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Abstract

This paper deals with discrete-time linear-quadratic descriptor two-player
games. The two frameworks of Nash and Stackelberg strategies with feed-
back information structure are considered. The aim is to provide sufficient
conditions ensuring, for any initial state, the existence and the uniqueness
of a tri-trajectory, gathering the state and the controls of the two players,
which reaches the equilibrium. The provided results are mainly based on
a discrete-time matrix block formulation. The provided algorithms consist
in an iterative backward in time procedure, issued from Dynamic Program-
ming. Numerical examples illustrate this approach and the particular case
of explicit systems is recovered for both kinds of strategies.

Keywords: Descriptor games, Game theory, feedback information
structure, Nash strategy, Stackelberg strategy, matrix block formulation.
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1. Introduction

Game theory [1, 2] deals with interactive decision-making, where the out-
come for each participant or player depends on the actions of all. In other
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words a player designs his/her strategy by taking into account the avail-
able information on the actions of the others. Therefore, the information
structure, that means the set of information available for each player, has to
be a priori defined [3, 4]. Among the different structures, we can cite the
open-loop information structure (the strategy depends only on time and on a
predefined state), the closed-loop ones (the strategy depends on the history of
the state trajectory) and the memoryless closed-loop or feedback ones, where
the strategy is a function of the time and the current state. Throughout the
paper we will use the feedback information structure.

The notion of optimality from the classical control theory has no sense
anymore in a game with at least two players. This notion is then replaced
by compromises formulated as equilibria. The most famous equilibria are
the Nash and Stackelberg ones. The Nash equilibrium [5, 6] is adequate to
cope with noncooperative decision-making problems, where the roles of the
different players are interchangeable. The Nash strategy offers a nice tool
to design cautious actions: no player can improve his/her payoff or criterion
by deviating unilaterally from his/her Nash strategy once the equilibrium is
attained. Control design using Nash strategies has been formalized in [3, 4, 7].
The Stackelberg equilibrium [8, 9] assumes that the role of the players are
not the same, in other words it assumes that there is a hierarchy between
them. In a two-player game, one player is the leader and the other one is
the follower. The leader knows the rational reaction of the follower and is
able to communicate his/her strategy to the follower. The leader injects this
information in his/her decision making to optimize his/her cost function.
The Stackelberg strategy for control design were formalized in [10, 11, 12].
This concept was revisited in [13] for economics and control theory.

With an open-loop information structure (the controls are only functions
of time), the necessary conditions for obtaining a Nash or a Stackelberg equi-
librium are well known and are derived by applying the Pontryagin Maximum
Principle. More details can be found in [14, 15] for the Nash equilibrium and
in [16, 17, 18] for the Stackelberg one. In the linear-quadratic case, these
necessary conditions can be reformulated into non-symmetric Riccati equa-
tions [19, 20, 21]. The framework of closed-loop information structure with
memory is more difficult. Details can be found in [22, 20] for the Nash strat-
egy and in [23, 24, 25, 26] for the Stackelberg one. When the feedback infor-
mation structure is assumed, the sufficient conditions for the equilibria can
be obtained by applying Dynamic Programming, via the Hamilton-Jacobi-
Bellmann equation [2, 27].
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All the contributions presented above consider only explicit systems. De-
scriptor (or implicit) systems consist in gathering a set of differential and
algebraic equations to characterize the system [28, 29, 30]. Such a struc-
ture including a dynamic and a static part can be formulated as a dynamic
involving a characteristic singular matrix. These systems are an important
class of systems, because they model a large number of physical phenom-
ena (Kirchhoff’s laws in electricity, static relations in mechanics) or in eco-
nomics (for instance Leontieff model). The main difficulty is that a trajec-
tory satisfying the descriptor system may not exist for all initial conditions.
In addition, if such a trajectory exists, it may be non unique. The stan-
dard properties of explicit systems, including solvability, reachability, stabil-
ity, controllability, observability and regularization have been extended and
strongly studied for descriptor systems from theoretic and numerical points
of view. In addition of the already cited references, more details can be found
in [31, 32, 33, 34, 35]. The variational calculus [36] and the linear quadratic
optimal regulator [37, 38, 39, 40, 41, 42] have been proposed also for de-
scriptor systems. The main approach is to use a canonical decomposition
allowing to obtain an explicit system [43, 30]. Another way is to consider
descriptor algebraic Riccati equations [44] or descriptor matrix pencils. To
avoid a decomposition of the singular matrix and to avoid assumption about
its index, a matrix block formulation has been provided in [45] and refined
in [46].

To the best of our knowledge, in the case of linear quadratic descriptor
games, there is only a few number of contributions. Among them, let us
cite [47, 48] for zero-sum games and min-max strategy, [49] for Pareto strat-
egy, [50] for closed-loop continuous–time Nash strategy and finally [51, 52]
for a closed-loop Stackelberg strategy.

This paper is focused on proposing sufficient conditions, via a matrix
block formulation based on Dynamic Programming, to solve Nash and Stack-
elberg strategies with a feedback information structure for discrete-time linear-
quadratic two-player descriptor games. Roughly speaking, the aim of the pa-
per is to provide sufficient conditions allowing the existence and the unique-
ness of a tri-trajectory composed of the trajectory of the state and the two
trajectories of the controls reaching a Nash or Stackelberg equilibrium with
a feedback information structure. The induced iterative algorithms and the
related properties will be detailed. Furthermore, links with both explicit
games and infinite time horizon games will be emphasized.

The outline of the paper is as follows. Section 2 introduces the main
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definitions and the required technical background to formulate the strate-
gies design problem. Section 3 is focused on the feedback Nash strategy, for
descriptor and explicit systems, while Section 4 is focused on the feedback
Stackelberg strategy. The conclusions are summarized in Section 5.

Notation: IR is the set of real numbers and IN the set of positive integers.
Relative to a matrix M , M ′ denotes its transpose, M−1 its inverse and Λ(M)
its spectrum. In1 and 0n1×n2 denote respectively the identity matrix of size
n1 and the null matrix of size n1 × n2 and 0n1 = 0n1×n1 .

