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FROBENIUS VECTORS, HILBERT SERIES AND GLUINGS

A. ASSI, P. A. GARCÍA-SÁNCHEZ, AND I. OJEDA

Abstract. Let S1 and S2 be two affine semigroups and let S be the gluing of S1 and S2. Several invariants
of S are then related to those of S1 and S2; we review some of the most important properties preserved
under gluings. The aim of this paper is to prove that this is the case for the Frobenius vector and the
Hilbert series. Applications to complete intersection affine semigroups are also given.

1. On gluins of affine semigroups

In this section we take a quick tour summarizing some of the more relevant results on the gluing of
affine semigroups. We also introduce concepts and notations that will be used later on in the paper.

An affine semigroup S is finitely generated submonoid of Zm for some positive integer m. If S∩(−S) =
0, that is to say S is reduced, it can be shown that it has a unique minimal system of generators (see
for instance [24, Chapter 3]). The cardinality of the minimal generating system of S is known as the
embedding dimension of S. Recall that each reduced affine semigroup can be embedded into Nm for some
m. In the following we will assume that our affine semigroups are submonoids of Nm.

Given an affine semigroup S ⊆ Nm, denote by G(S) the group spanned by S, that is,

G(S) =
{

z ∈ Zm | z = a− b,a,b ∈ S
}

.

Let A be the minimal generating system of S, and A = A1 ∪ A2 be a nontrivial partition of A. Let
Si = 〈Ai〉 (the monoid generated by Ai), i ∈ {1, 2}. Then S = S1 + S2. We say that S is the gluing of S1

and S2 by d if

• d ∈ S1 ∩ S2 and,
• G(S1) ∩G(S2) = dZ.

We will denote this fact by S = S1 +d S2.
There are several properties that are preserved under gluings, and also some invariants of a gluing

S1 +d S2 can be computed by knowing their values in S1 and S2. We summarize some of them next.
Assume that A = {a1, . . . ,ak}. The monoid homomorphism ϕ : Nk → S induced by ei 7→ ai, i ∈

{1, . . . , k} is an epimorphism (where ei is the ith row of the k× k identity matrix). Thus S is isomorphic
as a monoid to Nk/ kerϕ, where kerϕ is the kernel congruence of ϕ, that is, the set of pairs (a,b) ∈ Nk×Nk

with ϕ(a) = ϕ(b). A presentation of S is a system of generators of kerϕ. A minimal presentation is a
presentation such that none of its proper subsets is a presentation. All minimal presentations have the
same (finite) cardinality (see for instance [24, Corollary 9.5]). Suppose that S = S1+dS2, with Si = 〈Ai〉,
i ∈ {1, 2} and A = A1 ∪ A2 a nontrivial partition of A. We may assume without loss of generality
that A1 = {a1, . . . ,al} and A2 = {al+1, . . . ,ak}. According to [21, Theorem 1.4], if we know minimal
presentations ρ1 and ρ2 of S1 and S2, respectively, then

ρ = ρ1 ∪ ρ2 ∪ {(a,b)}
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is a minimal presentation of S, for every (a,b) ∈ Nk × Nk with ϕ(a) = ϕ(b), the first l coordinates of b
equal to zero and the last k − l coordinates of a equal to zero (actually, [21, Theorem 1.4] asserts that
this characterizes that S = S1 +d S2).

For an affine semigroup S define Betti(S) as the set of s ∈ S for which there exists a,b ∈ ϕ−1(s) such
that (a,b) belongs to a minimal presentation of S. Theorem 10 in [14] states that

Betti(S1 +d S2) = Betti(S1) ∪ Betti(S2) ∪ {d}.

Since several invariants as the catenary degree and the maximum of the delta sets depend on the Betti
elements of S ([9] and [8], respectively), the computation of these invariants for S1+dS2 can be performed
once we know their values for S1, S2 and d (see for instance [7, Corollary 4]).

Affine semigroups with a single Betti element can be characterized as a gluing of several copies of affine
semigroups with empty minimal presentation (and thus isomorphic to Nt for some positive integer t) along
this single Betti element ([15]).

We say that S is uniquely presented if for every two minimal presentations σ and τ and every (a,b) ∈ σ,
either (a,b) ∈ τ or (b,a) ∈ τ , that is, there is a unique minimal presentation up to rearrangement of the
pairs of the minimal presentation. It is known ([14, Theorem 12]) that S1 +d S2 is uniquely presented if
and only if S1 and S2 are uniquely presented and ±(d−a) 6∈ S1+d S2 for every a ∈ Betti(S1)∪Betti(S2).

