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Abstract—Ultrasound contrast imaging has been introduced in 

order to increase the contrast of echographic images by injecting 

micro-bubbles in the vascular system. They are gaz filled 

microbubbles with nonlinear behavior.  One of the most used 

modality of ultrasound contrast imaging is the second harmonic 

imaging. This imaging technique, based on the reception of the 

second harmonic, is devoted to image only the nonlinearity of the 

microbubble. However, in such ultrasound images the contrast is 

limited by the nonlinear components of non-perfused tissue. Sub 

and ultra harmonic imaging appeared to be an interesting 

alternative to overcome this limitation since, unlike tissue, 

microbubbles generate sub and ultra harmonics. In order to 

extract optimally these sub and ultra harmonic components, we 

proposed a modified Hammerstein model able to model and 

extract sub and ultra harmonics. Results showed i) that 

microbubble signal is accurately represented both in time and 

frequency domains and ii) that sub- and ultra-harmonics were 

well extracted and separated from harmonic component. Note 

that the gain achieved by comparing the filtering signals by the 

modified Hammerstein and the standard Hammerstein was 4.6

dB. 

Keywords-Extraction; microbubble; modified Hammerstein 

model; modeling; sub-harmonics; ultra-harmonics. 

I.  INTRODUCTION  

Ultrasound contrast agents (UCA) have made a revolution 
in the ultrasound imaging [1]. A great contrast enhancement 

was achieved with the introduction of second harmonic 
imaging (SHI). This modality is based on the detection of 

second harmonic 02 f  generated by UCA [2][3]. UCA are gaz 

microbubbles characterized by a nonlinear behavior, and 
having acoustic impedance very different from that of 
surrounding tissue. These two factors yields to enhance the 
contrast of images [4][5][6]. Although SHI produced high 
quality images, its application is limited by the nonlinearity of 
tissue. Ultrasound propagation in tissue is not perfectly linear, 
and harmonics could be generated. This may reduce the 
contrast of images [2][3][7][8]. This limitation can be 
overcome by turning toward sub and ultra harmonic. At high 
acoustic pressures, microbubbles have the characteristic that 
they are able to generate, under specific conditions of 

frequency, sub harmonic 0

1

2
f , and ultra harmonics 

0 0

3 5
( , ,...)
2 2

f f that cannot be generated by tissue 

[1][3][4][8][9]. Sub and ultra harmonic imaging are based on 

the detection of 0

1

2
f  and 0 0

3 5
( , ,...)
2 2

f f  respectively. That 

can be done using narrowband transducers centered around 
these frequencies for reception [5][10]. 

In order to enhance image quality, optimal post-processing 
techniques can be used to extract sub and ultra harmonics 
instead of narrowband transducers. NARMAX models like 
Hammerstein model showed a high efficiency in modeling 
nonlinear systems [11]. Thus, the polynomial Hammerstein 
model can be used to model microbubble signals. However, as 
it is a power series model, it is unable to model sub and ultra 
harmonic components. Until now, there is no simple 
mathematical model to formulate and extract sub and ultra 
harmonics. Although sub harmonic modeling was discussed in 
[12] where the proposed method was limited to modeling and it 
was unable to extract sub and ultra harmonics apart from 
harmonics. 

In this paper we propose an original contribution based on 
the use of a modified Hammerstein filter. This technique, that 
is easy to implement, enable to model and extract sub harmonic 
and first ultra harmonic components. To validate our new 
simple approach we propose to test it over artificial signals 
backscattered by microbubbles. 
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II. MATERIALS AND METHODS 

The dynamics of microbubbles were simulated by solving the 

Rayleigh-Plesset modified equation using Hoff's method [12]. 

The incident wave sent to the microbubble was a sinusoidal 

signal apodized with a Hanning window, of frequency f0 = 4 

MHz, 1.6 MPa pressure, and 32 cycles. Under the previous 

frequency and pressure conditions, the oscillation of the 

microbubble is nonlinear including sub- and ultra-harmonics 

[8]. The backscattered signal was sampled at fs = 36 MHz. 

