damping co-

efficient of each mode is estimated properly, and that no frequency

band is neglected. In this article, we show that the ESPRIT algo-

rithm can be efficiently applied in a Gabor transform (similar to a

sub-sampled short-time Fourier transform). The combined use of a

time-frequency transform and a high-resolution analysis allows se-

lective and sharp analysis over selected areas of the time-frequency

plane. Finally, we show that this method produces high-quality re-

synthesized impact sounds which are perceptually very close to the

original sounds.

1. INTRODUCTION

The context of this study is the identification of acoustical modes

which characterize a resonant object, in the perspective of build-

ing an environmental sound synthesizer. Practically, the analysis

is made from recorded impact sounds, where the resonant object

is hit by another solid object (e.g. a hammer). Assuming that the

impact sound is approximately the acoustical impulse response of

the resonant object, each mode corresponds to an exponentially

damped sinusoid (EDS). The modal analysis thus consists of esti-

mating the parameters of each sinusoidal component (amplitude,

phase, frequency and damping). These parameters will be stored,

and eventually modified, before further re-synthesis. In this paper,

we consider only the analysis part.

In the past decades, significant advances have been made in

the field of system identification, especially for estimating EDS

parameters in a background noise. Although the so-called high-

resolution methods or subspace methods (MUSIC, ESPRIT) [1, 2]

were proved to be more efficient than spectral peak-picking and

iterative analysis-by-synthesis methods [3], few applications have

been proposed. One can suppose that the high computational com-

plexity of these methods is a major drawback to their wide use: on

a standard modern computer, the ESPRIT algorithm can hardly

analyse more than 104 samples, which corresponds roughly to 200

ms sampled at 44100 Hz. This is usually too short for analysing

properly impact sounds which can last up to 10 s. Sub-band de-

composition with critical sub-sampling in each band seems to be

a natural solution to overcome the complexity problem, as it has

already been shown in [4] and [5]. Another drawback is that ES-

PRIT gives accurate estimates when the background noise is white,

which is usually not the case in practical situations. This problem

can be overcome by the use of whitening filters. The estimation

of the model order (i.e. the number of modes) is also an important

issue. Various methods have been proposed for automatic esti-

mation of the order, e.g. ESTER [6], but this parameter is often

deliberately over-estimated in most practical situation.

In this paper, we propose a novel method for estimating the

modes with ESPRIT algorithm: we first apply a Gabor Transform

(GT), which is basically a sub-sampled version of the short-time

Discrete Fourier Transform (DFT), to the original sound in order

to perform a sub-band decomposition. The number of channels

and the sub-sampling factor depend on the Gabor frame associated

to the transform. We show that an EDS in the original sound is

still an EDS inside each band, and the original parameters can be

recovered from a sub-band analysis using ESPRIT. Furthermore, if

the number of frequency sub-bands is high enough, it is reasonable

to assume that the noise is white inside each sub-band. We also

propose a method to discard insignificant modes a posteriori in

each sub-band.

The paper is organised as follows: first, in a brief state-of-the-

art, we describe the signal model, the ESPRIT algorithm and the

Gabor transform. Then, we show that original EDS parameters can

be recovered by applying the ESPRIT algorithm in each frequency

band of the Gabor transform. In the next part, we describe an

experimentation on a real metal sound, and show the efficiency of

our method. Finally, we discuss further improvements.

2. STATE OF THE ART

2.1. The signal model and the ESPRIT algorithm

The discrete signal to be analysed is written:

x[l] = s[l] + w[l] (1)

where the deterministic part s[l] is a sum of K damped sinusoids:

s[l] =

K−1
∑

k=0

αkz
l
k (2)

where the complex amplitudes are defined as αk = ak eiφk (con-

taining the initial amplitude ak and the phase φk), and the poles

are defined as zk = e−dk+2iπνk (containing the damping dk and

the frequency νk). The stochastic part w[l] is a gaussian white

noise of variance σ2.

The ESPRIT algorithm was originally described by Roy et. al.

