Estimation bayésienne asymptotique de la structure d'un graphe initialisée par Graphical lasso - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Estimation bayésienne asymptotique de la structure d'un graphe initialisée par Graphical lasso

Résumé

When studying process with multivariate time series, a point of interest is the knowledge about conditional dependency. For Gaussian times series, Gaussian graphical models are commonly used to represent such dependencies. In this paper, we present an approach that estimates the graph structure representing the conditional dependencies of a process. This approach uses Graphical lasso to fasten a Bayesian approach. The obtened solutions for datasets simulated from known graph structures are closed, according to the Hamming distance, to the expected solution. Moreover, our approach has a lower computing cost than a Bayesian exhaustive research.
Fichier non déposé

Dates et versions

hal-00881502 , version 1 (08-11-2013)

Identifiants

  • HAL Id : hal-00881502 , version 1

Citer

Aude Costard, Sophie Achard, Olivier J.J. Michel, Pierre Borgnat, Patrice Abry. Estimation bayésienne asymptotique de la structure d'un graphe initialisée par Graphical lasso. GRETSI 2013 - XXIVème Colloque francophone de traitement du signal et des images, Sep 2013, Brest, France. pp.ID370. ⟨hal-00881502⟩
171 Consultations
0 Téléchargements

Partager

More