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Abstract. Predicting the diffusion of information on social networks
is a key problem for applications like Opinion Leader Detection, Buzz
Detection or Viral Marketing. Many recent diffusion models are direct
extensions of the Cascade and Threshold models, initially proposed for
epidemiology and social studies. In such models, the diffusion process
is based on the dynamics of interactions between neighbor nodes in the
network (the social pressure), and largely ignores important dimensions
as the content of the piece of information diffused. We propose here a
new family of probabilistic models that aims at predicting how a con-
tent diffuses in a network by making use of additional dimensions: the
content of the piece of information diffused, user’s profile and willing-
ness to diffuse. These models are illustrated and compared with other
approaches on two blog datasets. The experimental results obtained on
these datasets show that taking into account the content of the piece
of information diffused is important to accurately model the diffusion
process.

1 Introduction

The emergence of Social Networks and Social Media sites has motivated a large
amount of recent research. Different problems are currently studied such as so-
cial network analysis, social network annotation, community detection, link pre-
diction or information diffusion. Many recent information diffusion models are
extensions of the widely used independent cascade model (IC) [5] and linear
threshold model (LT) [6], and view diffusion as an iterative process in which the
probability of diffusion depends, for each user, on her incoming neighbors having
already diffused the information. However, while IC or LT inspired models can
be used for this task they suffer from two main drawbacks:

– They do not consider the content of the piece of information to be diffused,
while this seems an important factor: for the same network, two different
pieces of information will propagate differently depending on the respective
fields of interest of the different users in the network;



– They do not consider any information about the users of the social net-
works, as user profiles for example, while this information is intuitively very
informative for characterizing how much and how a user tends to diffuse a
message.

In this study, we introduce a new family of diffusion models that (a) make
use of the content of the information diffused, (b) take into account the profile of
each user as well as (c) their willingness to diffuse a given piece of information.
Experiments for assessing the validity of this new family of models are performed
on two real, widely used datasets extracted from the blogosphere.

The remainder of the paper is organized as follows. Section 2 introduces the
notations used throughout this study and states the problem addressed. Section 3
describes the different features used, while Section 4 presents the probabilistic
models built on top of these features. These models are evaluated and compared
to standard information diffusion models in Section 5. Lastly, Section 6 describes
the related work, while Section 7 concludes the study.

2 Notations and Problem Statement

We consider here a social network G = (N , E) composed of a set of nodes or users
N = {n1, ..., nN} and a set of directed edges E . We denote by B(ni) the set of
nodes with an incoming link to ni such as ∀nj ∈ B(ni), (nj , ni) ∈ E . Elements of
B(ni) will be called “incoming neighbors” of ni (|B(ni)| denotes the cardinal of
B(ni)) and the set of incoming neighbors of ni having already diffused content
ck before or at time t will be denoted Qk(ni, t). We furthermore assume that we
have access to:

– C = (c1, ..., cK), the set of contents diffused through the network. ck is a
vector of features representing the content diffused.

– P = (p1, ..., pN ), the set of user profiles; pi is a vector of features representing
the interests of user ni and is defined on the same feature space as the one
used for C; Such vectors can directly be inferred from the contents diffused
in the past by users, as the posts in blogs for example;

– M = (M1, ...,MK), a set of diffusion matrices where mk
i,t ∈ {0, 1}; mk

i,t = 1

indicates that user ni has diffused content ck before or at time t. Such a user
will also be called a contaminated user in the following. T corresponds
to the duration of all diffusions, in time steps. Mk

.,t will denote the tth col-

umn of Mk. Lastly, the set M is divided into two disjoint subsets: a set of
training matrices, D =

{

(M1, c1), ..., (M ℓ, cℓ)
}

, and a set of test matrices,

T =
{

(M ℓ+1, cℓ+1), ..., (MK , cK)
}

. Training matrices will be used to learn
diffusion models, whereas test matrices will be used for evaluation.

