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GAUSSIAN TRIVIAL RING EXTENSIONS AND FQP-RINGS

FRANÇOIS COUCHOT

Abstract. Let A be a commutative ring and E a non-zero A-module. Neces-
sary and sufficient conditions are given for the trivial ring extension R of A by
E to be either arithmetical or Gaussian. The possibility for R to be Bézout
is also studied, but a response is only given in the case where pSpec(A) (a
quotient space of Spec(A)) is totally disconnected. Trivial ring extensions
which are fqp-rings are characterized only in the local case. To get a general
result we intoduce the class of fqf-rings satisfying a weaker property than fqp-
ring. Moreover, it is proven that the finitistic weak dimension of a fqf-ring is
0, 1 or 2 and its global weak dimension is 0, 1 or ∞.

Trivial ring extensions are often used to give either examples or counterexamples
of rings. One of the most famous is the chain ringR which is not factor of a valuation
domain (see [8, X.6] and [7, Theorem 3.5]). This ring R is the trivial ring extension
of a valuation domain D by a non-standard uniserial divisible D-module. This
example gives a negative answer to a question posed by Kaplansky.

In [14], [15] and [1] there are many results on trivial ring extensions and many
examples of such rings. In particular, necessary and sufficient conditions are given
for the trivial ring extension of a ring A by an A-module E to be either arithmetical
or Gaussian in the following cases: either A is a domain and K is its quotient field,
or A is local and K is its residue field, and E is a K-vector space.

In our paper more general results are shown. For instance the trivial ring exten-
sion R of a ring A by a non-zero A-module E is a chain ring if and only if A is a
valuation domain and E a divisible module, and R is Gaussian if and only if A is
Gaussian and E verifies aE = a2E for each a ∈ A. Complete characterizations of
arithmetical trivial ring extensions are given too. But Bezout trivial ring extensions
of a ring A are characterized only in the case where pSpec(A) (a quotient space of
Spec(A)) is totally disconnected.

We also study trivial ring extensions which are fqp-rings. The class of fqp-
rings was introduced in [1] by Abuhlail, Jarrar and Kabbaj. We get a complete
characterization of trivial ring extensions which are fqp-ring only in the local case.
Each fqp-ring is locally fqp and the converse holds if it is coherent, but this is not
generally true. We introduce the class of fqf-rings which satisfy the condition ”each
finitely generated ideal is flat modulo its annihilator”, and it is exactly the class of
locally fqp-rings. So, trivial fqf-ring extensions are completely characterized. This
new class of rings contains strictly the class of fqp-rings.

In [6] it is proven that each arithmetical ring has a finitistic weak dimension
equal to 0, 1 or 2. We show that any fqf-ring satisfy this property too, and its
global weak dimansion is 0, 1 or ∞ as it is shown for fqp-rings in [1].

2010 Mathematics Subject Classification. 13F30, 13C11, 13E05.
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2 FRANÇOIS COUCHOT

All rings in this paper are associative and commutative with unity, and all mod-
ules are unital. We denote respectively Spec(A), Max(A) and Min(A), the space
of prime ideals, maximal ideals and minimal prime ideals of A, with the Zariski
topology. If I a subset of R, then we denote

V (I) = {P ∈ Spec(A) | I ⊆ P} and D(I) = Spec(A) \ V (I).

Let A be a ring and E an A-module. The trivial ring extension of A by E
(also called the idealization of E over A) is the ring R := A ∝ E whose underlying
group is A× E with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + a′e).

1. Arithmetical rings

An R-module M is said to be uniserial if its set of submodules is totally ordered
by inclusion and R is a chain ring1 if it is uniserial as R-module. Recall that a
chain ring R is said to be Archimedean if its maximal ideal is the sole non-zero
prime ideal.

Proposition 1.1. Let A be a ring, E a non-zero A-module and R = A ∝ E the

trivial ring extension of A by E. The following two conditions are equivalent:

(1) R is a chain ring;

(2) A is a valuation domain and E is a uniserial divisible module.