[2], but many improvements have been proposed. Here, we use the

Total Least Square method by Van Huffel et. al [7]. The principle

consists of performing a SVD on an estimate of the signal corre-

lation matrix. The eigenvectors corresponding to the K highest

DAFX-1

http://www.lma.cnrs-mrs.fr
mailto:sirdey@lma.cnrs-mrs.fr.fr
http://dafx10.iem.at
mailto:aramaki@incm.cnrs-mrs.fr


Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

eigenvalues correspond to the so called signal space, while the re-

maining vectors correspond to the so called noise space. The shift

invariance property of the signal space allows a simple solution for

the optimal poles values zk. Then, the amplitudes αk can be re-

covered by solving a least square problem. The algorithm can be

described briefly as follows:

We define the signal vector:

x =
[

x[0] x[1] . . . x[L− 1]
]T

, (3)

where L is the length of the signal to be analysed. The Hankel

signal matrix is defined as:

X =











x[0] x[1] . . . x[Q− 1]
x[1] x[2] . . . x[N ]

...
...

...

x[R− 1] x[M ] . . . x[L− 1],











(4)

where Q,R > K and Q + R − 1 = L. We also define the

amplitude vector:

α =
[

α0 α1 . . . αK−1

]T
, (5)

and the Vandermonde matrix of the poles:

Z
L =











1 1 . . . 1
z0 z1 . . . zK−1

...
...

...
...

zL−1
0 zL−1

1 . . . zL−1

K−1











. (6)

Performing a SVD on X leads to:

X = [U1U2]

[

Σ1 0
0 Σ2

] [

V1

V2

]

, (7)

where Σ1 and Σ2 are diagonal matrix containing respectively the

K largest singular values, and the smallest singular values; [U1U2]
and [V1V2] are respectively the corresponding left and right singu-

lar vectors. The shift-invariance property of the signal space yields

to:

U
↓
1Φ1 = U

↑
1 , V

↓
1 Φ2 = V

↑
1 , (8)

where the poles are eigenvalues of matrix Φ1 and Φ2. (.)↑ and (.)↓

respectively stand for the operators discarding the first line and the

last line of a matrix. Thus, zk can be obtained by diagonalization

of matrix Φ1 or Φ2. The associated Vandermonde matrix V
L is

computed. Finally, the optimal amplitudes with respect to the least

square criterion are obtained by:

α = (V L)†x, (9)

where (.)† denotes the pseudoinverse operator.

2.2. The Gabor Transform

The Gabor transform of signal x[l] can be written as:

χ[m,n] =

L−1
∑

l=0

g[l − an]x[l] e−2iπl m

M , (10)

where g[l] is the analysis window, a is the time-step and M the

number of frequency channels. (.) denotes the complex conju-

gate. m is a discrete frequency index and n a discrete time-index.

{g, a,K} is called a Gabor frame. For some frames, this trans-

form can be inverted. A necessary condition is a ≤ M . The signal

χ[m,n] for a fixed index m can be seen as a sub-sampled and

band-pass filtered version of the signal x[l]. As the sub-sampling

reduces the length of the data, we apply the ESPRIT algorithm to

each frequency channel in order to analyse longer signals.

3. ESPRIT IN A GABOR TRANSFORM

In this section, we investigate the application of the ESPRIT algo-

rithm to a single channel of the GT. As the GT is linear, we separate

the contribution of the deterministic part s[l] and the contribution

of the noise w[l].

3.1. Deterministic part

We denote c[m,n] the GT of s[l] in channel m and time index n.

We also note ck[m,n] the GT of the signal zlk associated to the

pole zk:

ck[m,n] =

L−1
∑

l=0

g[l − an]zlk e
−2iπl m

M . (11)

According to the signal model (2), is can be easily proved that:

c[m,n] =

K−1
∑

k=0

α̃k,mz̃
n
k,m, (12)

where the apparent pole z̃k,m can be written as:

z̃k,m = z
a
k e

−2iπa m

M , (13)

and the apparent amplitude:

α̃k,m = αk ck[m, 0]. (14)

In other words, the deterministic part of the signal in each channel

is still a sum of exponentially damped sinusoids, but the apparent

amplitudes and phases are modified.

3.2. Stochastic part

Assuming that the time-step a is close to M ensures that the GT

of the noise in each channel is approximately white. Furthermore,

it has been proved that the Gabor transform of a gaussian noise is

a complex gaussian noise [8]. So we assume that the GT of w[l] in

each channel is a complex white gaussian noise.