2. Problem statement

Consider a discrete-time, two-player non-zero, descriptor game character-
ized by the following implicit linear dynamic, on the time horizon {0, · · · , K}:

Exk+1 = Axk +B1u1,k +B2u2,k, k ∈ {0, · · · , K − 1} = K, (1)

= f(xk, u1,k, u2,k), (2)

where xk ∈ IRn and ui,k ∈ IRri (n, ri ∈ IN∗) are respectively the state and
the control of the player i ∈ N = {1, 2} at time k. The matrix E ∈ IRq×n is
either rectangular or singular. Thus, the existence of a trajectory from any
initial condition x0 ∈ IRn is not ensured. The matrices A, B1 and B2 have
appropriate dimensions, that is A ∈ IRq×n, B1 ∈ IRq×r1 and B2 ∈ IRq×r2 . The
quadratic criterion associated with the player i is defined by

Ji(x0, {u1,k}k∈K, {u2,k}k∈K) =
1

2
x′KQiKxK +

K−1∑
m=0

Li(xm, u1,m, u2,m), (3)

where the term
1

2
x′KQiKxK is called the final cost and the instantaneous

criterion of the player i is defined by

Li(xm, u1,m, u2,m) =
1

2

(
x′mQixm + u′1,mRi1u1,m + u′2,mRi2u2,m

)
. (4)

All the weighting matrices in the criterion Ji are symmetric with Qi ≥ 0,
PiK ≥ 0, Rij ≥ 0 and Rii > 0, ∀(i, j) ∈ N 2. The positive definiteness
of the matrix Rii implies the convexity of Ji with respect to the control
ui,k. For readability reasons, we introduce the notations Si = BiR

−1
ii B

′
i and

Sij = BjR
−1
jj RijR

−1
jj B

′
j, ∀(i, j) ∈ N 2, i 6= j. In the sequel we recall several

definitions specific to the game theory (see [2] for more details).

4



Definition 1 (Available information). At each time k ∈ K, each player
i ∈ N has access to a set of state values, noted ηi,k. Different information
structures may be considered [2]:

• For an open-loop information structure:

ηi,k = {x0}. (5)

• For a memoryless closed-loop or feedback information structure:

ηi,k = {xk}. (6)

• For a closed-loop (with memory) information structure:

ηi,k = {x0, x1, · · · , xk}. (7)

In the sequel, only the memoryless closed-loop information structure will be
investigated.

Definition 2 (Strategy). For the player i ∈ N , a strategy, or a decision
law γi is a mapping associating the available state ηi,k and the time k to the
action ui,k:

ui,k = γi(ηi,k, k). (8)

The set of all strategies of player i is called the strategy set and it is denoted
by Γi. A couple of strategies (γ1, γ2) ∈ Γ1 × Γ2 is called admissible for the
game (1) if the criteria J1 and J2 are finite. For the sake of clarity, we will
denote by Ji(x0, γ1, γ2) the criterion (3) when the couple of strategies (γ1, γ2)
is applied.

Decisions made by the players are inter-dependent. The notion of op-
timality is thus not clear, since no one player completely designs the crite-
ria [53]. To avoid this, game theory is helpful to define equilibria or compro-
mises. Among the main equilibria, we will consider Nash and Stackelberg
ones presented as follows. They involve the rational reaction set or the best
answer set of a player.

Definition 3 (Rational reaction set). The rational reaction set of each player
i is defined by all the strategies leading to the optimal value of the associated
criterion Ji when the strategies of the other player is fixed.

R1(γ2) = {γ̃1 ∈ Γ1 | J1(x0, γ̃1, γ2) ≤ J1(x0, γ1, γ2), ∀γ1 ∈ Γ1} , (9)

R2(γ1) = {γ̃2 ∈ Γ2 | J2(x0, γ1, γ̃2) ≤ J2(x0, γ1, γ2), ∀γ2 ∈ Γ2} . (10)
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Definition 4 (Nash Equilibrium). A couple (γ∗1(η1,k, k), γ∗2(η2,k, k)) is a Nash
strategy, if and only if the two coupled inclusions are verified{

γ∗1 ∈ R1(γ∗2),
γ∗2 ∈ R2(γ∗1).

(11)

The couple (J∗1 , J
∗
2 ), where J∗i = Ji(x0, γ

∗
1 , γ

∗
2), i ∈ N , is known as a Nash

equilibrium outcome.

The Stackelberg strategies [9, 8, 54] are well adapted to cope with non-
cooperative multicriteria optimization problems, where there is a hierarchy
between the players. That is, there exists a leader (here the player 2) and a
follower (here the player 1). The leader, knowing the follower’s rational reac-
tion set, is seeking a J2-minimizing strategy γ∗∗2 , which is announced before
the game starts. The follower will then minimize his cost functional J1 with
the strategy γ∗∗1 .

Definition 5 (Stackelberg Equilibrium). A couple (γ∗∗1 (η1,k, k), γ∗∗2 (η2,k, k))
is a Stackelberg strategy, if and only if it is a solution of

γ∗∗1 ∈ R1 (γ∗∗2 )
and

max
γ1∈R1(γ∗∗2 )

J2 (γ1, γ
∗∗
2 ) ≤ max

γ1∈R1(γ2)
J2 (γ1, γ2) , ∀γ2 ∈ Γ2.

(12)

The couple (J∗∗1 , J
∗∗
2 ), where J∗∗i = Ji(x0, γ

∗∗
1 , γ

∗∗
2 ), i ∈ N , is known as a

Stackelberg equilibrium outcome.

Remark 1. The definition of a Stackelberg equilibrium proposed by the re-
lation (12) may be qualified as min–max because it minimizes the criterion
J2 over the worst-case strategy of the follower belonging to the rational reac-
tion set R1. It is noteworthy that a min–min counterpart exists [55]. The
min–max version can be interpreted in term of robustness with respect to the
rational reaction of the follower and the min–min one is related to a team
cooperation between the leader and the follower to minimize the criterion of
the leader. See [55, 56, 26] for more detailed discussion and interpretations.
Note also that both definitions coincide when the rational reaction set is re-
duced to a singleton.

When both Nash and Stackelberg strategies are concerned, we will denote
by γ•i the related strategy. That is γ•i could be γ∗i or γ∗∗i .
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In the framework of feedback information structure, the Nash and Stackel-
berg strategies are strongly time consistent [27, 15][2, Definition 5.14], which
allows these strategies to satisfy the Bellmann principle and to apply Dy-
namic Programming. The strategies (γ∗1 , γ

∗
2) and (γ∗∗1 , γ

∗∗
2 ) are thus only

functions of the time and the current state. This property helps to design
the solution. One denotes by Ji,[k;K] the cost associated with Ji, but restricted
to the time horizon [k;K], that is

Ji,[k;K] =
1

2
x′KQiKxK +

K−1∑
m=k

Li(xm, u1,m, u2,m). (13)

In addition, Vi(xk, k) denotes the value of the criterion Ji,[k;K] at a Nash
or Stackelberg equilibrium for a game starting at time k and ending at time
K. The quadratic class of criteria Ji allows to look for the values Vi(xk, k)

as quadratic terms with respect to xk that is Vi(xk, k) =
1

2
x′kPi,kxk. By

definition, the outcomes of the Nash or Stackelberg strategies with a feedback
information structure satisfy

J•i = Ji(x0, γ
•
1 , γ

•
2) = Vi(x0, 0). (14)

The characterization of the best response set (9) requires the following
lemmas.