The parameters of microbubbles were resting radius r0 = 2 

µm, shell thickness dSe = 4 nm, shear modulus  GS = 50 MPa 

and shear viscosity η = 0.8 Pa.s. 

A. Hammerstein model 

Polynomial Hammerstein model is a special type of 
nonlinear filters in which a static nonlinear system is followed 
by a dynamic linear system [13]. The nonlinear system is 
approximated by a polynomial function. The linear part is a 
finite impulse response (FIR) filter. The blockdiagram of 
Hammerstein model was shown in Fig.1. 

Let ( )x n and ( )y n  be the input and the output signal 

respectively of the nonlinear system. ˆ( )z n was the unavailable 

internal signal. 

The Hammerstein model 
( , )p m

HH of order p and memory 

m can be described by the following equation: 

 ,( )
[ () )( ]ˆ p m

HH xy nn   (1) 

    Equation (1) could be expressed from an intermediate of 

 ̂ ( ) z n  as follows: 

  
0

ˆ ˆ( )

m

H i

i

y n b nz i



   (2) 

with  
1

ˆ ( )

p

l
l

l

z n c x n



 . The internal signal  ẑ n  cannot be 

measured, but it can be eliminated from the equation, by  
substituting its value in (1). We got: 

  
1 0

( )ˆ

p m

H l i

l i

ln c b ny ix

 

   (3) 

where ib  and lc are the coefficients of the FIR filter and the 

polynomial function respectively. We limited our study to the 

Hammerstein model (3, )m , regarding the limited bandwidth 

of existing transducers:  

    2 3
1 2 3
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ˆ [ ( ) ( )]

m

i

i

y n b c x n i c x n i c x n i


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The coefficients ib  and   lc were obtained by minimizing the 

mean square error between the two signals ( )y n and ˆ ( ) Hy n : 

2ˆ[( ( ) ( )) ]Hargmin y n y n  (5) 

 

 

 

 

 

 

 

Figure 1.  Identification of the nonlinear system of  microbubble with 
Hammerstein model. 

 

Equation (4) can be written in a matrix form: 

 .Y X   (6) 

Where:    

     [ 1     2     1 ]Y y y y N m     

Where N is the signal length 
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   was calculated by the least square method :
1

. ) .X .YT TX X


    

Where det( . ) 0TX X  . The modeled signal was: 

 

 ˆ .Y X   (7) 

B. Modified Hammerstein Model 

Standard Hammerstein model is dedicated to model 
harmonics only. We proposed to introduce some modifications 

 



to model and extract the sub- and ultra-harmonic frequencies, 
through modulation and demodulation.  

The corresponding output sequence of our modified 

Hammerstein model 
1

(3, , )
2

m , where 
1

2
 represents the order of 

sub and ultra harmonics, could be written as follows: 

  
1

(3, , )
2ˆ [ ( )]

m

SUHy n x nH  (8) 

The solution that we proposed consists of two parts: 

 

1 1
(3, , ) (3, , )

(3, )2 2[ ( )] [ ( )] [ ( )]
m m

m
HSUH SUx n H x n H xH n   (9) 

One part for harmonic modeling: 

 (3, )ˆ ( ) [ ( )]H
m

Hy n H x n  (10) 

and another part for sub and ultra harmonic modeling: 

 

1
(3, , )

2ˆ ( ) [ ( )]
m

SU SUy n H x n  (11) 

The reconstructed microbubble signal was then: 

 ˆ ˆ ( )) ˆ)( (H SUn y ny n y   (12) 

C. Numerical Procedure 

The numerical procedure was written with Matlab 
(Mathworks, Natick, MA, USA). It included the following 
steps: 

1) Modeling of integer harmonics: it was the standard 
Hammerstein of order 3 and memory 𝑚  chosen to minimize 
the relative mean square error (RMSE). The obtained signal 
was given by (10). 