3.3. Recovering the signal parameters

As the signal model is still valid, it is reasonable to apply ESPRIT

on c[m,n]. We note cm the vector of GT coefficients in the chan-

nel m and Sm the Hankel matrix build from c[m,n]. Applying the

ESPRIT algorithm to Sm leads to the estimation of the apparent

poles z̃k,m. Inverting equation (13) leads to:

zk = e
2iπ m

M (z̃k,m)
1

a . (15)

Because of the sub-sampling introduced by the GT, it can be seen

from equation (13) that aliasing will occur when the frequency

of a pole is outside the interval
[

m
M

− 1

2a
, m
M

+ 1

2a

]

. To avoid

aliasing, we choose the analysis window g[l] so that its bandwidth

is smaller than 1

a
. That way, the possible aliasing components will

be attenuated by the band-pass effect of the Gabor transform.
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We note Ṽ
N
m the Vandermonde matrix of the apparent poles

z̃k,m (N is the time-length of signal c[m,n]). The least square

method for estimating the amplitudes leads to:

α =
(Ṽ N

m )†cm
ck[m, 0]

. (16)

Without noise, according to equation (12), each EDS should

be detected in each channel, which generates multiple estimations

of the same modes. Theoretically, the model order should be set to

K in each channel. However, this is usually a large over-estimation.

Because each channel of the GT behaves like a band-pass filter, an

EDS with a frequency far from m
M

will be attenuated and consid-

ered as noise. Thus practically, the exact number of detectable

components in each channel is unknown. So we set the model or-

der in each channel with the ESTER criterion (see section 4.3 for

implementation details).

4. EXPERIMENTATION

When applied on synthetical sounds that strictly verify the signal

model (1), the full-band ESPRIT algorithm, as well as the ESTER

criteria, estimate the model parameters with an excellent precision

(see [4], [6]). Estimation errors are observed when dealing with

real-life sounds. Therefore this section does not consider the anal-

ysis of synthetical sounds, but focuses on the analysis/synthesis of

a real metal sound m5 (which can be listened to at [9]). m5 has

been produced hitting a metal plate with a drum stick. Observing

its waveform, Fourier transform and spectrogram (Fig. 4a, 4e and

1) one can see that it presents a rich spectral content and significant

lasting energy up to 6 s.

Figure 1: Spectrogram of m5.

4.1. Analysis with full-band ESPRIT method

Considering the size of the Hankel matrix corresponding the whole

sound (around 150000×150000), only a part of the original sig-

nal can be analysed with the full-band ESPRIT algorithm. Fig. 2

shows the ESTER criteria cost function computed for the 10000

first samples of m5. The optimal model order theoretically cor-

responds to the maximum of this function, which is reached here

for K = 4 modes. This value is obviously not consistent, as one

can see on the spectrogram of m5: the spectral content is obvi-

ously much more complex. A reasonable compromise would be

to choose the maximum order for which the cost function is above

a given threshold. For instance, this threshold can be set to 100.

The corresponding model order is K = 206. After applying the

ESPRIT algorithm, 29 EDS appear to have a negative damping,

which will form diverging components at the re-synthesis. Since

they do not describe physical modes, they must be discarded. The

resulting synthesised sound m5_std_esprit ([9]) is unsatisfy-

ing from a perceptual point of view, and reveals that the damp-

ing behaviour of some modes has been wrongly estimated as well.

Furthermore there is a significant difference in the spectral content

of the original and the re-synthesized sound above 12000 Hz, as

shown by Fig. 3 and 4e.

Figure 2: ESTER criteria cost function computed for the 10000

first samples of the full-band signal m5.

Figure 3: DFT spectrum of the re-synthesized sound

m5_std_esprit obtained by applying a full band ESPRIT

algorithm. The model order is K = 206.
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(a) Waveform of the metal sound m5 (b) Initial amplitude

(c) Damping (d) Energy square root

(e) DFT spectrum of m5 (f) DFT spectrum of the re-synthesized sound m5_resyn with all com-

ponents

Figure 4: Overview of the analysis of m5 (a) using the ESPRIT algorithm over its Gabor transform. (b), (c) and (d) show the 401 mode

parameters which have been initially extracted. (e) and (f) respectively show the DFT spectrum of the original sound m5 and the DFT

spectrum of the re-synthesised sound m5_resyn; both sounds are available at [9]. The 181 modes marked with a black dot are the ones

that remain after discarding the modes which initial amplitude is below the absolute detection threshold; the resulting synthesis sound

m5_resyn_amp_ts can be listened to at [9].
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4.2. Analysis with ESPRIT in a Gabor transform

The chosen Gabor frame consists in a Blackman-Harris window of

length 1024, a time-step parameter a = 32, and a number of chan-

nels M = 1024. It is unnecessary to apply the ESPRIT algorithm

over regions of the time-frequency plane that only contain noise.