We are interested here in the step-by-step evolution of the diffusion process, as
well as in its result after a given time. We denote by Fs the function that predicts
the diffusion of an information at time t given the diffusion status of the network
at time t− 1. With the elements defined above:

mk
i,t = Fs(ni,G,P, ck,Mk

.,t−1) (1)



The function Fg predicting the result of the diffusion process after a given time
can be constructed from Fs by “unfolding” it over time: Fg(ni, t,G,P, ck,Mk

.,0) =

F
(t)
s (ni,G,P, ck,Mk

.,0), where
(t) denotes the composition of Fs t times. In previ-

ous studies, Fs depends neither on P nor on ck, and we make here the assumption
that exploiting information from P and ck will result on a better prediction of
how information diffuses.

The goal of the present study is thus twofold:

1. Learn, from G, P, ck and the training set
(

(M1, c1), ..., (M ℓ, cℓ)
)

, the map-
ping Fs;

2. Assess whether exploiting P and ck leads to better diffusion models.

3 A User-based Approach

We show in this section how the different aspects mentioned can be captured
through simple feature functions.

The thematic interest of each user in the content diffused can be modeled
as a proximity between user profiles (describing their interests) and the content
diffused. A general form for this proximity is:

S(ni,P, ck, θs) = sim(pi, ck)− θs

where θs is a threshold and sim(pi, ck) represents a similarity between the con-
tent diffused and the user profile. Setting θs to 0 amounts to relying solely on
the similarity between the user profile and the content diffused; higher values
of θs allow one to “discourage” diffusion when the user interest in the content
is not sufficient. We use in this study the cosine similarity for sim, but other
choices are possible.

The activity, or active/passive role, can directly be measured, on the train-
ing set, through the ratio between the number of contents received and diffused
by a user and the number of contents received by that user:

Act(ni,G,D) =

∑l
k=1 I(|Q

k(ni, T − 1)| > 0)mk
i,T

∑l
k=1 I(|Q

k(ni, T − 1)| > 0)

where I() denotes the indicator function. This measure can be generalized by
introducing a threshold, through:

W (ni,G,D, θw) = Act(ni,G,D)− θw

W (ni,G,D, θw) represents the willingness of user ni to diffuse information, and
θw plays a role similar to the one of θs above.

Lastly, the social pressure on each user, i.e. the fact that many different
neighbors have diffused a given content, is traditionally measured, either im-
plicitly or explicitly, through the number of incoming neighbors having already
diffused the information. We denote the associated measure:

SP (ni,G,M
k, t)



The particular form this measure takes depends on the model retained, and will
be detailed in Section 4.

Each user can thus be represented by a vector of three features evolving over

time for each content ck, a vector we denote Φni,t,c
k

, omitting, for readability
reasons, the other arguments (P, ck,G,Mk

.,T−1, θs, θw):

Φni,t,c
k

=





S(ni,P, ck, θs)
W (ni,G,D, θw)
SP (ni,G,M

k, t)





These features are then combined through simple linear combinations to yield
basis functions for each user, content and time step:

fλ(ni, t, c
k) = λ0 + λ1Φ

ni,t,c
k

1 + λ2Φ
ni,t,c

k

2 + λ3Φ
ni,t,c

k

3 (2)

where λ0, · · · , λ3 are parameters that need to be learned. The way Fs and Fg

are constructed from the basis functions fλ will be detailed in section 4.

4 Probabilistic modeling

Probabilistic models for information diffusion allows one to model the uncer-
tainty inherent to the diffusion process. In this case, one does not consider that
each user has either diffused a given content or not, but rather that each user
has a certain probability of having diffused the given content. Two quantities
are useful here: P (ni, c

k, t), the probability that user ni diffuses content ck at
time t, and P (ni, c

k,≤ t), the probability that user ni has diffused content ck

before time t. These two quantities are related through:

P (ni, c
k,≤ t+ 1) = P (ni, c

k,≤ t)+ (1− P (ni, c
k,≤ t))P (ni, c

k, t) (3)

A user having diffused before time t + 1 has either diffused before time t, or
has not and has diffused at time t. Furthermore, because of the definition of
P (ni, c

k,≤ t):
Fs(ni, t,G,P, ck,Mk

.,t−1) = P (ni, c
k,≤ t)

and Fg can be obtained by unfolding the process over time, i.e. computing Fs

from t = 0 to the desired time.
When the thematic interest of the user is high, or when her willingness to

diffuse or her social pressure is high, P (ni, c
k, t) should be high; conversly, when

thematic interest, willingness to diffuse and social pressure are low, P (ni, c
k, t)

should be low. Such a behavior is naturally captured in the logistic function,
which acts as a soft thresholding process and yields valid probability functions.
Furthermore, a user cannot diffuse a content if no incoming neighbor has already
diffused it. Because of the probabilistic setting retained here, one does not have
a direct access to |Qk(ni, t)|, the number of incoming neighbors having already
diffused, but rather to an expectation of it (E[|Qk(ni, t)|]). Hence:

SP (ni,G,M
k, t) = E[|Qk(ni, t)|]



and:

P (ni, c
k, t) =







(1 + e−fλ(ni,t,c
k))−1 ifE[|Qk(ni, t)|] > 0

0 otherwise

(4)

with (λ1, λ2, λ3) positive or null (when a feature has no impact on the diffusion).

The expectation E[|Qk(ni, t)|] is defined as
∑|B(ni)|

m=0 m P (|Qk(ni, t)| = m),
where P (|Qk(ni, t)| = m) is the probability that the number of incoming neigh-
bors who have diffused the content is m. It is easy to show that (we skip here
the derivation which is purely technical):

E[|Qk(ni, t)|] =
∑

nj∈B(ni)

P (nj , ck,≤ t) (5)

The dynamics of the diffusion thus evolves, from one time step to another,
through:

1. Initialization: P (ni, c
k,≤ 0) = 1 for initial diffusers, 0 otherwise;

2. Iteratively compute (from t = 0):
– E[|Qk(ni, t)|] using equation 5
– P (ni, c

k, t) using equation 4
– P (ni, c

k,≤ t+ 1) using equation 3

The main problem with the above model, however, is that the probabilities
P (ni, c

k,≤ t) cannot decrease, and will necessarily increase if P (ni, c
k, t) is

strictly positive at some point in time. This is due to the fact that users are
“aware” of the content they have already diffused at all time steps, and that
their probability of diffusing will be reinforced by subsequent receptions of a
given content (for this reason, we refer to this model as RUC, for Reinforced
User-Centric). The following model corrects this drawback.

A time-decaying extension The quantity P (ni, c
k, t) becomes strictly pos-

itive as soon as E[|Qk(ni, t)|] is strictly positive, and one would like, in this
latter measure, that the influence of users having diffused an information a long
time ago be less important than the one of users having diffused the information
recently. One can thus replace equation 5 by the following equation:

E[|Qk(ni, t)|] =
∑

nj∈B(ni)

ρ(nj , ck, t) (6)

where ρ(nj , ck, t) is a function of the influence nj has on her outgoing neighbors
at time t wrt content ck, penalizing “old” diffusions:

ρ(nj , ck, t+ 1) = δ × ρ(nj , ck, t)+ (1− P (nj , ck,≤ t))P (nj , ck, t) (7)

By definition, ρ(nj , ck, t = 0) = 1 for initial diffusers and 0 otherwise. δ, 0 ≤ δ ≤
1 is a decaying parameter controlling the penalization on old diffusions. When
δ = 1, ρ(nj , ck, t) = P (nj , ck,≤ t) and one recovers the RUC model. The other
quantities of the RUC model remain unchanged. We will refer to the model with
a decaying parameter as DRUC, for Decaying Reinforced User-Centric.



Setting θs and θw We now turn to the problem of setting the thresholds θs
and θw. A user having a similarity with the content above θs is more likely to
diffuse an information; conversely, a user with a similarity below θs is more likely
to not diffuse the information. The global similarity function defined above is
positive in the first case and negative in the second one. θs thus corresponds
to a threshold on the similarity function above which a user is more likely to
diffuse an information, and can be obtained, from the training set, through a
line search on the cosine values between content diffused and user profiles. This
line search process is here initialized at 0, with an increment of 0.05, and is
stopped as soon as the number of users re-diffusing a content is greater than
the number of users not re-diffusing it. A similar reasoning for the willingness
to diffuse (W (ni,G,D, θw)) directly leads to θw = 0.5.

Estimating the λs The parameters (λ0, λ1, λ2 and λ3) can be learned through
maximum likelihood, with positivity constraints. Let L(λ0, λ1, λ2, λ3) denote the
likelihood of the training set. The learning problem can be formulated as:

{

argmaxλ0,λ1,λ2,λ3
L(λ0, λ1, λ2, λ3)

subject to: λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0

and one can resort, to solve this problem, to a projected gradient approach, in
which each gradient ascent step is followed by a projection of the parameters on
the admissible intervals.