Lemma 1. Consider E ∈ IRq×n, A ∈ IRq×n, B1 ∈ IRq×r and B2 ∈ IRq×r. For
any xk ∈ IRn, any positive semidefinite matrices P1 ∈ IRn×n, Q1 ∈ IRn×n and
any positive definite matrix R ∈ IRr×r, if the pair

(
E B1

)
is surjective,

then there exists at least one solution (xk+1, λ1,k) ∈ IRn × IRq of the set of
equations:

Exk+1 −B1R
−1
11 B

′
1λ1,k = Axk +B2γ

•
2(xk), (15)

P1xk+1 + E ′λ1,k = 0n×1. (16)

Proof. For the sake of clarity, let M1 =

[
−B1R

−1
11 B

′
1 E

E ′ P1

]
. In order to

show that there exists at least a solution of the set of equations (15)–(16),
let us study the kernel of the matrix M1. Consider (λ′, x′)′ ∈ IRq+n such that

M1(λ′, x′)′ = 0(q+n)×1. (17)

7



By developing Equation (17), we have

Ex = B1R
−1
11 B

′
1λ, (18)

E ′λ = −P1x. (19)

Next, multiply (18) from the left by λ′ and (19) from the left by x′ and
transpose the latter equation. Subtracting the resulting equations yields

λ′B1R
−1
11 B

′
1λ+ x′P1x = 0. (20)

The positive (semi)definiteness of matrices P1 and R11 induces that both
terms, λ′B1R

−1
11 B

′
1λ and x′P1x, are equal to zero. Finally it follows that

B′1λ = 0r×1 and P1x = 0n×1. Thanks to (19), E ′λ = 0n×1 yielding(
B′1
E ′

)
λ = 0(r+n)×1. (21)

The surjectivity of the pair
(
E B1

)
leads to λ = 0q×1, which implies

Ker(M1) ⊂ Ker
(
Iq 0n

)
. (22)

The symmetry of the matrix M1 leads to

Im

(
Iq
0n

)
⊂ Im(M ′

1) = Im(M1). (23)

For any vector xk ∈ IRn,(
Axk +B2γ

•
2(xk)

0n×1

)
∈ Im

(
Iq
0n

)
⊂ Im(M1). (24)

The relation (24) ensures that there always exists at least a solution to
the equations (15)-(16), for any vector xk ∈ IRn.

Remark 2. Under the assumptions of Lemma 1, the singular system (1) is
well posed and admits a trajectory with the controls

(u1,k, u2,k) = (R−1
11 B

′
1λ1,k, γ

•
2(xk)). (25)

The surjectivity of the pair
(
E B1

)
is not the weakest assumption to

obtain this property, the surjectivity of
(
E B1 B2

)
is sufficient for in-

stance. Nevertheless this assumption allows in addition to satisfy the addi-
tional equation (16) which allows to reach the minimum of the cost of player
1, as formalized in Lemma 2.
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In order to apply Dynamic Programming to determine the minimum of
J1(u1, γ

•
2(xk)) and to characterize R1(γ•2), let us define, for any xk ∈ IRn,

g1(y, u) =
1

2
(y′P1y + x′kQ1xk + u′R11u+ (γ•2(xk))

′R12γ
•
2(xk)) . (26)

Lemma 2. Under the assumptions of Lemma 1, any vector(
y
u

)
=

(
xk+1

R−1
11 B

′
1λ1,k

)
, (27)

where (xk+1, λ1,k) are the solutions of Equations (15)–(16), solves the con-
strained optimization problem

min
(y,u)∈IRn×IRr1

g1(y, u) (28)

subject to the singular system

Ey = Axk +B1u+B2γ
•
2(xk). (29)

Proof. For any xk and under the assumptions of Lemma 1, Equations (15)–
(16) admit at least a solution (xk+1, λ1,k). Consider such a solution and any
pair (y, u) satisfying the constraint (29). This leads to

E(y − xk+1) = B1(u−R−1
11 B

′
1λ1,k), (30)

or
Eδy = B1δu, (31)

with the notation δy = y − xk+1 and δu = u−R−1
11 B

′
1λ1,k.

Let us study the difference g1(y, u)− g1(xk+1, R
−1
11 B

′
1λ1,k):

2g1(y, u)− 2g1(xk+1, R
−1
11 B

′
1λ1,k) (32)

= 2g1(xk+1 + δy, R−1
11 B

′
1λ1,k + δu)− 2g1(xk+1, R

−1
11 B

′
1λ1,k) (33)

= (xk+1 + δy)′P1(xk+1 + δy)− x′k+1P1xk+1 (34)

+ (R−1
11 B

′
1λ1,k + δu)′R11(R−1

11 B
′
1λ1,k + δu)− λ′1,kB1R

−1
11 B

′
1λ1,k. (35)

Nevertheless, due to Equation (16), we have

(xk+1 + δy)′P1(xk+1 + δy)− x′k+1P1xk+1

= 2δy′P1xk+1 + δy′P1δy = −2δy′E ′λ1 + δy′P1δy (36)
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and thanks to Equation (31),

(R−1
11 B

′
1λ1,k + δu)′R11(R−1

11 B
′
1λ1,k + δu)− λ′1,kB1R

−1
11 B

′
1λ1,k

= 2δu′B′1λ1,k + δu′R11δu = 2δy′E ′λ1,k + δu′R11δu. (37)

By summing Equations (36) and (37), we have

2g1(y, u)− 2g1(xk+1, R
−1
11 B

′
1λ1,k) = δy′P1δy + δu′R11δu ≥ 0. (38)

It implies that (xk+1, R
−1
11 B

′
1λ1,k) solves the constrained optimization problem

and ends the proof.

Let us characterize the rational reaction set of the player 1 (a player of the
Nash strategy or the follower to the Stackelberg strategy) by the following
proposition.

Proposition 1. Assume R11 to be positive definite and the pair
(
E B1

)
to be surjective. Sufficient conditions for the rational reaction set for the
player 1, γ•1 ∈ R(γ•2), are given by the set of equations, ∀k ∈ K,

P1,K = Q1K , (39)

E ′Ψ1,k+1 = P1,k+1xk+1, (40)

γ•1(xk, k) = −R−1
11 B

′
1Ψ1,k+1, (41)

x′k(P1,k −Q1)xk =

 xk+1

γ•1
γ•2

′  P1,k+1 0 0
0 R11 0
0 0 R12

 xk+1

γ•1
γ•2

 . (42)

Proof. The minimization of the criterion J1 is made under the dynamical
constraint (1), when u2 = γ•2(xk, k), that is

Exk+1 = f(xk, u1,k, γ
•
2(xk, k)) = Axk +B1u1,k +B2γ

•
2(xk, k). (43)

Sufficient conditions are given by applying Dynamic Programming. Roughly
speaking the transversality condition

V1(xK , K) =
1

2
x′KQ1KxK , (44)

is satisfied if the relation (39) is verified, and furthermore

V1(xk, k) = min
u1,k∈IRr1

f(xk,u1,k,γ
•
2 (xk,k))=Exk+1

(
V1(xk+1, k+1)+L1(xk, u1,k, γ

•
2(xk, k))

)
(45)
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with

γ•1(xk, k) = arg min
u1,k∈IRr1

f(xk,u1,k,γ
•
2 (xk,k))=Exk+1

(
V1(xk+1, k+1)+L1(xk, u1,k, γ

•
2(xk, k))

)
.

