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Introduction

In this paper we study two-person zero-sum dynamic games where the players move a state variable in a finite state space X . Each action has a (possibly discounted) positive cost for player 1, that he pays to player 2, which depends on the position and actions. Player 1 aims at reaching a given terminal set X f and once this is done the game is finished and a final cost is incurred. We adopt a rule of alternating moves that gives an informational advantage to one of the players.

Our purpose is to provide an efficient algorithm to compute the value. We follow an approach inspired by the classical Dijkstra algorithm [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF]) for finding shortest paths in finite graphs, which has running time O(e + v log v) if a suitable data structure is used, where v, e denote respectively the number of vertices and edges, see [START_REF] Fredman | Fibonacci heaps and their uses in improved network optimization algorithms[END_REF]. The algorithm we propose updates the approximate value function only in the immediate neighbours of those nodes where the value is already computed, thus reducing the computation time, and converges in a finite number of steps. In particular, if the running and terminal costs are constant the algorithm is single-pass as Dijkstra's, namely, the value function is computed only once in each node.

Our assumptions are designed to cover discrete approximations of generalised pursuit-evasion differential games [START_REF] Bardi | Approximation of differential games of pursuit-evasion by discrete-time games. Differential games-developments in modelling and computation[END_REF][START_REF] Bardi | Fully discrete schemes for the value function of pursuit-evasion games[END_REF][START_REF] Bardi | Convergence of discrete schemes for discontinuous value functions of pursuitevasion games[END_REF]; see also the surveys by [START_REF] Bardi | Numerical methods for pursuit-evasion games via viscosity solutions[END_REF] and Cardaliaguet, Quincampoix, and Saint-Pierre 1999 and the references therein) if the grid of the numerical scheme is suitably adapted to the controlled dynamical system. We discuss this connection in detail and prove a convergence result of the value of the discrete game to the value of the differential game as the step of approximation tends to zero. Different from the known theory (e.g., Bardi, Falcone andSoravia 1994 and[START_REF] Sethian | Level set methods and fast marching methods[END_REF] we do not require the usual condition ∆x/∆t → 0, where ∆x is the mesh size and ∆t is the time step.

Our motivation comes from the so-called Fast Marching Methods (briefly, FMM) for Hamilton-Jacobi equations with convex Hamiltonian arising in deterministic control and front propagation problems, introduced in Tsitsikilis (1995) and [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF] and developed by [START_REF] Sethian | Level set methods and fast marching methods[END_REF], [START_REF] Sethian | Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms[END_REF], [START_REF] Cristiani | A fast marching method for Hamilton-Jacobi equations modeling monotone front propagations[END_REF], see also the references therein and Cacace, Cristiani, and Falcone (2014) for some recent improvements. These numerical methods approximate time-optimal control in continuous time and space with a fully discrete Bellman equation on a grid, and then rely on the classical Dijkstra algorithm for an efficient solution of the discrete approximation. We recall that the methods based on Dynamic Programming have several good properties, especially robustness, but they face the well-known "curse of dimensionality". A large amount of research in the last twenty years was devoted to overcoming this difficulty in some cases and FMM played an important role for problems with positive costs. We refer to [START_REF] Mceneaney | Max-plus methods for nonlinear control and estimation[END_REF], Cacace, Cristiani, Falcone, and Picarelli (2012), and the references therein for other approaches.

Recently various forms of FMM were also proposed for solving some Hamilton-Jacobi-Isaacs equations arising from differential games [START_REF] Cristiani | A Fast Marching Method for Pursuit-Evasion Games[END_REF][START_REF] Von Lossow | A min-max version of Dijkstra's algorithm with application to perturbed optimal control problems[END_REF][START_REF] Grüne | Global optimal control of perturbed systems[END_REF][START_REF] Cristiani | A fast marching method for Hamilton-Jacobi equations modeling monotone front propagations[END_REF]), with possible applications to the stabilization of perturbed systems and to front propagation problems with non-convex Hamiltonian. They approximate the continuous problem with a discrete Isaacs equation on a grid. However, so far there is no theoretical justification for using Dijkstra-type algorithms for discrete dynamic games associated to such equations. One of the goals of this paper is contributing to a rigorous foundation of these methods.