It is well known that the cardinality of any minimal presentation of an affine semigroup is greater than
or equal to its embedding dimension minus the dimension of the vector space spanned by the semigroup.
An affine semigroup is a complete intersection affine semigroup if the cardinality of any of its minimal
presentations attains this lower bound. It can be shown that an affine semigroup is a complete intersection
if and only if it is either isomorphic to Nt for some positive integer t or it is the gluing of two complete
intersection affine semigroups ([12]). This result generalizes [22] which generalizes the classical result by
Delorme for numerical semigroups ([11]; actually the definition of gluing was inspired in that paper).

A numerical semigroup is a submonoid of N with finite complement in N. It is easy to see that every
numerical semigroup is finitely generated (see for instance [25, Chapter 1]) and thus every numerical
semigroup is an affine semigroup. Let S be a numerical semigroup. The largest integer not belonging to S
is known as its Frobenius number, F(S). By definition F(S)+1+N ⊆ S. This is why the integer F(S)+1
is known as the conductor of S. Delorme in [11] shows that the conductor of a numerical semigroup that
is a gluing, say S1+d S2, can be computed in terms of the conductors of S1, S2 and d. Thus a formula for
the Frobenius number of a numerical semigroup that is a gluing is easily derived (this idea is exploited in
[4] to give a procedure to compute the set of all complete intersection numerical semigroups with given
Frobenius number). One of the aims of this paper is to generalize this formula for affine semigroups.

Let S be a numerical semigroup. An element g ∈ Z\S is a pseudo-Frobenius number if g+(S\{0}) ⊆ S.
In particular F(S) is always a pseudo-Frobenius number. The cardinality of the set of pseudo-Frobenius
numbers is known as the (Cohen-Macaulay) type of S, t(S). A numerical semigroup is symmetric if
its type is one (there are plenty of characterizations of this property, see for instance [25, Chapter 3]).
Delorme in his above mentioned paper [11] also proved that a numerical semigroup that is a gluing
S1 +d S2 is symmetric if and only if S1 and S2 are symmetric. Nari in [19, Proposition 6.6] proved that
for a numerical semigroup of the form S1 +d S2,

t(S1 +d S2) = t(S1) t(S2)

(actually the definition of gluing for numerical semigroups is slightly different and we have to divide
S1 and S2 by their greatest common divisors in order to get S1 and S2 numerical semigroups; see the
paragraph after Theorem 15). This formula can be seen as a generalization of the fact that the gluing of
symmetric numerical semigroups is again symmetric, and it also shows that

• the gluing of pseudo-symmetric numerical semigroups (the only pseudo-Frobenius numbers are
the Frobenius number and its half) cannot be pseudo-symmetric,

• the gluing of two nonsymmetric almost symmetric numerical semigroup is not almost symmetric
(S is almost symmetric if the cardinality of N \ S equals (F(S) + t(S))/2).
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Let S be an affine semigroup, and let s ∈ S \ {0}. The Apéry set of s in S is the set

Ap(S, s) = {x ∈ S | x− s 6∈ S}.

This set has in general infinitely many elements. If S is a numerical semigroup and s ∈ S \ {0}, then
Ap(S, s) has exactly s elements (one for each congruent class modulo s). Let m be the least positive integer
belonging to S, which is known as the multiplicity of S, and assume that S is minimally generated by

{n1, . . . , nk}, with n1 < · · · < nk. Clearly, n1 = m and Ap(S,m) ⊆ {
∑k

i=2 aini | ai ≤ αi, i ∈ {2, . . . , k}},
with αi = max{k ∈ N | kni ∈ Ap(S,m)}. When the equality holds we say that the Apéry set of S is
α-rectangular. Theorem 2.3 in [10] shows that every numerical semigroup with α-rectangular Apéry set
other than N can be constructed by gluing a numerical semigroup with the same property and a copy of
N.

For a given affine semigroup S and a field K, the semigroup ring K[S] is defined as K[S] =
⊕

s∈S Kts

with t an indeterminate. Addition is performed componentwise and the product is calculated by using
distributive law and tsts

′

= ts+s′ for all s, s′ ∈ S. If S is a numerical semigroup, then K[S] is a subring
of K[t]. Recently ([13]), it has been shown that if for every relative I ideal of K[Si], i ∈ {1, 2} generated
by two monomials, I ⊗K[Si] I

−1 has nontrivial torsion, then the same property holds for S1 +d S2, solving
partly a conjecture stated by Huneke and Wiegand (see [13] for details; also the restriction of being
generated by just two elements can be removed if we take S2 as a copy of N).