The likelihood, on the training set, for the above models is given by:

L(λ0, λ1, λ2, λ3) =

l
∏

k=1

T
∏

t=1

[
∏

ni∈Qk(t)

P (ni, c
k,≤ t)

∏

ni /∈Qk(t)

(1− P (ni, c
k,≤ t)]

where Qk(t) is the set of all users having diffused content ck before time t. For
efficiency reasons, we make use of the recurrence equation (Eq. 3) to compute the
partial derivatives, and store, for each user, the current values of P (ni, c

k,≤ t)
and its derivatives.

5 Experiments

We compare here the models presented above with several baseline diffusion
models used in previous studies. This comparison will help us assessing how
much the new dimensions considered in the user-centric family of models are
useful for content diffusion. The models we have retained are the following:

1. The Independent Cascade Model (IC). Its parameters are learned through
the EM algorithm proposed in [19];

2. The Asynchronous Independent Cascade Model (ASIC) which is de-
scribed in [18] and represents an asynchronous version of the IC model.

3. The recently introduced NetRate model [17], with the exponential distri-
bution;



Dataset # nodes # links # terms # cascades Mean size Max size

MemeTracker (Dense) 5000 4373 24482 2977 1.21 4

ICWSM (Dense) 5000 17746 173014 23738 1.075 11

MemeTracker (Sparse) 39427 10816 70602 104973 0.006 10

ICWSM (Sparse) 40268 62657 262290 104980 0.018 33
Table 1. Main statistics of datasets for the Sparse and Dense versions

4. The RUC and DRUC models presented in Section 4; In this study, we
have arbitrarily set the parameter δ to 0.9, which amounts to consider a
small decay over time.

In order to compare the different methods, we make use of two datasets:

– The ICWSM [3] dataset is composed of blog posts and links between them.
Each user corresponds to a blog and diffusion of information is observed
through links between blogs: if post p2 of blog b2 contains an hyperlink to
post p1 of blog b1, then we consider that b2 has diffused the content coming
from b1;

– TheMemeTracker [10] dataset is composed of blog posts and links between
them. Contrary to the ICWSM dataset, no blog url is attached to a post.
We thus inferred blogs using post urls (a post url contains the url of the
blog it belongs to). To do so, we cut post urls at the first ”/” character after
”http://” and assume that the string obtained corresponds to the url of the
blog. As for the ICWSM dataset, we consider that information propagates
from one user (blog) to another if there is a link from a post of the former
to a post of the latter.

The graph between blogs is built from the above datasets: two blogs ui and
uj are connected if at least one information diffuses between ui and uj .

For each dataset, we have extracted two different corpora:

– The Sparse corpora have been built by selecting randomly 100,000 cascades
of blog posts. In this case, many of the selected cascades do not diffuse over
the network resulting in a case where the models can only be trained on a
few number of diffusions. These corpora are used to evaluate the models in
a context of low diffusion.

– The Dense corpora have been built by focusing on a subset of the 5, 000
users that are the most active. We have only kept the cascasdes over these
active users which have been linked at least one time. These two corpora are
used to evaluate the models in the context of a dense diffusion.

The number of users, cascades and the mean size of the cascades are given in
Table 1. The length of a cascade is 1 if the information diffuses once from a initial
user to another one. As one can see, Sparse datasets are composed of low length
cascades – i.e. many cascades do not diffuse – while Dense datasets are composed
of larger cascades. The parameter θs has been computed as explained in section 4
and set to 0.35 for MemeTracker datasets and 0.4 for ICWSM datasets.



For each corpus we performed the following normalization operations:

– Taking posts during only one month;
– Filtering out of non-English posts;
– Removal of empty words with empty words list.
– Stemming using Porter stemming;
– Filtering out of words appearing less than five times.

The above preprocessing then yields a standard word vector for each post. The
vector for a cascade is then computed by averaging the vectors of all the posts
that compose a cascade. The profile of each user is computed by averaging the
vectors of the cascades diffused by the user on the training set. In order to
evaluate the different models, we use a 5-fold cross validation scheme (4 blocks for
training, one for testing). Training blocks are used to estimate models parameters
and the last one is used for the evaluation. All the results presented below are
averaged over the 5 different splits.