2) Modeling of sub and ultra harmonics of order 
1

2
: 

a) The analytic signal ( )ay n , whose spectrum contained 

only positive frequencies, is modulated by multiplying it by an 

exponential having a frequency 0

2

f
. The modulated signal was 

then: 

 
0

mod

(2 )
2( ) ( )

f
j n

a ay n y n e


  (13) 

With: 

 ( ) ( ) [ ( )]ay n y n j y n  
,
 (14) 

where [ ( )]y n was the Hilbert transform of ( )y n . From a 

spectral point of view, modulation shifted the spectrum by 

f
0

/ 2 . Indeed, if the spectrum of ( )y n  included f
0

/ 2and 0f , 

then the spectrum of 
mod

( )ay n  will be composed of 

0 0
0 ( )

2 2

f f
f    and 0

0 0

3
( )

2 2

f
f f  components. 

mod
( )ay n

was composed of shifted sub and ultra –harmonics instead of 
harmonics. 

b) A standard Hammerstein model identified the real part 

of the modulated signal 
mod

( ( ))aR y n  by minimizing the 

following relation:   

 2
2ˆ[( ( ) ( )) ]argmin y n y n  (15) 

The Hammerstein model extracted the harmonic components 

around 0kf  ( k  is an integer) which were initially the sub- and 

ultra-components. The modeled signal became: 

 2
ˆ ( ) [ ( )].m

Hy n V x n  (16) 

c) The analytic signal 2
ˆ ( )

a
y n  was demodulated with a 

frequency 0

2

f
that shifted the harmonic components as well as 

the sub- and ultra-harmonic components back to their original 
positions. 

The demodulated signal became: 

 

0

mod

( 2 )
2

2 2
ˆ ˆ( ) ( ) .

a ade

f
j n

y n y n e


  (17) 

The double application of the Hilbert transform introduced 
a negative sign. For this reason, we multiplied the demodulated 

signal by 
je 

. In order to obtain the positive and negative 

frequencies of the demodulated signal we considered its real 
part. We obtained: 

 
mod mod

2 2
ˆ ˆ ˆ( ) ( ( )) ( ( ))

a ade de

j
SUy n R y n e R y n    (18) 

The final modeled signal ˆ( )y n  was obtained by adding the 

two signals ˆ ( )Hy n  and ˆ ( )SUy n  as given (12). The different 

steps of the modified model are shown in Fig .2. 

 

In the step 2.b), the modulated signal was modeled with 

Hammerstein model. We obtained the coefficients vector 

mod  such that: 
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Figure 2.  Identification of the nonlinear microbubble with the modified 

Hammerstein model. 

 

Coefficients of first order 1 , were associated with the 

fundamental component which was in fact the shifted sub 

harmonic signal. Demodulation was done to obtain sub-

harmonic signal: 

 
mod1 1. .SH X E   (20) 

where :  (1) (2) ... ( 1)E e e e N m   , with  

0( 2 )
2( )

f
j n

e n e


 . 

First ultra harmonic was calculated by the same way, 

using second order coefficients 2 :  

 
mod1 2 2. .UH X E     (21)  

The relative mean square error RMSE used to evaluate 

the accuracy of our method was given by: 

 

2

2

ˆ( ) ( )

( )

y n y n
RMSE

y n


  (22) 

where ˆ( )y n was the reconstructed signal by the model and 

( )y n was that backscattered by the microbubble.   

III. RESULTS 

We tested standard Hammerstein (3, )m  model and 

modified Hammerstein
1

(3, , )
2

m , using simulated microbubbles 

signals. Microbubble was insonified with the sine wave 
described above. 

To validate the adequacy of our model, we applied 
Hammerstein model to identify a system that generated 
harmonics only. Fig. 3 (a) shows the variation of the RMSE 
between the output signal of the system and that modeled with 
the 2 Hammerstein models, standard and modified, as a 
function of the model memory. Fig. 3 (b) shows the variation 
of the RMSE between the microbubble signal with sub and 
ultra harmonics, and the modeled signals with the 2 models.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of the RMSE achieved with the standard model (3, )m

and the modified model 
1

(3, , )
2

m (a) In presence of harmonics only, (b) In 

presence of sub and ultra harmonics. 

