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At static stall of airfoil, an hysteretic behavior (corresponding to an abrupt loss of lift) has been observed 

leading to a partially detached flow (called state I, upper increasing angle branch) and massively separated 

flow (called state II, lower decreasing angle branch). In order to predict the type of hysteretic loop that may 

occur or to quantify unsteady oscillatory flow in the near wake, experiments have been performed to explore 

laminar separation, transition and detachment of the boundary layer (Mittal and Saxena, 2000) but the key-

physical properties of the vortex shedding establishment during hysteretic loop is not clearly understood. 

During this hysteretic loop, a particular vortex dynamics is observed corresponding to an interaction of the 

alternating leading and trailing edge vortices. In the present study, experiments have been conducted using 

LDV and PIV techniques to quantify the topology of the unsteady separated flow in the near wake and the 

shear layer of 2D Naca (15, 25, 35%) symmetric hydrofoils at Reynolds number 0.5 10
5
. As expected a 

pattern of two eddies is obtained due to the averaging of the passage of the alternating vortices (cyclonic and 

anticyclonic vortices) but the state II is characterized by a thickening effect in vertical direction and a 

modification of characteristic lengths of the wake depending on the thickness of the foil. The main difference 

between the two states concerns the topology and the dynamics of the vortices associated with the transport 

of anticyclonic vortices. At state I, vortices are dissymmetric (elliptical and distorted vortex) and the trailing 

edge vortex is less developed compared to the leading edge vortices (anticyclonic vortices are strongly 

stretched). At the passage of state II, the anticyclonic vorticity region extends on a larger area and leads to a 

classical value of Strouhal number 0.2 as Karman street (Djeridi et al. 2003). On the other hand, small scale 

perturbations, in comparison with the vortex size, growth in the core of anticyclonic vorticity. Indeed, the 

lower branch of hysteresis (state II) is characterized by a predominance of strain rate and an increase of 

turbulent production term in the wake due to the longitudinal and vertical transport of the trailing edge 

vortices (figure 1). The diffusion of the anticyclonic vortices has been observed using Q criterion: 
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SQ −Ω=  (Jeong and Hussain 1995, Hunt et al. 1988) in order to propose a local definition based on 

a non-intuitive concept. To point out the contribution of the mean motion on the turbulent production at 

small scales, proper orthogonal decomposition of velocity field using snapshot method (Sirovich, 1987) has 

been used (figure 2; ). Indeed, this method allows an 

extraction of the vortex pattern comparing with that obtained by Reynolds averaging. Taking into account 

the non time-resolved PIV measurements, only the spatial physical process is projected on the Karhunen-

Loewe base and allows to decompose turbulent flow into coherent non-Gaussian component and random part 

of the motion ( )()()( )()( xuxuxu r
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ii += = ). As expected, the two first 

modes exhibit clearly the convection of the vortices and 10 modes are necessary for the field reconstruction. 

The small amplitudes of the reconstructed random part of the flow compared to the Reynolds averaging 

turbulent intensity, show that the turbulent production is essentially issue from the mean motion of 

anticyclonic vortices. The so-called random motion obtained by Reynolds averaging is due not only to the 

background turbulent motion but also to the realignment of the trailing edge vortices from state II (figure 3).   
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FIG.  1– Turbulent production Iso-contours P12(contours Q=0.5). 

a) Naca 0015 state I (left), state II (right); b) Naca 0035 state I (left), state II (right). 
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FIG. 2 – Streamlines of spatial mode of POD. 
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FIG. 3 – Iso-contours of inf

2 /' Uu . Original turbulent intensity (left), reconstructed random part for 30 

to 1000 spatial modes (right) 
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