In order to evaluate the quality of the proposed approaches and baseline
models, we use a specific precision measure: we compute the Precision at differ-
ent Recall Points (PRP). This measure computes the precision curves following
procedure, for each cascade:

1. The nodes scores (probabilities to be contaminated) obtained with a given
model are ordered in decreasing order of their values.

2. Precision is computed at each point of recall - at each rank ℓ where the real
contamination score of the user is 1.

PRP values are averaged over all the testing cascades. The precision at the
first recall point reflects the ability of a model to find one user that will be
contaminated, the second point corresponds to the ability of the model to find
two contaminated users,... Note that only the cascades of at least length ℓ are
used to evaluated the precision at rank ℓ – i.e. performances on high ℓ values are
less robust than estimation made for low ℓ values. This measure has been used
previously [14].

Results on Sparse Corpora The PRP values over the two sparse datasets
are illustrated in Tables 2 and 3. First, one can see that baseline models (IC,
ASIC and Netrate) perform poorly on these datasets. As explained before, this
is mainly due to the fact that, on Sparse datasets, the number of diffusing
training cascades is very low resulting in baseline methods that predict almost
no diffusion.

The assumptions made by our approaches are different. Particularly the dif-
fusion of information is modeled through a set of features that is shared by all
users. This allows us to transfer the behavior of one user to another instead of
learning the behavior of each user separately. Our approach makes the learning
problem easier and offers better generalization abilities explaining the higher
prediction performances.



Sparse Dense

Cascade length 1 2 3 4 ≥5 1 2 3 4

Nb cascades 149 28 9 5 ≤4 596 40 7 2

IC 0.02 0.04 0 0 0 0.29 0.20 0.38 0.33

ASIC 0.03 0.07 0 0 0 0.14 0.15 0.32 0.33

Netrate 0.02 0 0 0 0 0.16 0.15 0.27 0

RUC 0.58 0.47 0.36 0.31 ≤0.28 0.63 0.50 0.63 0.67

DRUC 0.64 0.52 0.37 0.32 ≤0.28 0.63 0.50 0.62 0.68

Table 2. Precision values on the MemeTracker datasets. The number of cascades
used for computing precision at each recall point is illustrated in the second line. Bold
indicates best results.

Sparse Dense

Cascade length 1 2 3 4 ≥5 1 2 3 4 ≥5

Nb cascades 440 88 33 16 ≤10 4748 656 255 90 ≤18

IC 0.13 0.03 0 0 0 0.73 0.66 0.71 0.72 ≤0.21

ASIC 0.07 0 0 0 0 0.36 0.30 0.32 0.35 ≤0.03

Netrate 0.03 0.01 0.03 0 0 0.12 0.01 0 0 0

RUC 0.70 0.62 0.61 0.67 ≤0.56 0.83 0.75 0.75 0.79 ≤0.52

DRUC 0.73 0.66 0.64 0.72 ≤0.68 0.85 0.77 0.78 0.81 ≤0.56

Table 3. Precision values on the ICWSM datasets. The number of cascades used for
computing precision at each recall point is illustrated in the second line. Bold indicates
best results.

Results on Dense Corpora Concerning the Dense datasets – Tables 2 and
3 – one can see that baseline models perform better than previously due to the
higher number of training cascades that diffuse. The best baseline model is the
IC model that clearly outperforms ASIC and Netrate. We think that this is due
to the fact that ASIC and Netrate introduce a strong decay in the diffusion
through an exponential model. As the number of diffusions in each dataset is
still low, the probability predicted by these models is also low and dominated
by the decay exponential term (of the form e−Pij(t−t0)). The difference between
these values is thus small and the models fail to differentiate between diffusions
and non-diffusions.