If S is a numerical semigroup minimally generated by {n1, . . . , nk}, then m = (tn1 , . . . , tnk) is the
unique maximal ideal of the power series ring R = K[[tn1 , . . . , tnk ]] = K[[S]]. The Hilbert function of the
associated graded ring gr

m
(R) =

⊕

n∈Nm
n/mn+1 is defined as n 7→ dimK(mn/mn+1). In [2] it is shown

that if the Hilbert functions of the associated graded rings of K[[S1]] and K[[S2]] are nondecreasing, then
so is the Hilbert function of the associated graded ring of K[[S1+d S2]] when the gluing is a “nice” gluing
(see [2, Theorem 2.6] for details; this nice gluing has been also exploited in [16]).

Lately, for T = 〈an1, an2, an3, an4〉 +ab 〈b〉, Barucci and Fröberg have been able to compute the Betti
numbers of the free resolution of K[T ] in terms of that of K[S], with S = 〈n1, n2, n3, n4〉 ([5]).

2. Gluings and cones

Given an affine semigroup S ⊆ Nm, denote by cone(S) the cone spanned by S, that is,

cone(S) =
{

q a | q ∈ Q≥0,a ∈ S
}

.

Observe that cone(S) is pointed (the only subspace included in it is {0}), because S is reduced.
Clearly, if A is finite and generates S, then

G(S) =

{

∑

a∈A

zaa | za ∈ Z for all a

}

and cone(S) =

{

∑

a∈A

qaa | qa ∈ Q≥0 for all a

}

.

We will write aff(S) for the affine span of S, that is,

aff(S) = G(S)⊗Z Q.

As usual we use the notation

〈A〉 = {
∑

a∈A

naa | na ∈ N for all a ∈ A}

(all sums are finite, that is, if A has infinitely many elements, all but a finite number of za, qa and na are
zero).

Lemma 1. Let r1, . . . , rk, rk+1 and x ∈ cone(Nm)\{0}, for some positive integers m and k. If cone(r1, . . . , rk) =
cone(r1, . . . , rk, rk+1), then the following conditions are equivalent:

(1) There exist q1, . . . qk ∈ Q>0 such that x = q1r1 + · · ·+ qkrk.
(2) There exist q′1, . . . , q

′
k+1 ∈ Q>0 such that x = q′1r1 + · · · + q′krk + q′k+1rk+1.
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Proof. Observe that from the hypothesis, rk+1 ∈ cone(r1, . . . , rk), and thus there exists t1, . . . , tk ∈ Q≥0

such that rk+1 = t1r1 + · · · + tkrk. From this it easily follows (2) implies (1).
Assume that there exist q1, . . . qk ∈ Q>0 such that x = q1r1 + · · · + qkrk. Let N ∈ N be such that

for all i ∈ {1, . . . , k}, ti/N < qi (this is possible since qi > 0 for all i). Take q′i = qi − ti/N (which is a
positive rational number) for all i ∈ {1, . . . , k}, and q′k+1 = 1/N . Then q′1r1 + · · · + q′krk + q′k+1rk+1 =
q1r1 + · · ·+ qkrk − 1/Nrk+1 + 1/Nrk+1 = x. �

Given r1, . . . , rk ∈ cone(Nm) \ {0}, we define the relative interior of cone(r1, . . . , rk) by

relint(cone(r1, . . . , rk)) =
{

q1r1 + · · · + qkrk | q1, . . . , qk ∈ Q>0

}

.

Observe that the relative interior of a cone C is the topological interior of C in its affine span, aff(r1, . . . , rk),
with the subspace topology.

For A ⊆ Nm, we say that F is a face of cone(A) if F 6= ∅ and there exists c ∈ Qm \ {0} such that

• F = {x ∈ cone(A) | c · x = 0} and
• c · y ≥ 0 for all y ∈ cone(A).

An element a ∈ A is an extremal ray of cone(A) if Q≥0a is a one dimensional face of cone(A).
Now, according to Lemma 1, if A is the minimal system of generators of an affine semigroup S ⊆ Nm,

then we can say that x ∈ relint(cone(S)) if and only if x ∈ relint(cone(A)), even if A contains elements
that are not extremal rays. We get also the following consequence.