(46)

By remarking on one hand that the strategy γ•2(xk, k) is only a function
of the state xk (and incidentally of the time k) and on the other hand that
the cost function to be minimized in (46) has the structure of the cost g1

defined by (26), Lemmas 1 and 2 apply at each step k ∈ K. By identifying
λk = −Ψ1,k, we obtain relations (40) and (41). The relation (45) reads
as (42), which ends the proof.

After these preliminaries, which are common to both Nash and Stackel-
berg strategies, the analysis will be devoted to the Nash strategy in Section 3
and to the Stackelberg one in Section 4.

3. The case of Nash strategy

The Nash strategy is investigated in this section. Only the case where
E is singular, that is q = n, is considered in this section. More precisely,
the subsection 3.1 treats the generic case of a descriptor game, while sub-
section 3.2 covers the specific case of explicit systems before illustrations in
subsection 3.3.

3.1. Nash strategy for descriptor games

The role of the players are interchangeable in the case of a Nash strategy,
due to the symmetry emphasized in Definition 4, and relations (11). When
in addition R22 is positive definite and the pair

(
E B2

)
is surjective, the

sufficient conditions for characterizing the rational reaction set of the player 2
are given by Proposition 1, where the indices are switched, that is:

P2,K = Q2K , (47)

E ′Ψ2,k+1 = P2,k+1xk+1, (48)

γ∗2(xk, k) = −R−1
22 B

′
2Ψ2,k+1, (49)

x′k(P2,k −Q2)xk =

 xk+1

γ∗1
γ∗2

′  P2,k+1 0 0
0 R21 0
0 0 R22

 xk+1

γ∗1
γ∗2

 . (50)
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The following theorem is the main result of this section. It provides a
matrix block formulation to compute step by step the value functions for the
both players associated with the feedback Nash strategy. A further assump-
tion is introduced by considering that a block matrix is invertible at each
step. This additional condition can be interpreted by the coupling between
the both rational reaction sets occuring in a Nash strategy.

Theorem 1. Consider the descriptor two-player game (1), associated with
the criteria (3). Assume that R11 and R22 are positive definite and the pairs(
E B1

)
and

(
E B2

)
are surjective. There exists one and only one

tri-trajectory (the trajectory of the state and the trajectory of each player’s
control input) related to the feedback Nash strategy, if the following recurrence
relations lead to invertible matrices Mk+1 (defined below by (53)) at each
step.

Pi,K = QiK , ∀i ∈ N , (51)

Pi,k = Qi+

 A
0n
0n

′ (M−1
k+1)′Qi,k+1M−1

k+1

 A
0n
0n

 , ∀(i, k) ∈ N×{0; · · · ;K−1}

(52)
where

Mk+1 =

 E S1 S2

P1,k+1 −E ′ 0n
P2,k+1 0n −E ′

 ∈ IR3n×3n (53)

and

Qi,k+1 =

 Pi,k+1 0n 0n
0n Si1 0n
0n 0n Si2

 ∈ IR3n×3n. (54)

Proof. By applying the expression of γ∗1 and γ∗2 (given by (41) and (49)
respectively) to the dynamical system (1), we have

Exk+1 = Axk − S1Ψ1,k+1 − S2Ψ2,k+1. (55)

By collecting the sufficient conditions (40), (48) and (55), one obtains

Mk+1

 xk+1

Ψ1,k+1

Ψ2,k+1

 =

 A
0n
0n

xk. (56)
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It is noteworthy that, the relation (56) gathers the sufficient conditions
associated with the two rational reaction sets (9) and (10). The surjectivity
of the pairs

(
E B1

)
and

(
E B2

)
allows the minimization of the cost

functions with possibly different trajectories. The invertibility of the matrix
Mk+1 ensures the coupling between the two rational reaction sets. By as-
suming that Mk+1 is invertible at the step k + 1, there exists one and only
one solution of (56) for any vector xk ∈ IRn and we obtain xk+1

γ∗1(xk, k)
γ∗2(xk, k)

 =

 In 0n×q 0n×q
0r1×n −R−1

11 B
′
1 0r1×q

0r2×n 0r2×q −R−1
22 B

′
2

 xk+1

Ψ1,k+1

Ψ2,k+1


=

 In 0n×q 0n×q
0r1×n −R−1

11 B
′
1 0r1×q

0r2×n 0r2×n −R−1
22 B

′
2

M−1
k+1

 A
0n
0n

xk. (57)

Injecting the relation (57) in the equation (42) and (50), we obtain the
required relations (52). The uniqueness is verified because the matricesMk+1

are assumed to be invertible.

Remark 3. The matrix Mk+1 has singular matrices E and −E ′ on its di-
agonal. This prevents the use of Schur Complement to compute the inverse
of Mk+1, [43, 57]. Nevertheless it does not imply that Mk+1 is singular
(see [58] for a generic discussion on this point). This is in one of the main
justification of our approach.

Remark 4. It should be emphasized that the proposed matrix block formula-
tion in Theorem 1 avoids to decompose the matrix E into canonical forms,
like the Weierstrass canonical form (see [29, 43, 30] for more details). No as-
sumption on the matrix E is made in Theorem 1 (in particular on its index).
Nevertheless, the matrix E is involved implicitly in the assumption related to
the invertibility of the matrix Mk+1.

Remark 5. Due to the symmetry and the semi-definiteness of the weighting
matrices QiK, Qi, and Rij, the matrices Pi,k are also symmetric and positive
definite, as expected from the definition of the value function (optimal value
of the criteria Ji).

Remark 6. The structure of the matrixMk+1 has already been encountered,
but in the framework of the two-player Nash strategy with open-loop informa-
tion structure, see for instance [20, 14, 59]. Contrary to appearances, such a
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structure has no particular properties, like symmetry of its eigenvalues. To
the best of our knowledge, there are no sufficient conditions to ensure the
invertibility of Mk+1, however it is possible to point out several particular
cases, where this matrix is not invertible and thus Theorem 1 could not be
applied. For example, a pure algebraic system, that is E = 0n leads to MK

being singular, because [S1 S2] is not full column rank. Furthermore, in the
case of quasi-cooperation between the two players [14, 59], that is when there
exists a couple (α1, α2) ∈ IR2, (α1, α2) 6= 0, such that α1Q1K = α2Q2K; or
α1S1 = α2S2, then Λ(−E) ⊂ Λ(MK), implying that MK is singular.