Proof. It is well known that (2) ⇒ (1) (for instance, see [7, Example I.1.9]). Con-
versely, A is a chain ring because it is a factor of R, and E is uniserial because
it is isomorphic to an ideal of R. Let 0 6= a ∈ A and x ∈ E. It is obvious that
(0, x) ∈ R(a, 0). So, (0, x) = (a, 0)(b, y) for some y ∈ E and b ∈ A, whence x = ay.
Hence E = aE. Let a, b be non-zero elements of A. Then E = aE = abE. We
deduce that ab 6= 0. Hence A is a domain and E is divisible. �

Let E be a module over a ring R. We say that E has a distributive lattice of
submodules if E satisfies one of the following two equivalent conditions:

• (M +N) ∩ P = (M ∩ P ) + (N ∩ P ) for any submodules M, N, P of E;
• (M ∩N) + P = (M + P ) ∩ (N + P ) for any submodules M, N, P of E.

The following proposition can be proved as [13, Theorem 1].

Proposition 1.2. Let E be a module over a ring R. The following conditions are

equivalent:

(1) E has a distributive lattice of submodules;

(2) EP is a uniserial module for each maximal ideal P of R.

A ring (respectively domain) R is said to be arithmetical (respectively Prüfer)
if its lattice of ideals is distributive. An R-module E is FP-injective if, for each
finitely presented R-module F , Ext1R(F,E) = 0. When R is a Prüfer domain then
a module is FP-injective if and only if it is divisible.

Lemma 1.3. Let A be a ring, E a non-zero A-module and R = A ∝ E the trivial

ring extension of A by E. Let S be a multiplicative subset of R and S′ the image

of S by the map R → A defined by (a, x) 7→ a. Then S−1R = S′−1A ∝ S′−1E.

1we prefer “chain ring ” to “valuation ring” to avoid confusion with “Manis valuation ring”.
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Proof. If (a, x) ∈ R and (s, y) ∈ S then it is easy to check that

(a, x)

(s, y)
= (

a

s
,
sx− ay

s2
) =

(sa, sx− ay)

s2
=

(a, x)(s,−y)

s2
.

�

For any module E over ring R we define Supp(E) as:

Supp(E) = {P | P prime ideal such that EP 6= 0}.

An R-module E is locally FP-injective if for each maximal ideal P , EP is FP-
injective.

From Propositions 1.1 and 1.2 and Lemma 1.3 we deduce the following corollary.

Corollary 1.4. Let A be a ring, E a non-zero A-module and R = A ∝ E the trivial

ring extension of A by E. The following two conditions are equivalent:

(1) R is arithmetical;

(2) A is arithmetical, AP is an integral domain for each P ∈ Supp(E), and E
is locally FP-injective and has a distributive lattice of submodules.

Remark 1.5. Let us observe that E is a module over A/N where N is the nilradical

of A if R is arithmetical.

Proof. Let a ∈ N and P be a maximal ideal of A. Either P ∈ Supp(E) and
aRP = 0, or EP = 0. So, aE = 0. �

2. Gaussian rings

Let R be a ring. For a polynomial f ∈ R[X ], denote by c(f) (the content of f)
the ideal of R generated by the coefficients of f . We say that R is Gaussian if
c(fg) = c(f)c(g) for any two polynomials f and g in R[X ]. By [19], a local ring R
is Gaussian if and only if, for any ideal I generated by two elements a, b, in R, the
following two properties hold:

(1) I2 is generated by a2 or b2;
(2) if I2 is generated by a2 and ab = 0, then b2 = 0.

Proposition 2.1. Let A be a local ring, E a non-zero A-module and R = A ∝ E
the trivial ring extension of A by E. The following two conditions are equivalent:

(1) R is Gaussian;

(2) A is Gaussian and aE = a2E for each a ∈ A.

Proof. (1) ⇒ (2). As factor of R, A is Gaussian. Let 0 6= a ∈ A and x ∈ E.
First assume a2 6= 0. Then (a, 0)2 6= 0 and (0, x)2 = 0. So, (a, 0)(0, x) = (0, ax) =
(0, y)(a2, 0) = (0, a2y) for some y ∈ E. We get a2y = ax. Now assume a2 = 0. In
this case (a, 0)2 = 0. It follows that (a, 0)(0, x) = 0, whence ax = 0. In the two
cases aE = a2E.