Proposition 2. Let A be a nonempty subset of Nm, with m a positive integer. Assume that A = A1 ∪A2

is a nontrivial partition of A. Then relint(cone(A)) = relint(cone(A1)) + relint(cone(A2)).

Proof. Obviously, if xi ∈ relint(cone(Ai)), i ∈ {1, 2}, then x1 + x2 ∈ relint(cone(A)). Now, consider
x ∈ relint(cone(A)). Without loss of generality we may assume that x =

∑

a∈A qaa with qa ∈ Q>0. Thus,
by taking xi =

∑

a∈Ai
qaa, we are done. �

Notice that if S is the gluing of S1 and S2 by d, then

d 6∈ relint(cone(S)) implies d 6∈ relint(cone(S1)) ∩ relint(cone(S2)).

Otherwise, we may take xi = (1/2)d, i ∈ {1, 2}.

Proposition 3. Let A be a nonempty subset of Nm, with m a positive integer. Assume that A = A1 ∪A2

is a nontrivial partition of A. Let F be a face of cone(A). Then every x ∈ F can be expressed as x1 + x2

with xi in a face of cone(Ai), i ∈ {1, 2}.

Proof. Let x ∈ F . Then there exists c ∈ Qm\{0} such that c·x = 0 and c·y ≥ 0 for all y ∈ cone(A). Notice
that cone(A) = cone(A1) + cone(A2). Hence there exists xi ∈ cone(Ai), i ∈ {1, 2} such that x = x1 + x2.
As cone(Ai) ⊆ cone(A), c · yi ≥ 0, for i ∈ {1, 2} and all yi ∈ cone(Ai). Hence 0 = c · x = c · x1 + c · x2

forces c · x1 = c · x2 = 0. We conclude that xi is in the face {x ∈ Qn | c · x = 0} ∩ cone(Ai) of cone(Ai),
i ∈ {1, 2}. �

We end this section by giving an affine-geometric characterization of gluings.

Proposition 4. Let S be an affine semigroup and d ∈ Nn \ {0}. If S = S1 +d S2 then

cone(S1) ∩ cone(S2) = dQ≥0.

Proof. By definition, d ∈ S1 ∩ S2 and, clearly, dQ≥0 ⊆ cone(S1) ∩ cone(S2). If d
′ ∈ cone(S1) ∩ cone(S2),

then d′ = z1
t1
a1 =

z2
t2
a2, with z1, z2, t1, t2 ∈ N, and ai ∈ Si, i ∈ {1, 2}. Hence, t1t2d

′ ∈ G(S1)∩G(S2) = dZ,

that is, d′ ∈ dQ≥0. �

The above result may be also obtained as a consequence of [17, Lemma 4.2].
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Observe that the inverse statement is not true as the following simple example shows. Let S be
semigroup generated by the columns of the matrix

A =

(

4 3 2 3 1 0
0 1 2 3 3 4

)

and let S1 and S2 be the semigroups generated by the three first and the three last columns of A,
repectively. In this case, d := (6, 6)⊤ ∈ S1 ∩ S2 and cone(S1) ∩ cone(S2) = dQ≥0. However, S1 and
S2 cannot be glued by d because G(S1) ∩ G(S2) has rank 2; indeed, 3(2, 2) = 2(3, 3) and (0, 4) =
−2(4, 0) + 2(3, 1) + (2, 2).

Corollary 5. Let S be an affine semigroup minimally generated by A. Let A = A1 ∪A2 be a nontrivial
partition of A, and let Si = 〈Ai〉, i ∈ {1, 2}. Set V = aff(S1) ∩ aff(S2). Then, S = S1 +d S2 for some
d ∈ Nn \ {0}, if and only if V = dQ and S ∩ V = (S1 ∩ V ) +d (S2 ∩ V ) for some d ∈ Nn \ {0}.