Remark 7. When the matrix Mm+1 is not invertible, the time K − (m+ 1)
is called a finite escape time (by convention taking into account the backward
integration in time), extending the finite escape time of standard Riccati equa-
tions to the case of descriptor systems [20].

Remark 8. Even if the structure of the matrix Mk+1 has only a few sym-
metry properties, it is possible to emphasize necessary conditions for its in-
vertibility. Precisely the pairs

(
−E Bi

)
, and

(
−E ′ Pi,k+1

)
should be

surjective. One more time, these are not sufficient conditions of invertibility.
When Mk+1 is not invertible, Theorem 1 does not apply. This may be then
explained, for instance, by the fact that the system cannot be regularized, or
by the fact that the tri-trajectory does not exist for any initial state x0.

Remark 9. When E ∈ IRq×n is rectangular, with q 6= n, the matrix Mk+1

belongs to the set IR(q+2n)×(n+2q) and is thus rectangular and cannot be invert-
ible. This comment justifies why E is assumed to be square in this section.

As in the case of non-symmetric Riccati-type equations, we can also define
coupled algebraic Riccati-type equations for descriptor games by replacing
Pi,k and Pi,k+1 by a time independent value P̃i in the relation (52). A natural
method to find these algebraic solutions is to integrate backward in time the
relation (52), from the initial condition (51), for a time horizon tending to
infinity (K → +∞):

P̃i = lim
K→+∞

Pi,0. (58)

Of course, in the generic case, the algebraic solutions are not necessarily
unique. The solutions depend on a basin of attraction over the matrices QiK .
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3.2. Recovering the case of explicit systems

The result obtained in Theorem 1 includes the case of explicit systems,
where the matrix E is invertible. In this framework, the adequate change
of variables (A ← E−1A, Bi ← E−1Bi, i ∈ N ) allows to consider E = In
without loss of generality in this subsection. As a first consequence, the pairs(
E Bi

)
=
(
In Bi

)
and

(
E Bi

)
=
(
In Bi

)
are surjective. The

assumptions of Lemmas 1 and 2 are verified obviously. The objective here is
to derive the matrix block approach to recover the coupled difference Riccati-
type equations available in the literature for the feedback Nash strategy [2,
Chapter 6][20, 60].

Lemma 3. The matrix Mk+1, defined by (53), rewrites for E = In

Mk+1 =

 In S1 S2

P1,k+1 −In 0n
P2,k+1 0n −In

 . (59)

Mk+1 is invertible if and only if

Φk+1 = In + S1P1,k+1 + S2P2,k+1 (60)

is invertible. In this case, the recurrence relation (52) becomes the coupled
difference Riccati-type equations, ∀i ∈ N

Pi,k = Qi + A′Pi,k+1Φ−1
k+1A+ A′(Φ−1

k+1)′
(
P1,k+1(Si1P1,k+1 − S1Pi,k+1)

+ P2,k+1(Si2P2,k+1 − S2Pi,k+1)
)

Φ−1
k+1A. (61)

Proof. The matrixMk+1 containing identity matrices on its diagonal, allows
to consider the Schur Complement to obtain the inverse of Mk+1. We have
the Schur Complement as follows

In −
[
S1 S2

]
(−In)

[
P1,k+1

P2,k+1

]
= In + S1P1,k+1 + S2P2,k+1 = Φk+1. (62)

The invertibility condition of Φk+1 leads to the definition of the finite
escape time [20]. If Mk+1 is invertible, its inverse verifies the following
relation

M−1
k+1

 A
0n
0n

 =

 In
P1,k+1

P2,k+1

Φ−1
k+1A (63)
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because

Mk+1

 In
P1,k+1

P2,k+1

 =

 Φk+1

0n
0n

 . (64)

Injecting the relation (63) in the recurrence relation yields

Pi,k = Qi + A′(Φ−1
k+1)′ (Pi,k+1 + P1,k+1Si1P1,k+1 + P2,k+1Si2P2,k+1) Φ−1

k+1A.
(65)

Thanks to the matrix inversion lemma,

(Φ−1
k+1)′Pi,k+1 = (Φ−1

k+1)′
(
Φ′k+1 − P1,k+1S1 − P2,k+1S2

)
Pi,k+1 (66)

= Pi,k+1 − (Φ−1
k+1)′ (P1,k+1S1 + P2,k+1S2)Pi,k+1, (67)

the relation (65) can be rewritten into the desired relation (61).

The strategy of each player is then explicitly given by

γ∗i (xk, k) = −R−1
ii B

′
iPi,k+1Φ−1

k+1Axk, (68)

with Φk+1 defined by (60) and the closed-loop dynamic

xk+1 = Φ−1
k+1Axk. (69)

3.3. Illustrations

We present here an example to illustrate the new approach in this paper
concerning the feedback Nash strategy. One considers a game on a finite
time horizon with K = 10. The dimension of the state is n = 3.

E =

 2 1 1
4 2 1
4 2 1

 ; A =

 0.9 0.1 0.5
0.7 0.8 1
0.2 0.5 0.3

 ; B1 =

 1
3
5

 ; B2 =

 2
1
4

 ;

Q1 =

 1 0 0
0 1 0
0 0 1

 ; R11 = 2; R12 = 1;

Q2 =

 2 1 1
1 1 1
1 1 2

 ; R21 = 1; R22 = 3;
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Q1K =

 10 10 10
10 10 10
10 10 10

 ; Q2K =

 5 0 0
0 5 0
0 0 5

 ; x0 =

 1
0.2
2

 .
The matrices P1,k and P1,2 are computed backward in time by the iter-

ative relation (52) in Theorem 1. Then it is possible to compute forwardly
the state xk+1 (drawn in Fig. 1) and the costate vectors Ψ1,k+1 and Ψ2,k+1.
These costate vectors lead to the strategies γ∗1(xk, k) and γ∗2(xk, k), which are
depicted in Fig. 2. The value functions V1(xk, k) and V2(xk, k) are depicted
in Fig. 3.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

Time k

St
at

es
 x

1, x
2 a

nd
 x

3

Figure 1: State components of xk (first component (◦ in red), second one (+ in blue) and
third one (� in magenta).

The global criteria for the feedback Nash strategy are

V1(x0, 0) =
1

2
x′0P1,0x0 = 10.20; V2(x0, 0) =

1

2
x′0P2,0x0 = 22.20.

As a verification, one can notice that the value functions V1(xk, k) and
V2(xk, k) are decreasing functions with respect to the discrete time k.