(2) ⇒ (1). Let r = (a, x) and s = (b, y) two elements of R. Since A is Gaussian
we may assume that ab = ca2 and b2 = da2 for some c, d ∈ A. We shall prove that
(Rr+Rs)2 = Rr2 by showing there exist z and v in E satisfying the following two
equations:

(1) (a, x)(b, y) = (c, z)(a, x)2

(2) (b, y)2 = (d, v)(a, x)2



4 FRANÇOIS COUCHOT

For (1) we only need to show that a2z = ay + bx − 2acx. Since bE = b2E then
bx = b2m = da2m for some m ∈ E. So, ay + bx− 2acx = a(y + adm− 2cx). Now
we use the equality aE = a2E to conclude.

For (2) we only need to show that a2v = 2by − 2adx. Since bE = b2E then
by = b2n = da2n for some n ∈ E. So, 2by − 2adx = a(2adn − 2dx). Now we use
the equality aE = a2E to conclude.

If rs = 0 then ab = 0 and b2 = 0. So, s2 = (0, 2by). But bE = b2E = 0, whence
by = 0 and s2 = 0. �

Corollary 2.2. Let A be a ring, E a non-zero A-module and R = A ∝ E the trivial

ring extension of A by E. The following two conditions are equivalent:

(1) R is Gaussian;

(2) A is Gaussian and aE = a2E for each a ∈ A.

Proof. We deduce this corollary from Proposition 2.1 and from the fact that a
ring A is Gaussian if and only AP is Gaussian for each maximal ideal P and that
aE = a2E if and only if aEP = a2EP for each maximal ideal P . �

Remark 2.3. Let A be a Gaussian ring. Let E be an A-module such that aE =
a2E for each a ∈ A. If a ∈ N , where N is the nilradical of A, it is easy to see that
aE = 0. So, E is a module over A/N which is arithmetical by [17, Corollary 7].

Proposition 2.4. Let A be an integral domain and E an A-module such that

aE = a2E for each a ∈ A. Then:

(1) E is divisible if it is torsion-free;

(2) when A is local, E is semisimple if it is finitely generated;

(3) if A is an Archimedean valuation domain, then E is the extension of a

divisible module by a semisimple module.

Proof. (1). Let 0 6= a ∈ A and x ∈ E. There exists y ∈ E such that ax = a2y.
Since E is torsion-free we get x = ay.

(2). Let P be the maximal ideal of A and a ∈ P . We have aE = a(aE). By
Nakayama Lemma aE = 0. So, E is an A/P -module.

(3). To do this we show that PE is divisible. Let x ∈ PE and 0 6= s ∈ A. Then
x = ay for some a ∈ P and y ∈ E. It is easy to check that ∩n∈NAa

n is a prime
ideal. So, this intersection is 0. There exists an integer n such that s /∈ Aan. We
get that aE = saE = an+1E. Hence x ∈ saE ⊆ sPE. �

Example 2.5. Let A be a valuation domain, Λ an index set and (Lλ)λ∈Λ a family

of prime ideals. For each λ ∈ Λ let Eλ be a non-zero divisible A/Lλ-module. Let

E1 = ⊕λ∈ΛEλ and E2 =
∏

λ∈ΛEλ. Then aEi = a2Ei for each a ∈ A and for

i = 1, 2.

Proof. Let 0 6= a ∈ A and x = (xλ)λ∈Λ ∈ Ei where i = 1, 2. If axλ = 0 then
axλ = a2yλ with yλ = 0. If axλ 6= 0 then a /∈ Lλ. Since Eλ is divisible over A/Lλ

there exists yλ ∈ Eλ such that axλ = a2yλ. So, ax = a2y with y = (yλ)λ∈Λ. �

Let A be a valuation domain. A non-zero prime ideal L that is not the union of
prime ideals properly contained in it is called branched.

Proposition 2.6. Let A be a valuation domain. Assume that each non-zero prime

ideal is branched. For any A-module E the following conditions are equivalent:

(1) aE = a2E for each a ∈ A;
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(2) for each prime ideal L, LE/L′E is an A/L′-module divisible, where L′ is

the union of all prime ideals properly contained in L.

Proof. (1) ⇒ (2). Let s ∈ L \ L′ and x ∈ LE. Then x = ay for some a ∈ L and
y ∈ E. We may assume that a /∈ L′. So, L′ = ∩n∈NAa

n and there exists n ∈ N
such that s /∈ Aan. Whence aE = an+1E ⊆ saE ⊆ aE. Hence x ∈ sLE.