Proof. If S = S1 +d S2 for some d ∈ Nn \ {0}, by an argument similar to the given in the proof of
Proposition 4, we have that V = dQ. Now, since d ∈ (S1 ∩ V ) ∩ (S2 ∩ V ) and G(S1 ∩ V ) ∩G(S2 ∩ V ) =
G(S1) ∩ G(S2) = dZ, we conclude that S ∩ V is the gluing of S1 ∩ V and S2 ∩ V by d. Conversely, let
V = dQ. Since G(S1) ∩ G(S2) = G(S1 ∩ V ) ∩ G(S2 ∩ V ) = dZ and d ∈ (S1 ∩ V ) ∩ (S2 ∩ V ) = S1 ∩ S2,
because G(S1) ∩G(S2) ⊂ V , we are done. �

Let S be the semigroup generated by the columns of the following matrix

A =





4 3 2 3 3 3
0 1 2 3 2 0
0 0 0 0 1 3





and let S1 (S2, respectively) be the semigroup generated by the three first (last, respectively) columns of A.
Clearly, V = aff(S1)∩aff(S2) = (1, 1, 0)⊤Q. Now, since S1∩V ∼= 2N, S2∩V ∼= 3N and S ∩V ∼= 2N+6 3N,
in the light of the above corollary, we conclude that S = S1 +d S2, with d = (6, 6, 0)⊤.

3. Gluings and Frobenius vectors

Let S be an affine semigroup. We say that S has a Frobenius vector if there exists f ∈ G(S) \ S such
that

f + relint(cone(S)) ∩G(S) ⊆ S \ {0} ⊆ S.

Notice that f + (relint(cone(S))∩G(S)) ⊆ S \ {0} is equivalent to (f + relint(cone(S)))∩G(S) ⊆ S \ {0},
and thus we omit the parenthesis in the above condition.

We are going to prove that if S1 and S2 have Frobenius vectors, then so does S = S1 +d S2.

Theorem 6. Let S be an affine semigroup. Assume that S = S1 +d S2. If S1 and S2 have Frobenius
vectors, so does S. Moreover, if f1 and f2 are respectively Frobenius vectors of S1 and S2, then

f = f1 + f2 + d

is a Frobenius vector of S.

Proof. Let G1 = G(S1), G2 = G(S2), and G = G(S). Clearly G = G1 +G2, since S = S1 + S2.
We start by proving that f ∈ G\S. As f1 ∈ G1, f2 ∈ G2 and d ∈ G1∩G2, we have f ∈ G. Assume that

f ∈ S. Then there exist s1 ∈ S1 and s2 ∈ S2 such that f = s1+s2. Then f1+d−s1 = s2−f2 ∈ G1∩G2 = dZ.
So, we can find k ∈ Z such that f1+d−s1 = s2−f2 = kd. If k ≤ 0, then f2 = s2−kd ∈ S2, a contradiction.
If k > 0, then f1 = s1 + (k − 1)d ∈ S1, which is also impossible, and this proves that f 6∈ S.

In order to simplify the notation, set C1 = relint(cone(S1)), C2 = relint(cone(S2)) and C = relint(cone(S)).
Now let us prove that for all x ∈ C ∩G, we have that f + x ∈ S. Since f + x ∈ G, there must be g1 ∈ G1

and g2 ∈ G2 such that f + x = g1 + g2. In light of Proposition 2, there exists x1 ∈ C1 and x2 ∈ C2 such
that x = x1 + x2. Then f + x = f1 + f2 + d+ x1 + x2 = g1 + g2. Let t ∈ Z>0 be such that s1 = tx1 ∈ S1

and s2 = tx2 ∈ S2. This yields tf1 + td+ s1 − tg1 = tg2 − tf2 − s2 = kd for some integer k. Assume that
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k ≤ 0. Then tf1 + s1 + (t − k)d = tg1, and thus f1 + (x1 +
t−k
t
d) = g1. Observe that x1 +

t−k
t
d ∈ C1,

which implies that g1 ∈ S1 because f1 is a Frobenius vector for S1.
Let n the maximum nonnegative integer such that g1−nd ∈ S1. Hence g1−(n+1)d = f1+x1+

t−k
t
d−

(n + 1)d 6∈ S1, and consequently tn + k > 0, since otherwise t−k
t

− (n + 1) ≥ 0 and this would lead to

x1+
t−k
t
d−(n+1)d ∈ C1, yielding g1−(n+1)d ∈ S1, a contradiction. Now, tg2−tf2−s2+tnd = (tn+k)d,

which means that g2 + nd = f2 + x2 +
tn+k

t
d. As x2 +

tn+k
t

d ∈ C2, and f2 is a Frobenius vector for S2,
we deduce that g2 + nd ∈ S2. Finally f + x = g1 + g2 = (g1 − nd) + (g2 + nd) ∈ S1 + S2 = S.