In presence of sub and ultra harmonics, minimum RMSE 
was obtained for 20m . Fig. 4(a) shows the backscattered 

signal ( )y n  and that modeled by the modified Hammerstein 

model
1

(3, , 20)
2

 versus time. Fig. 4(b) shows harmonic signal 

ˆ ( )Hy n  obtained with the standard model (3,20) , and Fig. 4(c) 

shows the sub- and ultra-harmonic signal ˆ ( )SUy n   extracted 

with the modified model
1

(3, , 20)
2

. Fig. 5 shows the spectra of 

the various signals presented in Fig. 3. 

Fig.5 (a) shows the sub harmonic signal and Fig.5 (b) 
shows its spectrum. Fig.5(c) shows first ultra harmonic signal 
and Fig.5 (d) shows its spectrum. 

Quantitatively, table 1 shows a comparison between the 
RMSE achieved with the standard and modified Hammerstein 
models. 

IV. DISCUSION 

  Results showed that standard and modified Hammerstein 
models, could model and extract ultra and ultrahamonics 
components of microbubbles signals. In Fig.3 (a) the variation 
of RMSE was the same with the two models. That means that 
the two models had the same performances in modeling 
harmonics. In presence of sub and ultra harmonics, our 
modified model ensured a decrease in the RMSE, with 
minimum for 20m  . 

  For higher memories it became less effective. Figures 
showed that the modified Hammerstein model was able to 
model microbubbles signal in presence of sub and ultra 

harmonics. Sub and ultra harmonics of order 0
2

n
f  were 

extracted apart of harmonic signal. These results overcame the 
weakness of the standard Hammerstein model which modeled 
harmonics only.  

 

 

 
 



 

 

 

 

 

 

 

 

 

 

Figure 4. (a)Backscattered signal  by the microbubble and the reconstructed 

signal  with  modified Hammerstein model, (b) Harmonic signal, (c) sub and 

ultra harmonic signal. 

 

 

 

 

 

 

 

 

 

 

    

Figure 5. Spectrum of the Backscattered signal by the microbubble and (a) 

that of the reconstructed signal with  modified Hammerstein model, (b) that of 
the harmonic signal, (c) that of the sub and ultra harmonic signal . 

 

The second important result was the capacity to reconstruct the 
sub-harmonic signal and the first ultra-harmonic signal that 
could be used to make sub- and ultra-harmonic imaging to 
produce high contrast images. 

 The modified Hammerstein provided an additional gain of 

3.6  dB  ( 12.5 ( 7.9) )   compared the standard model.  

V. CONCLUSION 

A modified Hammerstein model was proposed in this 
paper. This model serves to extract sub and ultra harmonics 
components from nonlinear microbubbles signals. It allowed 
also the reconstruction of sub harmonic and first ultra harmonic 
that could be used to make sub and ultra harmonic imaging.                                               

This work could be completed by modify the model to be 
able to extract sub- and ultra-harmonics of different orders. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a)Sub harmonic signal extracted  with  modified Hammerstein 

model, (b) Sub harmonic spectrum, (c) First ultra harmonic signal, (d) First 

ultra harmoinc spectrum. 

 

TABLE I.  RELATIVE MEAN SQUARE ERRORS MAY RMSE  BETWEEN THE 

SIGNAL BACKSCATTERED BY THE MICROBUBBLE AN THAT MODELED WITH THE 

VOLTERRA MODEL, AND BETWEEN THE SIGNAL BACKSCATTERED BY THE 

MICROBUBBLE AND THAT MODELED WITH THE MODIFIED HAMMERSTEIN 

MODEL. 

 Hammerstein 

Standard Modified 

RMSE(dB) -7.9 -12.5 
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