(2) ⇒ (1). Let 0 6= a a non-unit of A. Let L be the prime ideal which is the
intersection of all prime ideals containing a. Then a /∈ L′. Let x = ay ∈ aE. Since
LE/L′E is divisible over A/L′, then x ∈ a2E + L′E ⊆ a2E. �

A chain ring is said to be strongly discrete if it contains no idempotent prime
ideal. Each non-zero prime ideal of a strongly discrete valuation domain is branched.

3. Bézout rings

A ring is a Bézout ring if every finitely generated ideal is principal. A ring R
is Hermite if R satisfies the following property : for every (a, b) ∈ R2, there exist
d, a′, b′ in R such that a = da′, b = db′ and Ra′ + Rb′ = R. We say that R is an
elementary divisor ring if for every matrix A, with entries in R, there exist a
diagonal matrix D and invertible matrices P and Q, with entries in R, such that
PAQ = D. Then we have the following implications:

elementary divisor ring ⇒ Hermite ring ⇒ Bézout ring ⇒ arithmetical ring;
but these implications are not reversible: see [9] or [4].

Proposition 3.1. Let A be a ring and N its nilradical. Assume that N is prime.

Let E be a non-zero A-module and R = A ∝ E the trivial ring extension of A by

E. The following three conditions are equivalent:

(1) R is Hermite;

(2) R is Bézout;

(3) A is Bézout, AP is a domain for each P ∈ Supp(E), E is FP-injective and

all its finitely generated submodules are cyclic.

Proof. (1) ⇔ (2). It is well known that each Hermite ring is Bézout. Since R
contains a unique minimal prime ideal, then the converse holds by [12, Theorem 2].

(2) ⇒ (3). By Corollary 1.4 E is FP-injective and AP is a domain for each
P ∈ Supp(E) . As factor of R A is Bézout, and each finitely generated submodule
of E is cyclic because E is isomorphic to an ideal of R.

(3) ⇒ (2). Let a ∈ N and x ∈ E. For each P ∈ Supp(E) aAP = 0 (since AP

is a domain). It follows that (0 : a) * P and consequently Supp(E) ⊆ D((0 : a)).
For each P /∈ Supp(E), APx = 0. It follows that (0 : x) * P and consequently
D((0 : a)) ∪ D((0 : x)) = Spec(A). So, (0 : a) + (0 : x) = A, whence there exist
b ∈ (0 : a) and c ∈ (0 : x) such that b + c = 1. Then a = ca, x = bx and it is easy
to check that R(a, 0) + R(0, x) = R(a, x). Let (a, x) and (b, y) be two elements of
R. If (a, b) ∈ N ×N then there exist d ∈ A such that Ad = Aa + Ab, and z ∈ E
such that Ax +Ay = Az. It follows that R(a, x) +R(b, y) = R(d, z). Now assume
that (a, b) /∈ N × N . There exist d, a′, b′, s, t ∈ A such that a = da′, b = db′ and
sa+ tb = d. Let z = sx+ ty. Since E is divisible over A/N and d /∈ N , there exist
x′, y′ ∈ E such that x− a′z = dx′ and y − b′z = dy′. Now it is easy to check that
(a, x) = (d, z)(a′, x′), (b, y) = (d, z)(b′, y′) and (s, 0)(a, x) + (t, 0)(b, y) = (d, z). �

If R is a ring, we consider on Spec(R) the equivalence relationR defined by LRL′

if there exists a finite sequence of prime ideals (Lk)1≤k≤n such that L = L1, L
′ = Ln
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and ∀k, 1 ≤ k ≤ (n− 1), either Lk ⊆ Lk+1 or Lk ⊇ Lk+1. We denote by pSpec(R)
the quotient space of Spec(R) modulo R and by λR : Spec(R) → pSpec(R) the
natural map. The quasi-compactness of Spec(R) implies the one of pSpec(R), but
generally pSpec(R) is not T1: see [16, Propositions 6.2 and 6.3]. A topological
space is called totally disconnected if each of its connected components contains
only one point. Every Hausdorff topological space X with a base of clopen neigh-
bourhoods is totally disconnected and the converse holds if X is compact (see [11,
Theorem 16.17]).

An ideal I of a ring A is pure if and only if A/I is a flat A-module.