If k ≥ 0, then tf2+s2+ td− tg2 = tg1− tf2−s1 = −kd, and we repeat the above argument by swapping
g1 and g2. �

If A is a set of positive integers, and S = 〈A〉, then T = S/ gcd(A) is a numerical semigroup, and
F(T ) = max(N \ T ). It follows easily that F(S) = gcd(A) F(T ). Recall that the conductor of T is defined
as the Frobenius number of T plus one. Hence Theorem 6 generalizes the well known formula for the
gluing of two submonoids of N ([11, Proposition 10 (i)]).

Lemma 7. Let S be an affine semigroup minimally generated by A. If A is a set of linearly independent
elements, then f = −

∑

a∈A a is a Frobenius vector for S.

Proof. Let x ∈ relint(cone(S)) ∩ G(S). Then x =
∑

a∈A qaa =
∑

a∈A zaa, with qa ∈ Q>0 and za ∈ Z

for all a. Since the elements in A are linearly independent, this forces za = qa for all a; in particular,
za − 1 ≥ 0 for all a. Hence f + x =

∑

a∈A(za − 1)a ∈ S. �

Since every complete intersection affine semigroup has either no relations (free in the categorical sense,
that is, its minimal set of generators is a set of linearly independent vectors) or it is the gluing of two
affine semigroups ([12]), we get the following result.

Theorem 8. Let S be a complete intersection affine semigroup. Then S has a Frobenius vector.

Remark 9. Let S = S1 +d S2 be the gluing of S1 and S2 by d, and assume that that S2 = 〈v〉. Hence
d = θv for some θ ∈ N. Clearly −v is a Frobenius vector for S2 (Lemma 7), and if S1 has a Frobenius
vector f1, then the formula of Theorem 3 implies that f = f1−v+θv = f1+(θ−1)v is a Frobenius vector
of S. More generally let v1, . . . ,ve be a set of Q linearly independent vectors of Ne. Let S0 = 〈v1, . . . ,ve〉,
and let ve+1, . . . ,ve+h be a set of vectors of Ne∩cone(v1, . . . ,ve). Set Si = 〈v1, . . . ,ve+i〉 for all 1 ≤ i ≤ h
and assume that Si = Si−1 +θivi

〈vi〉 (such semigroups are called free semigrous). A Frobenius vector f0
of S0 being f0 = −

∑e
k=1 vk (Lemma 7), it follows that

(1) fi =
i

∑

j=1

(θj − 1)vj −
e

∑

k=1

vk

is a Frobenius vector of Si. This formula has also been proved by the first author in [3], and gave the
following uniqueness condition: this Frobenius vector f is minimal with respect to the order induced by
cone(S), that is, for every other Frobenius vector f ′ of S, f ′ ∈ f + cone(S).

We recall that a reduced affine semigroup S is said to be simplicial if there are linearly independent
elements a1, . . . ,an ∈ S such that cone(S) = cone(a1, . . . ,an). Under this hypothesis, conditions for the
existence and conditions for uniqueness of a Frobenius vector of S are given in [1].

The formula (1) is a special case of the following general formula for a Frobenius vector of a complete
intersection affine semigroup.

Remark 10. Recall that according to [12], any complete intersection affine semigroup is either generated
by a set of linearly independent vectors or it is a gluing of two complete intersection numerical semigroups.
Thus, repeating this argument recursively, if S is a complete intersection affine semigroup A, then there
exists a partition A1 ∪ · · · ∪At = A such that Ai are sets of linearly independent vectors and

S = S1 +d1
S2 +d2

· · ·+dt−1
St,
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with Si = 〈Ai〉. From Theorem 6 and Lemma 7, it follows that

(2)

t−1
∑

i=1

di −
∑

a∈A

a

is a Frobenius vector for S.

Next we show that this Frobenius vector is unique in the sense defined above.

Proposition 11. Let S be a complete intersection affine semigroup and let f be defined as in (2). Then
for every face F of cone(S), (f + F ) ∩ S is empty.

Proof. Since either S is free or the gluing of two complete intersection affine semigroups S1 and S2,
we proceed by induction. If S is free, then Lemma 7 asserts that f = −

∑

a∈A a, with A the minimal
generating set of S. Clearly in this case the assertion is true.

Now assume that S = S1 +d S2 for some d ∈ S1 ∩ S2. From Theorem 6, f = f1 + f2 + d, where
fi, i ∈ {1, 2}, is also defined by (2). By induction hypothesis, for every face Fi of cone(Si), i ∈ {1, 2},
(fi + Fi) ∩ Si = ∅.