Finally, by considering the backward integration method, we obtain an
algebraic solution of the equations (52)

P̃1 =

 2.0624 −0.0088 0.6067
−0.0088 1.0838 0.0711
0.6067 0.0711 1.4177

 ; P̃2 =

 0.0231 −0.1958 −0.1506
1.1707 0.6966 1.2585
−0.4629 −0.0382 −0.3007

 .
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Figure 2: Strategies γ∗1 (xk, k) (◦ in red) and γ∗2(xk, k) (+ in blue).
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Figure 3: Value functions V1(xk, k) (◦ in red) and V2(xk, k) (+ in blue).

4. The case of Stackelberg strategy

This section is devoted to the Stackelberg strategy, in the generic case
where the matrix E ∈ IRq×m is rectangular. The sufficient conditions for
the strategy of the leader (player 2) will be firstly obtained. The sufficient
conditions for the both players will be then gathered in the main theorem of
this section. The particular case of explicit systems will be finally considered
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to recover results from the literature [61]. In addition of the framework of
the Nash strategy, we will assumed in the sequel that the weighting matrix
R21 is positive definite, for technical reasons seen in the following.

4.1. Stackelberg strategy for descriptor games

Based on the definition (Definition 5) of a Stackelberg equilibrium, the
sufficient conditions for the strategy of the leader are given in the next propo-
sition.

Proposition 2. Assume R11 to be positive definite and the pair
(
E B1

)
to be surjective. Sufficient conditions for the strategy of the leader, γ∗∗2 , are
given by the set of equations

P2,K = Q2K , (70)

E ′Ψ2,k+1 = P2,k+1xk+1 + P1,k+1µk+1, (71)

γ∗∗2 (xk, k) = −R−1
22 B

′
2Ψ2,k+1, (72)

Eµk+1 = S21Ψ1,k+1 − S1Ψ2,k+1, (73)

x′k(P2,k −Q2)xk = z′k+1


P2,k+1 0 0 0

0 0 0 0
0 0 S2 0
0 0 0 S21

 zk+1, (74)

with the extended state

zk+1 =


xk+1

µk+1

Ψ2,k+1

Ψ1,k+1

 ∈ IR2n+2q. (75)

Proof. The minimization of the criterion J2 is made under the dynamical
constraint (1), when u1 = γ∗∗1 (xk, k), that is

Exk+1 = f(xk, γ
∗∗
1 (xk, k), u2,k) = Axk +B1γ

∗∗
1 (xk, k) +B2u2,k. (76)

By applying Dynamic Programming, the transversality condition

V2(xK , K) =
1

2
x′KQ2KxK (77)
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is satisfied due to the equation (70). Furthermore the Hamilton-Jacobi-
Bellmann equation writes as

V2(xk, k) = min
u2,k∈IRr2

max
Exk+1=f(xk,γ

∗∗
1 (xk,k),u2,k)

γ∗∗1 (xk,k)∈R1(u2,k)

(V2(xk+1, k + 1) + L2(xk, γ
∗∗
1 (xk, k), u2,k))

(78)
and γ∗∗2 (xk, k) is the argument of this minimum.

Because R11 is assumed to be positive definite, the strategy γ∗∗1 may be
reformulated by the relation (41) by using Ψ1,k+1. The relation (40) is a
necessary condition to the relation γ∗∗1 (xk, k) ∈ R1(u2,k). However, the cost
function L1 being strictly convex with respect to the strategy γ∗∗1 , this is also
a sufficient condition [62]. The optimization problem is reformulated into

V2(xk, k) = min
u2,k∈IRr2

max
Exk+1=f(xk,γ

∗∗
1 (xk,k),u2,k)

∂V1
∂xk+1

(xk+1,k+1)=E′Ψ1,k+1

(V2(xk+1, k + 1) + L2(xk, γ
∗∗
1 (xk, k), u2,k)) ,

(79)
with γ∗∗1 (xk, k) = −R−1

11 B
′
1Ψ1,k+1. It is noteworthy that the strict convexity

of L1 with respect to γ∗∗1 (xk, k) (R11 > 0) allows the equivalence between
the both formulations, nevertheless due to the singularity of the system, the
strategy γ∗∗1 is not necessarily unique, only the value of the optimal cost
function is.

There may exist multiple solutions to the system of equations in the con-
straints of the optimization problem (79). This justifies roughly speaking
Remark 1 about the definition of the Stackelberg strategy. Under the surjec-
tivity of the pair

(
E B1

)
, Lemma 1 can be applied and the solution of this

system of equations exists and is unique. The maximum in the optimization
problem (79) may be avoided. That yields to

V2(xk, k) = min
u2,k∈IRr2

Exk+1=f(xk,γ
∗∗
1 (xk,k),u2,k)

∂V1
∂xk+1

(xk+1,k+1)=E′Ψ1,k+1

(V2(xk+1, k + 1) + L2(xk, γ
∗∗
1 (xk, k), u2,k)) .

(80)
The minimization in equation (80) is constrained by the dynamical sys-

tem (76) and the equation (40), characterizing the strategy of the follower.
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That is then equivalent to the minimization of the next modified cost function

V2(xk+1, k + 1) + L2(xk, γ
∗∗
1 , u2,k) + Ψ′2,k+1[f(xk, γ

∗∗
1 (xk, k), u2,k)− Exk+1]

+ µ′k+1

[
∂V1

∂xk+1

(xk+1, k + 1)− E ′Ψ1,k+1

]
, (81)

where Ψ2,k+1 ∈ IRq and µk+1 ∈ IRn are the costate vectors associated with
the constraints (76) and (40) respectively. The term to be minimized in (81)
should thus be stationary with respect to xk+1, u2,k and Ψ1,k+1. It leads to
the following sufficient conditions

∂V2

∂xk+1

(xk+1, k + 1)− E ′Ψ2,k+1 +
∂2V1

∂x2
k+1

µk+1 = 0, (82)

∂L2

∂u2,k

(xk, γ
∗∗
1 (xk, k), u2,k) +

(
∂f

∂u2,k

(xk, γ
∗∗
1 (xk, k), u2,k)

)′
Ψ2,k+1 = 0 (83)

and

∂γ∗∗1
∂Ψ1,k+1

[
∂L2

∂γ∗∗1
(xk, γ

∗∗
1 , u2,k) +

∂f

∂γ∗∗1
(xk, γ

∗∗
1 (xk, k), u2,k)Ψ2,k+1

]
− Eµk+1 = 0.

(84)
In our linear-quadratic game framework, the equations (82), (83) and (84)

read as (71), (72) and (73) respectively. The equation (74) is then obtained by
injecting these sufficient conditions in the Hamilton-Jacobi-Bellmann equa-
tion (80).

The next theorem gathers the sufficient conditions for the leader and the
follower.