Theorem 3.2. Let A be a ring, E a non-zero A-module and R = A ∝ E the

trivial ring extension of A by E. Assume that pSpec(A) is totally disconnected.

The following three conditions are equivalent:

(1) R is Hermite;

(2) R is Bézout;

(3) A is is Bézout, AP is a domain for each P ∈ Supp(E), E is locally FP-

injective and all its finitely generated submodules are cyclic.

Proof. (1) ⇒ (2) is well known and we show (2) ⇒ (3) as in Proposition 3.1.
(3) ⇒ (1). By [5, Proposition 2.2] pSpec(A) is compact. Since A = R/J where J

is contained in the nilradical of R then pSpec(A) and pSpec(R) are homeomorphic.
Let x ∈ pSpec(R), I(x) the pure ideal of R for which x = V (I(x)) and I ′ =
I(x)/NI(x) (see [5, Lemma 2.5]). Thus I ′ is a pure ideal of A and it is contained in
only one minimal prime ideal. So, the nilradical of A/I ′ is prime. If S = 1 + I(x)
then S−1R = R/I(x). By using Lemma 1.3 we get that R/I(x) = A/I ′ ∝ E/I ′E.
By Proposition 3.1 R/I(x) is Bézout for each x ∈ pSpec(R). We conclude that R
is Hermite by [5, Theorem 3.1]. �

Recall that a ring A is coherent (respectively semihereditary) if all its finitely
generated ideals are finitely presented (respectively projective).

Corollary 3.3. Let A be a coherent reduced ring, E a non-zero A-module and

R = A ∝ E the trivial ring extension of A by E. The following three conditions

are equivalent:

(1) R is Hermite;

(2) R is Bézout;

(3) A is is Bézout, E is FP-injective and all its finitely generated submodules

are cyclic.

Proof. Since A is Bézout, reduced and coherent then A is semihereditary. By [18,
Proposition 10] Min(A) is compact, and by [5, Proposition 2.2] pSpec(A) is homeo-
morphic to Min(A), and consequently it is totally disconnected. Since A is coherent,
each FP-injective module is locally FP-injective. We conclude by Theorem 3.2. �

Corollary 3.4. Let A be a ring, E a non-zero A-module and R = A ∝ E the

trivial ring extension of A by E. Assume that pSpec(A) is totally disconnected.

The following two conditions are equivalent:

(1) R is an elementary divisor ring;

(2) A is an elementary divisor ring, AP is a domain for each P ∈ Supp(E), E
is locally FP-injective and all its finitely generated submodules are cyclic.
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Proof. It is a consequence of Theorem 3.2 and the following. By [10, Theorem 6] a
ring R is an elementary divisor ring if and only if R is Hermite and for any a, b, c ∈ R
such that Ra+Rb+Rc = R there exist p, q ∈ R such that Rpa+R(pb+ qc) = R.
By [12, Theorem 3] a Hermite ring R is an elementary divisor ring if and only if so
is R/N , where N is the nilradical of R. �

Corollary 3.5. Let A be a coherent reduced Bézout ring, E a non-zero FP-injective

A-module. Assume that each finitely generated submodule of E is cyclic. Then, for

any x, y ∈ E there exist z ∈ E and an invertible 2× 2 matrix B with coefficients in

A such that

(

z

0

)

= B

(

x

y

)

.

Proof. Let R = A ∝ E. Let x, y ∈ A. By Corollary 3.3 R is Hermite. So,
there exist r ∈ R and an invertible 2 × 2 matrix C with entries in R such that
(

r

0

)

= C

(

(0, x)

(0, y)

)

. It is obvious that r = (0, z) for some z ∈ E. From C we deduce

an invertible 2× 2 matrix B with entries in A satisfying

(

z

0

)

= B

(

x

y

)

. �

Contrary to the two first sections we do not get general results, even in the case
where A is reduced. In [20] there are two examples of reduced Bézout rings which
are not semihereditary. For the first example A ([20, Example 1.3b]) pSpec(A) is
totally disconnected, so, if E is an A-module satisfying the conditions of Theorem
3.2 then A ∝ E is Bézout. But for the second example A ([20, Example 6.2]),
pSpec(A) is connected and infinite, so, we do not know if A admits Bézout proper
trivial ring extensions.