Assume to the contrary that there exists x ∈ F such that f1+f2+d+x ∈ S. According to Proposition 3,
there exists xi ∈ Fi, i ∈ {1, 2}, such that x = x1+x2, for some face Fi of cone(Si). Hence there are s1 ∈ S1

and s2 ∈ S2 such that f1 + f2 +d+x1 +x2 = s1 + s2. Then f1 +x1 − s1 = s2 − f2 −d−x2 = kd for some
integer k. As by induction hypothesis, f1 + x1 6∈ S1, we deduce k < 0. Therefore f2 + x2 = s2 − (k + 1)d.
But f2+x2 6∈ S2, which forces k+1 > 0, or equivalently k ≥ 0. But this is in contradiction with k < 0. �

Theorem 12. Let S be a complete intersection and let f be as in (2). Assume that f ′ is another Frobenius
vector of S. Then f ′ ∈ f + cone(S).

Proof. Write f = a − b and f ′ = a′ − b′ with a,a′,b,b′ ∈ S, and let c ∈ relint(cone(S)). Then
x = f + b+ a′ + c = f ′ + b′ + a+ c ∈ (f + relint(cone(S))) ∩ (f ′ + relint(cone(S))).

Assume that f ′ 6∈ f + cone(S). Then the segment joining f ′ and x cuts some face of f + cone(S).
Denote by f + F this face and let f + y be this intersection point (y ∈ F and F is a face of cone(S)).
There exists a positive integer k such that ky is in S, and thus f + ky ∈ G(S) ∩ (f + F ). Notice
that f + y = f ′ + y′ for some y′ ∈ relint(cone(S)). As y ∈ F , (k − 1)y ∈ cone(S), and consequently
f + ky = f ′ + (y′ + (k − 1)y) ∈ f ′ + relint(cone(S)). Hence f + ky ∈ (f ′ + relint(cone(S))) ∩G(S) ⊆ S, in
contradiction with Proposition 11. �

4. Gluings and Hilbert series

The Hilbert series of S is the Hilbert series associated to K[S]: H(S,x) =
∑

s∈S xs, where for s =
(s1, . . . , sm) ∈ Nm, xs = xs11 · · · xsmm . This map is sometimes known in the literature as generating function
of S, and it has been shown to be of the form g(S,x)/

∏

a∈A(1− xa), with A the minimal generating set
of S (see [6, §7.3]).

The next lemma is a straightforward generalization of (4) in [20].

Lemma 13. Let S be an affine semigroup and let m ∈ S \ {0}. Then

(3) H(S, x) =
1

1− xm

∑

w∈Ap(S,m)

xw.

Proof. It follows directly from the definition of Ap(S,m), that for every s ∈ S, there exist unique k ∈ N

and w ∈ Ap(S,m) such that s = km+w. Hence

H(S,x) =
∑

k∈N,w∈Ap(S,m)

xkm+w =
∑

k∈N

(xm)k
∑

w∈Ap(S,m)

xw.

The proof follows by taking into account that
∑

k∈N(x
m)k = 1/(1 − xm). �
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The following result can also be understood as a generalization of (4) in [20], since for simplicial affine
semigroups that are Cohen-Macaulay the set

⋂m
i=1Ap(S,vi), with v1, . . . ,vm a set of extremal rays of S,

plays a similar role to the Apéry set of an element in a numerical semigroup (compare [23, Theorem 1.5]
and [25, Lemma 2.6]).

Proposition 14. Let S be a simplicial affine semigroup with extremal rays v1, . . . ,vm. Then H(S,x) =
P (x)∏

m

i=1
(1−xvi )

, with P (x) a polynomial.

Proof. Let Ap =
⋂m

i=1Ap(S,vi). In view of [23, Section 1], this set is finite. Moreover, from [23,
Theorem 1.5] we know that every element s in S can be expressed uniquely as s =

∑m
i=1 aivi +w with

a1, . . . , ad ∈ N and w ∈ Ap. Arguing as in Lemma 13,

H(S,x) =
∑

s∈S

xs =

∑

w∈Ap x
w

∏m
i=1(1 − xvi)

,

which concludes the proof. �

Theorem 15. Let S, S1 and S2 be affine semigroups, and let d ∈ S. Assume that S = S1 +d S2. Then

H(S1 +d S2,x) = (1− xd)H(S1,x)H(S2,x).

Proof. From (3),

H(S,x) =
1

1− xd

∑

w∈Ap(S,d)

xw.