Theorem 2. Consider the descriptor two-player game (1), associated with
the criteria (3). Assume that R11, R21 and R22 are positive definite and the
pairs

(
E B1

)
and

(
E B2

)
are surjective. There exists one and only

one feedback Stackelberg strategy if the following recurrence relations lead to
invertible matrices Tk+1 at each step.

Pi,K = QiK , ∀i ∈ N , (85)

Pi,k = Qi+


A

0q×n
0n
0n


′

(T −1
k+1)′Ui,k+1T −1

k+1


A

0q×n
0n
0n

 , ∀(i, k) ∈ N×{0; · · · ;K−1}

(86)
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where

Tk+1 =


E 0q×n S2 S1

0q×n E S1 −S21

P2,k+1 P1,k+1 −E ′ 0n×q
P1,k+1 0n×n 0n×q −E ′

 ∈ IR(2q+2n)×(2q+2n) (87)

and

Ui,k+1 =


Pi,k+1 0n 0n×q 0n×q

0n 0n 0n×q 0n×q
0q×n 0q×n Si2 0q
0q×n 0q×n 0q Si1

 . (88)

Proof. By applying the expression of γ∗∗1 and γ∗∗2 (given by (41) and (49)
respectively) to the dynamical system (1), we have

Exk+1 = Axk − S1Ψ1,k+1 − S2Ψ2,k+1. (89)

Collecting the sufficient conditions (40), (71), (73) and (89), yields

Tk+1


xk+1

µk+1

Ψ2,k+1

Ψ1,k+1

 =


A

0q×n
0n
0n

xk. (90)

By assuming that Tk+1 is invertible at the step k + 1, we obtain
xk+1

µk+1

γ∗2(xk, k)
γ∗1(xk, k)

 =


In 0n 0n×q 0n×q
0n In 0n×q 0n×q

0r2×n 0r2×n −R−1
22 B

′
2 0r2×q

0r1×n 0r1×n 0r1×q −R−1
11 B

′
1




xk+1

µk+1

Ψ2,k+1

Ψ1,k+1



=


In 0n 0n×q 0n×q
0n In 0n×q 0n×q

0r2×n 0r2×n −R−1
22 B

′
2 0r2×q

0r1×n 0r1×n 0r1×q −R−1
11 B

′
1

 T −1
k+1


A

0q×n
0n
0n

xk. (91)

Injecting the relation (91) in the equation (42) and (74), we obtain the
required relations (86). The uniqueness is verified because the matrices Tk+1

are assumed to be invertible.
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The matrix Tk+1 has a particular structure. Such a structure will be
used in the sequel in order to determine sufficient conditions allowing the
invertibility of Tk+1. When the matrix E is singular (q = n), the matrix Tk+1

is Hamiltonian [63]. In the generic case, when E is rectangular, we can use
the following lemma.

Lemma 4. If
(
E B1

)
is surjective,

(
E

P1,k+1

)
and

(
E

P2,k+1

)
are in-

jective and R21 is positive definite, then the matrix Tk+1 is invertible.

Proof. A matrix is invertible if and only if its kernel is reduced to the trivial
singleton. Assume that, y1 ∈ IRn, y2 ∈ IRn, y3 ∈ IRq and y4 ∈ IRq,

Tk+1


y1

y2

y3

y4

 = 0(2n+2q)×1. (92)

By developping the equation (92), we have

Ey1 + S2y3 + S1y4 = 0q×1, (93)

Ey2 + S1y3 − S21y4 = 0q×1, (94)

P2,k+1y1 + P1,k+1y2 − E ′y3 = 0n×1, (95)

P1,k+1y1 − E ′y4 = 0n×1. (96)

Combining the left multiplication of Equations (93), (94), (95) and (96))
by y′3, y′4, y′1 and y′2, respectively, yields

y′1P2,k+1y1 + y′3S2y3 + y′4S21y4 = 0. (97)

The matrix P2,k+1 being positive semi-definite and the matrices R22 and
R21 being positive definite, one gets

P2,k+1y1 = 0n×1; B′2y3 = 0r2×1; B′1y4 = 0r1×1. (98)

It follows

(
E

P2,k+1

)
y1 = 02n×1 inducing y1 = 0n×1. Thus

(
E ′

B′1

)
y4 =

0(n+r1)×1, that is y4 = 0q×1. Equations (94) and (95) become

Ey2 + S1y3 = 0q×1, (99)

P1,k+1y2 − E ′y3 = 0n×1. (100)
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By left multiplication of Equations (99) and (100) by y′3 and y′2, respec-
tively, one obtains

y′3S1y3 + y′2P1,k+1y2 = 0, (101)

which implies, by the positive definiteness of R11 and the positive semi-
definiteness of P1,k+1 that

B′1y3 = 0r1×1; P1,k+1y2 = 0n×1. (102)

Due to these relations, we conclude that

(
E

P1,k+1

)
y2 = 0(n+q)×1, that is

y2 = 0n×1. It results that

(
E ′

B′1

)
y3 = 0(n+r1)×1, and y3 = 0q×1. The matrix

Tk+1 is then invertible.

Thus, it is possible to provide sufficient conditions, based only on the
matrices of the system, for the existence of feedback Stackelberg strategies.
These conditions are presented in the following lemma.

Lemma 5. Assume that R21 is positive definite, that

(
E
QiK

)
and

(
E
Qi

)
(i ∈ N ) are injective and that

(
E B1

)
is surjective, then for any k ∈

{0, · · · , K}, P1,k and P2,k exist, are symmetric and are positive definite. In

addition

(
E
Pi,k

)
, (i ∈ N ) are injective.

Proof. For k = K, the lemma is true due to Equation (85). Let us prove the
lemma step by step backward in time. Assume that the property is verified
at time (k + 1), then by using Lemma 4, the matrix Tk+1 is invertible and
Pi,k are defined by the relation (86), that is they are symmetric and positive

semi-definite. Consider now a vector y ∈ IRn such that

(
E
Pi,k

)
y = 0, that

is in other words Ey = 0 and Pi,ky = 0. Let us prove that this implies that
y = 0. We have y′Pi,ky = 0. Due to the definition of Pi,k given by (86),

y′Qiy = 0, which induces that Qiy = 0 and

(
E
Qi

)
y = 0. The assumption

allows to obtain y = 0, that ends the proof.

The following subsection investigates the particular case of explicit sys-
tems.
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4.2. Recovering the case of explicit systems

As previously mentioned, the case of explicit systems, where the matrix E
is square and invertible can be considered as a particular case of descriptor
systems. We propose here to recover the coupled difference Riccati-type
equations issued from the literature for the feedback Stackelberg strategy [2,
Section 7.3] for games with E = In. The matrix block formulation for explicit
systems has been proposed for feedback Stackelberg strategy in [61].