4. fqp-rings and fqf-rings

Let A be a ring, M an A-module. An A-module V isM-projective if the natural
homomorphism HomA(V,M) → HomA(V,M/X) is surjective for every submodule
X of M . We say that V is quasi-projective if V is V -projective. A ring A is said
to be an fqp-ring if every finitely generated ideal of A is quasi-projective.

Theorem 4.1. Let A a local ring and N its nilradical. Then A is an fqp-ring if

and only if either A is a chain ring or A/N is a valuation domain and N is a

divisible torsionfree A/N -module.

Proof. Assume that A is an fqp-ring but not a chain ring. By [1, Lemmas 3.12 and
4.5], N2 = 0 and every zero-divisor belongs to N . So, N is prime. From [1, Lemma
3.8] it follows that any two elements of A which are not in N are comparable. This
implies that A/N is a valuation domain. Let a /∈ N and b ∈ N . By using again [1,
Lemma 3.8] we get that b ∈ Aa. Hence N is divisible over A/N and it is torsionfree
since each element in A \N is regular.

Conversely, it is easy to see that each chain ring is fqp. So, we may assume that
A is not a chain ring. Let I a finitely generated ideal of A. If I ⊆ N then I is a free
module over A/N . Consequently I is quasi-projective. Now, suppose that I * N .
Thus (I + N)/N is principal, and from the fact that N is divisible over A/N we
deduce that I is principal too. Hence I is quasi-projective. �

Theorem 4.2. Let A be a local ring, N its nilradical, E a non-zero A-module and

R = A ∝ E the trivial ring extension of A by E. Then R is an fqp-ring if and only

if A is an fqp-ring and one of the following conditions holds:
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(1) A is a valuation domain and E is divisible and uniserial;

(2) E is divisible and torsionfree over A/N , each zero-divisor of A belongs to

N and N2 = 0.

Proof. First assume that R is fqp. By [1, Proposition 4.1] so is A. If R is a chain
ring we use Proposition 1.1. If not, since R is Gaussian by [1, Theorem 3.2] then
E is an A/N -module by Remark 2.3. Let N ′ be the nilradical of R. It is easy to
see that R/N ′ ∼= A/N and N ′ ∼= N ⊕ E. By Theorem 4.1, N ′2 = 0, N2 = 0 and E
is divisible and torsionfree over A/N .

Conversely, condition (1) implies that R is a chain ring. Now, assume that
condition (2) holds. As in the first part of the proof, R/N ′ ∼= A/N , N ′ ∼= N ⊕ E
and N ′2 = 0. So, N ′ is divisible and torsionfree over R/N ′. We conclude by
Theorem 4.1. �

Corollary 4.3. Let A be a valuation domain which is not a field, E a non-zero

divisible A-module and R = A ∝ E. Then:

(1) if E is uniserial then R is a chain ring;

(2) if E is torsionfree but not uniserial then R is an fqp-ring which is not

arithmetical;

(3) if E is neither torsionfree nor uniserial then R is Gaussian but not an

fqp-ring.

Proposition 4.4. Let A be a coherent ring. Then A is an fqp-ring if and only so

is AP for each maximal ideal P of A.

Proof. Let I be a finitely generated ideal. Then (End(I))P ∼= End(IP ) since I is
finitely presented. We use [1, Lemma 3.7] to conclude. �

We say that a ring A is a fqf-ring if each finitely generated ideal I is flat modulo
its annihilator, i.e I is a flat A/(0 : I)-module. It is obvious that every fqp-ring A
is a fqf-ring (by [1, Lemma 2.2] a finitely generated module is quasi-projective if
and only if it is projective modulo its annihilator). By Proposition 4.4 the converse
holds if A is coherent. But we shall see that it is not generally true.

Corollary 4.5. Let A be a ring, N its nilradical, E a non-zero A-module and

R = A ∝ E. Then the following conditions are equivalent:

(1) R is a fqf-ring;

(2) A is a fqf-ring and for each P ∈ Supp(E) either NP = 0 and EP is a

uniserial divisible AP -module or N2
P = 0 and EP and NP are divisible and

torsionfree over AP /NP .