From [21, Theorem 1.4], the mapping

(4) Ap(S1,d)×Ap(S2,d) → Ap(S,d), (x, y) 7→ x+ y

is a bijection, and thus Ap(S,d) = Ap(S1,d) + Ap(S2,d). Hence,

∑

w∈Ap(S,d)

xw =
∑

w1∈Ap(S1,d)

∑

w2∈Ap(S2,d)

xw1+w2 =





∑

w1∈Ap(S1,d)

xw1









∑

w2∈Ap(S2,d)

xw2



 .

As H(S1,x) =
1

1−xd

∑

w1∈Ap(S1,d)
xw1 and H(S2,x) =

1
1−xd

∑

w2∈Ap(S2,d)
xw2 , we get

H(S,x) = (1− xd)H(S1,x)H(S2,x). �

If S is a numerical semigroup (gcd(S) = 1), and it is a gluing of M1 and M2, then S1 = M1/d1 and
S2 = M2/d2 are also numerical semigroups, with di = gcd(Mi), i ∈ {1, 2}. Hence S = d1S1 +d1d2 d2S2

and lcm(d1, d2) = d1d2. We say in this setting that S is a gluing of S1 and S2 at d1d2.
From the definition of Hilbert series associated to a submonoid M of N , it follows easily that if

k | gcd(M), then

(5) H(M/k, xk) = H(M,x).

We get the following corollary.

Corollary 16. Let S be a numerical semigroup. Assume that S = d1S1 +d1d2 d2S2 is a gluing of the
numerical semigroups S1 and S2. Then

H(S, x) = (1− xd1d2)H(S1, x
d1)H(S2, x

d2).

Example 17. Let S = 〈a, b〉 with a and b coprime positive integers. Then S = aN +ab bN. Then by
Corollary 16,

H(〈a, b〉, x) = (1− xab)H(N, xa)H(N, xb) =
1− xab

(1− xa)(1 − xb)
.
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If we do this computation by using the formula H(〈a, b〉, x) = 1
1−xa

∑

w∈Ap(〈a,b〉,a) x
w, we obtain,

H(〈a, b〉, x) = 1
1−xa

∑a−1
k=0 x

kb = 1
1−xa

1−xab

1−xb
. Observe that this is a particular case of [20, Proposition

2] (see also [18, Theorem 4] for a relationship with inclusion-exclusion polynomials).

This idea can be generalized to any complete intersection affine semigroup. The base setting is the
following.

Lemma 18. Let A ⊆ Nm be a set of linearly independent vectors. Then

H(〈A〉,x) =
1

∏

a∈A(1− xa)
.

Proof. Assume that A = {a1, . . . ,ak}, and write S = 〈A〉. Notice that the map Nk → S, (n1, . . . , nk) 7→
∑k

i=1 niai is a monoid isomorphism. Hence

∑

s∈S

xs =
∑

n1∈N,...,nk∈N

xn1a1+···+nkak =
k
∏

i=1

∑

n∈N

(xai)n,

and the proof follows easily. �

Proposition 19. Let S be a free affine semigroup. Assume that

S = (· · · (〈v1, . . . ,ve〉+θe+1ve+1
〈ve+1〉) +θe+2ve+2

· · · ) +θe+hve+h
〈ve+h〉.

Then

H(S,x) =

∏h
i=1(1− xθe+ive+i)
∏e+h

i=1 (1− xv
i )

.

This is indeed a particular case of the following theorem.

Theorem 20. Let S be a complete intersection affine semigroup minimally generated by A. Let d1, . . . ,dt−1

be as in Remark 10,

H(S,x) =

∏t−1
i=1(1− xdi)

∏

a∈A(1− xa)
.

Remark 21. Observe that if we substract the degree of the numerator and denominator of the formula
given in Theorem 20 we obtain Formula (2).

Example 22. Let S = 〈4, 5, 6〉 = 〈4, 6〉 +10 5N = (4N+12 6N) +10 5N. Then

H(〈4, 5, 6〉, x) =
(1− x10)(1 − x12)

(1− x4)(1− x5)(1− x6)
.

The Frobenius number of S is 10 + 12− (4 + 5 + 6) = 7.
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[8] S. T. Chapman, P. A. Garćıa-Sánchez, D. Llena, A. Malyshev, D. Steinberg. On the Delta set and the Betti

elements of a BF-monoid. Arab. J. Math. 1 (2012), 53-61.
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