The improvement provided by RUC and DRUC approaches is particularly
important on the Dense MemeTracker dataset – at the first point of recall, RUC
has a precision of 0.63 where IC only obtains 0.29 – and significant on the Dense
ICWSM dataset. These results show the importance of considering the three
different features, namely thematic interest, activity and social pressure. Fur-
thermore, the values obtained by the parameter of the thematic interest feature
(λ1) are systematically higher, for both RUC and DRUC, and for both ICWSM
and MemeTracker than that obtained for the other parameters (for example, on
MemeTracker, the values obtained are λ1 = 7.01, λ2 = 5.92, λ3 = 2.78 for RUC,
and λ1 = 9.49, λ2 = 3.99, λ1 = 0.95 for DRUC). Even though it is difficult to



compare features on the sole basis of the values taken by their associated pa-
rameter, the above values clearly show that the thematic interest plays a crucial
role in the information diffusion process (the social pressure becoming a minor
player for the DRUC model). This fully justifies our will to take into account
the content of the information in the diffusion process. Indeed, the process will
be different for different pieces of information, even if the same initial diffusers
are used.

Comparison between the different UC models The experiments show
that in average, DRUC outperforms RUC on three over four datasets. This is
particularly true over the large cascades because the DRUC model is better for
modelling long diffusions - see Section 4. Due to the high variance of the results
on sparse datasets, the difference between RUC and DRUC is not significant
(Wilcoxon test with a p-value of 0.05); it is however significant for the dense
ICWSM dataset.

6 Related work

Information diffusion models can roughly be classified into two main categories:
contagion models, in which the diffusion is based on a probability of diffusion
between users in contact (see for example [5, 15, 8, 9]), and influence models,
also called threshold models, in which a user diffuses an information if the num-
ber or the proportion of her incoming neighbors who have already diffused the
information is above a user-specific threshold (see for example [6, 13, 2]),

The prototype for contagion models is the IC (Independent Cascade model,
which has recently been extended to integrate a time variable in the diffusion
model and to account for the fact that diffusion/contamination can be delayed.
To do so, the ASIC (Asynchronous IC), introduced in [18], makes use of an
exponential probability distribution to model the delay between the contamina-
tion of a user and its attempt to contaminate her neighbors, the contamination
probability decreasing with this delay (a similar “latence” phenomenon is used
in [11]). More recently, [17] consider different probability distributions for the
delay in the contamination: exponential, power law and Rayleigh distributions.
The family of models thus defined is called NetRate. The version based on the
exponential distribution is in fact a special case of the ASIC model (obtained
when setting the kv,w parameter of ASIC to a constant). In [20], the ASIC model
is further enriched with node attributes information, leading to a model that is
similar to the probabiistic model presented here. However, this extension allows
one to capture the similarity between users through the attributes they share,
and does not account for the features we have retained here. In particular, the
final model obtained will predict the same diffusion from the same set of initial
diffusers, no matter which information is diffused.

The prototype for influence models is the LT (linear threshold) model, orig-
inally defined in [6], and extended in [7, 13, 21, 1, 16, 4, 12, 2]. In a similar vein,



[22] introduces a linear influence model based on time series and aiming at de-
termining the “volume” of users who have diffused an information after a given
time, a task which differs from the one addressed here (as not only the diffusion
volume but also the particular users having diffused are searched for). For all
these models, however, and similarly to the contagion models, only the social
pressure is used to determine the fact that a given user will diffuse an information
or not, which radically differs from the setting adopted in this study.

7 Conclusion

We have proposed here a new family of models (User-Centric models) that aims
at predicting how a content diffuses in a network by making use of three di-
mensions, namely the content diffused, the users profiles and their willingness to
diffuse. In particular, we have shown how to integrate these dimensions into sim-
ple feature functions, and proposed a new probabilistic model to take them into
account. We have furthermore illustrated and compared our models with other
approaches on two blog datasets. The experimental results obtained on these
datasets show that (a) the content of the information diffused plays a major role
in the diffusion process and should not be ignored, as was done so far, (b) user’s
profiles also play an importnat role, which was recognized in recent studies on
information diffusion even though not systematically used, and (c) state-of-the-
art results can be obtained to models relying on few, adequate parameters, as
is the case for the models introduced here which make use of only 3 parameters
compared to the thousands of parameters used in the IC-based models.

A direct extension of our work would be to deal with various types of con-
tent (images, videos, text) and cascading behaviors (small versus long cascades)
and predict the diffusion of heterogeneous information. In this study, we have
arbitrarily set the decay parameter of DRUC and we project to estimate it in
future works. Another extension we plan on addressing is to simultaneously take
into account different social networks, so as to escape away from the close-world
assumption underlying most of the studies in information diffusion.
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