Proof. Over a local ring each finitely generated flat module is free. So, a local ring
is a fqf-ring if and only if it is an fqp-ring (by [1, Lemma 2.2]). As a module is flat
if and only if it is locally flat, then a ring A is a fqf-ring if and only if so is AP for
each maximal ideal P of A. So, we use Theorem 4.2 to conclude. �

Example 4.6. Let A be a von Neumann regular ring which is not self-injective,

H the injective hull of A, x ∈ H \ A, E = A + Ax and R = A ∝ E. Then R is a

fqf-ring which is not an fqp-ring.

Proof. Clearly A is a reduced fqp-ring, and, for each maximal ideal P , EP is in-
jective and torsionfree over the field AP . By corollary 4.5 R is a fqf-ring. On the
other hand E is isomorphic to a finitely generated ideal J of R. It is obvious that
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E is a faithful A-module, so its annihilator as R-module is J . If P ∈ Supp(E/A)
then EP is of rank 2 and if P /∈ Supp(E/A) it is of rank one. But (A : x) is an
essential ideal of A and consequently it is not generated by an idempotent. So,
Supp(E/A) = V (ann(E/A)) = V ((A : x)) is not open . It follows that the map
Spec(A) → N defined by P 7→ rankAP

(EP ) is not locally constant. Hence E is
not a projective A-module by [3, Théorème II.§5.2.1]. By [1, Lemma 2.2] it is not
quasi-projective over R, whence R is not an fqp-ring. �

5. Finitistic and global weak dimensions of fqf-rings

Let R be a ring. If M is an R-module, we denote by w.d.(M) its weak dimen-

sion. Recall that w.d.(M) ≤ n if TorRn+1(M,N) = 0 for each R-module N . For
any ring R, its global weak dimension w.gl.d(R) is the supremum of w.d.(M)
where M ranges over all (finitely presented cyclic) R-modules. Its finitistic weak

dimension f.w.d.(R) is the supremum of w.d.(M) where M ranges over all R-
modules of finite weak dimension.

We shall extend [1, Theorem 3.11] and[6, Theorem 1] to fqf-rings by showing the
following theorem:

Theorem 5.1. The global weak dimension of a fqf-ring is 0, 1 or ∞ and its finitistic

weak dimension is 0, 1 or 2.

Proof. The first assertion can be proven as [1, Theorem 3.11].
Let R be a fqf-ring. It is well known that an R-module M is flat if and only if

so is MP for each P ∈ Max R. So, we may assume that R is local. By Theorem 4.2
either R is a chain ring and we use [6, Theorem 2] or R satisfies the assumptions
of the following proposition and we conclude by using it. �

Proposition 5.2. Let R be a local ring and N its nilradical. Assume that R/N is

a valuation domain, N2 = 0 and N is divisible and torsionfree over R/N . Then:

(1) if N is the maximal ideal then f.w.d.(R) = 0;
(2) if N is not maximal then f.w.d.(R) = 1.

Proof. (1). In this case R is a primary ring. We conclude by [2, Theorems P and
6.3].

(2). Let Q be the quotient ring of R. Since each element of R which is not
in N is regular then Q = RN and since N is divisible and torsionfree over R/N
then N is a Q-module and it is the maximal ideal of Q. From (1) we deduce that
f.w.d.(Q) = 0.

Let M be an R-module with w.d.(M) < ∞. Then we have w.d.(MN ) < ∞. So,
MN is flat. Let I be a finitely generated proper ideal. Then either I * N and
I = Ra for some a ∈ R \N , or I ⊆ N and I ∼= (R/N)n for some integer n ≥ 1.

In the first case we have w.d.(R/I) = 1 since a is a regular element, whence

TorR2 (R/I,M) = 0. In the other case we have the following exact sequence:

0 → NF → F → I → 0,

where F is a free R-module of rank n. We deduce that the sequence

0 → NFN → FN → IN → 0 is exact.
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We have TorQ1 (IN ,MN) = 0. Since N is a Q-module, NF ∼= NFN . So, in the
following commutative diagram

0 → TorR1 (I,M) → NF ⊗R M → F ⊗R M
↓ ↓

0 → NFN ⊗Q MN → FN ⊗Q MN

the left vertical map is an isomorphism. Then NF ⊗RM → F ⊗RM is a monomor-
phism. We successively deduce that TorR1 (I,M) = 0 and TorR2 (R/I,M) = 0. Hence
w.d.(M) ≤ 1. �
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