First of all, it should be noticed that the assumptions of Lemma 5 are
reduced toR21 positive definite. Actually with E = In, the matrix

(
In B1

)
is surjective and the matrices

(
In
QiK

)
and

(
In
Qi

)
, (i ∈ N ) are injective,

regardless the values of matrices B1, Q1, Q2, Q1K and Q2K . That is there
always exists a feedback Stackelberg strategy for an explicit system because
the matrix Tk+1 is always invertible.

Lemma 6. The matrix Tk+1, defined by (87), writes for E = In,

Tk+1 =


In 0n S2 S1

0n In S1 −S21

P2,k+1 P1,k+1 −In 0n
P1,k+1 0n 0n −In

 . (103)

Even if the matrix Tk+1 is invertible, exhibiting its inverse may induce
some difficulties. In fact some generic methods, as for example the Schur
complement, require some technical assumptions to be applied [58]. Here we
made the assumption that these requirements are fullfiled. Roughly speaking,
we assume that (In+P1,k+1S1) and (In+S1P1,k+1+S2(In+P1,k+1S1)−1(P2,k+1+
P1,k+1S21P1,k+1)) are invertible. In this case, the recurrence relation (86)
becomes the coupled difference Riccati-type equations [2, Section 7.3], ∀i ∈ N

Pi,k = Qi +A′(Θ−1
k+1)′(Pi,k+1 + ∆′k+1Si2∆k+1 +P1,k+1Si1P1,k+1)Θ−1

k+1A. (104)

Proof. The inverse of Tk+1 verifies

Tk+1


In

Ωk+1

∆k+1

P1,k+1

 =


Θk+1

0n
0n
0n

 , (105)
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where

Θk+1 = In + S1P1,k+1 + S2(In + P1,k+1S1)−1(P2,k+1S21P1,k+1), (106)

∆k+1 = (In + P1,k+1S1)−1(P2,k+1S21P1,k+1), (107)

Ωk+1 = S21P1,k+1 − S1∆k+1. (108)

Due to the equation (105), we have

T −1
k+1


A
0n
0n
0n

 =


In

Ωk+1

∆k+1

P1,k+1

Θ−1
k+1A. (109)

Injecting this last equation into Equation (86) yields equations (104).

The strategy of each player is then explicitly given by

γ∗∗1 (xk, k) = −R−1
11 B

′
1P1,k+1Θ−1

k+1Axk, (110)

γ∗∗2 (xk, k) = −R−1
22 B

′
2P2,k+1∆k+1Θ−1

k+1Axk, (111)

µk+1 = Ωk+1Θ−1
k+1Axk. (112)

Thus the closed-loop dynamic is

xk+1 = Θ−1
k+1Axk. (113)

4.3. Illustrations

In this section, two academic examples are presented: one with the matrix
E square and one with the matrix E rectangular. Let us consider firstly
the following example to illustrate our matrix block approach to solve the
feedback Stackelberg strategy, with E square. The time-horizon is defined
by K = 10.

E =

[
1 2
1 2

]
; A =

[
0.9 1
0.7 0.8

]
; B1 =

[
0.1
0.3

]
; B2 =

[
0.2
0

]
;

Q1 =

[
1 0
0 2

]
; R11 = 2; R12 = 1;

Q2 =

[
2 1
1 1

]
; R21 = 0.5; R22 = 1;
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Q1K =

[
10 0
0 10

]
; Q2K =

[
2 2
2 2

]
; x0 =

[
1

0.2

]
.

The matrices P1,k and P2,k are computed backward in time by the iterative
relation (86). When it is done, the state trajectory is computed forwardly,
in addition of the costate vectors. The state trajectory is depicted in Fig. 4,
and the strategies γ∗∗1 (xk, k) and γ∗∗2 (xk, k) in Fig. 5. The value functions
V1(xk, k) and V2(xk, k) are represented in Fig. 6.
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x 1 a

nd
 x
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Figure 4: State components in function of time (first component of xk in red ◦; second
component of xk in blue +).

The global criteria for memoryless closed-loop Stackelberg strategy are

V1(x0, 0) =
1

2
x′0P1,0x0 = 3.33; V2(x0, 0) =

1

2
x′0P2,0x0 = 3.53.

As a verification, one can notice that the value functions V1(xk, k) and
V2(xk, k) are decreasing functions with respect to the discrete time k.

As for the Nash strategy, it is also possible to obtain a solution of the
algebraic equation related to the recursive equation (86), that is where Pi,k =
Pi,k+1. By a backward integration starting from K = 50, we find numerically

P̃1 =

[
2.5401 1.6101
1.6101 3.6891

]
; P̃2 =

[
2.7418 1.7872
1.7872 1.8376

]
,
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Figure 5: Strategies γ∗∗1 (xk, k) (in red ◦) and γ∗∗2 (xk, k) (in blue +).
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Figure 6: Value functions V1(xk, k) (in red ◦) and V2(xk, k) (in blue +).

which naturally depends on the choice of the initial conditions QiK .
Now let us consider an example with E rectangular. Here n = 2, q =

r1 = r2 = 1 and

E =
[

1 0.2
]

; A =
[
−5 −4

]
; B1 =

[
−1

]
; B2 =

[
1.5

]
;
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Q1 =

[
1 0
0 2

]
; R11 = 10; R12 = 1;

Q2 =

[
2 1
1 1

]
; R21 = 0.5; R22 = 20;

Q1K =

[
10 0
0 10

]
; Q2K =

[
2 2
2 2

]
; x0 =

[
1

0.2

]
.

The assumptions of Lemmas 4 and 5 are fulfilled. By applying the
provided methodology related to Theorem 2, one obtains a (unique) tri-
trajectory, starting from one arbitrary initial state, depicted in Fig. 7 and
the inputs trajectories, depicted in Fig. 8.
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Figure 7: State components in function of time (first component of xk in red ◦; second
component of xk in blue +).

5. Conclusion

Feedback Nash and Stackelberg strategies for discrete-time linear-quadratic
descriptor two-player games have been investigated in this paper. Sufficient
conditions have been provided for the existence and the uniqueness of a tri-
trajectory, consisting of the state-trajectory and of the two control inputs
trajectories. These sufficient conditions are based on Dynamic Programming
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Figure 8: Strategies γ∗∗1 (xk, k) (in red ◦) and γ∗∗2 (xk, k) (in blue +).

and a matrix block formulation regularizing the singular dynamic. Proper-
ties of the characteristic matrices related to the matrix block formulation
have been underlined. The standard case of explicit systems and the asso-
ciated sufficient conditions available in the literature have been recovered.
Examples have been proposed to illustrate this matrix block formulation for
descriptor games.
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[25] T. Başar, H. Selbuz, Closed-loop Stackelberg strategies with applica-
tions in the optimal control of multilevel systems, IEEE Transactions
on Automatic Control AC-24 (1979) 166–179.
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