Since the most important deterministic information is contained

in the channels of high energy, those channels can be identified

using a peak detection algorithm over the energy profile of the Ga-

bor transform as shown in Fig. 5. In a software environment, the

Figure 5: Energy of the Gabor transform of m5 computed for each

of its channels. The dots correspond to the channels identified as

peaks.

choice of which channels will be analysed could be left to the user.

It is reasonable to think that the noise whitening induced by the

sub-band division of the spectrum makes the ESTER criteria more

reliable than in the full-band case, therefore the analysis order is

computed for each of the selected channels, and set to the maxi-

mum of the ESTER criteria cost function. Doing so, a total number

of 430 modes is obtained.

4.3. Discarding multiple components

If the distance between a set of channels on which an analysis has

been performed is smaller than the bandwidth of the analysis win-

dow g[l], the same component is likely to appear in all of these

channels. These multiple estimations of the same component have

to be identified, and only one will be kept for the final re-synthesis:

the one which is the closest to the central frequency of its detection

channel. In the example presented here, 29 components have been

identified as replicas using a frequency confidence interval of 1 Hz.

Fig. 4b, 4c and 4d show the mode parameters (amplitude, damp-

ing, energy as function of frequency) that remain after discarding

the replicas. The resulting re-synthesized sound m5_resyn can

be listen to at [9]. Fig. 4f shows the DFT spectrum of m5_resyn

which can be compared to the DFT spectrum of the original anal-

ysed sound Fig. 4e.

4.4. Discarding irrelevant components

The estimated set of modes is the one that best fits the signal model

(2) with respect to the Total Least Square criterion. However, as

shown in Fig 4b, some of those modes are not relevant for they

have an insignificant energy. In order to produce perceptually con-

vincing sounds, one can rely on psychoacoustic results in order

to discard inaudible modes. For instance, the absolute detection

threshold can be used to discard modes by observing their initial

amplitude. The black doted modes on Fig. 4b, 4c and 4d rep-

resent the modes that remain after applying an absolute detection

threshold ([10]) and setting the minimum of the threshold to the

minimum amplitude that the sound format can handle (e.g. ±1

for wav format coded as 16 bits integers). The resulting sound

m5_resyn_amp_ts, containing 181 modes, can be listened to

at [9].

It is also possible to use energy arguments and favour high

energy modes over low energy modes. In the directory named

‘Cumulative synthesis’ available at [9] are stored successive re-

synthesis of m5 computed by successively adding the modes sorted

in decrescent order of energy. One can note that there is no sig-

nificative perceptual difference between the sounds beyond 105

modes.

5. FURTHER IMPROVEMENTS

One of the advantages provided by the use of time-frequency rep-

resentations is the existence of efficient statistical estimators for

the background noise. As it can be seen on Fig. 1, a significant

number of Gabor coefficients describing an impact sound corre-

spond to noise, and can therefore be used to estimate the variance

of the stochastic part of the signal (see [8]). If the additive noise

is coloured, it is even possible to estimate the variance in several

selected frequency bands. Knowing the variance of the noise for

each frequency channel offers the possibility to use noise masking

properties of the human hearing to discard inaudible components,

and possibly lead to a more selective criteria than the absolute de-

tection threshold described in section 4.4.

The concept of nonstationary Gabor frames ([11]) makes it

also possible to adapt the resolution of the Gabor transform so

as to get an optimal compromise between precision and compu-

tational cost. It would allow, for instance, to take into account the

logarithmical frequency resolution of the human hearing when ap-

plying the Gabor transform. Furthermore, it can be observed that

the damping usually decreases with frequency; nonstationary Ga-

bor frames would allow to adapt the time-step parameter of the

Gabor frame along the frequency scale, so that computational cost

is saved while a sufficient number of coefficients are taken for the

analysis.

6. CONCLUSION

It has been shown that using the ESPRIT algorithm over time-

frequency representations leads to perceptually convincing re-synthesis.

The method has the same benefits than the sub-band analysis: it

allows an extension of the analysis horizon, and it diminishes the

complexity of the problem by only considering successive regions

in the frequency domain; but on top of that, the information given

by the time-frequency representation is of great use for targeting

the analysis on the time-frequency intervals that contain the de-

sired information, thereby avoiding unnecessary analysis and re-

ducing the global computational cost.
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