Let us mention that some discrete games related to ours are the reachability games studied in [START_REF] Alfaro | Concurrent reachability games[END_REF], where also some numerical algorithms are provided. Moreover, if the players move simultaneously and use random strategies, the game becomes a special case of the zero-sum stochastic games introduced in the seminal paper of [START_REF] Shapley | Stochastic games[END_REF]. Several algorithms have also been proposed to compute the value function of stochastic games, starting with the value iteration algorithm in [START_REF] Shapley | Stochastic games[END_REF]. Some variants designed to accelerate the convergence can be found in the survey by Filar and Vrieze (1991), the more recent paper by [START_REF] Raghavan | A policy-improvement type algorithm for solving zero-sum two-person stochastic games of perfect information[END_REF] and the references therein, and in [START_REF] Kushner | The Gauss-Seidel numerical procedure for Markov stochastic games[END_REF], where a Gauss-Seidel procedure for value iteration is studied. The extension of Dijkstra-type algorithms to some stochastic games is an interesting open problem.

The discrete dynamic game

The model

Let X be a finite set belonging to an Euclidean space R d , representing the state space of a system and whose elements we call nodes. Let A, B be finite sets where the players choose their controls. For a function S :

X × A × B → X define the trajectory x • = x • (x, a • , b • ) recursively by x n+1 = S(x n , a n , b n ), x 0 = x. (1) 
Let X f ⊂ X , denote a terminal set of nodes (which player 1 wishes to attain) and let γ ∈ (0, 1] be a discount factor. We introduce the running and terminal cost :

X × A × B → R, 0 < 0 ≤ (x, a, b) ≤ L, ∀(x, a, b) ∈ X × A × B (2) g : X f → R, g 0 ≤ g(x) ≤ g 1 , ∀x ∈ X f (3) 
and additionally define the arrival time n :

X × A N × B N → R by n(x, a • , b • ) = min{n ∈ N : x n ∈ X f }, if {n ∈ N : x n ∈ X f } = ∅ +∞ else,
where x n is the trajectory of (1) corresponding to the control sequences a • , b • . To alleviate the notation, we will often write n instead of the more explicit n(x, a • , b • ) when no confusion arises. We have then the following total cost functional J :

X × A N × B N → R J(x, a • , b • ) := n-1 n=0 (x n , a n , b n )γ n + γ ng(x n),
where the discount factor γ satisfies 0 < γ ≤ 1. Observe that if n = +∞ the cost is finite for γ < 1 and +∞ for γ = 1 (i.e., no discount). Player 1 chooses a • ∈ A N and player 2 chooses b • ∈ B N . The aim of player 1 is to minimize the cost functional, whereas player 2 has the opposite goal. We assume that both players observe each other's actions and the state x • .

We refer to G = G X , X f , S, A, B, , g, γ as the game.

The lower value function

We consider an information pattern where player 1 is informed in advance of the action that player 2 will play at each time. Although not realistic in many situations, this is relevant in the discretization of the lower value of a differential game, as we will see in Section 3, and also in the case of discrete robust control problems, where player 2 represents a disturbance.

Definition 1 A map α : B N → A N is a non anticipating strategy for player 1 if b n = bn , ∀n ≤ m =⇒ α[b • ] n = α[ b• ] n , ∀n ≤ m.
Denote with A the set of non anticipating strategies for player 1. The definition of the set B of non anticipating strategies for player 2 is completely analogous. This allows us to introduce the lower value function

V -(x) := inf α∈A sup b•∈B N J(x, α[b • ], b • ).
The following result follows from familiar arguments, see for instance Chapter 8, Theorem 3.18 in Bardi and Capuzzo-Dolcetta 1997.

Proposition 1

The lower value function satisfies

V -(x) = inf α∈A sup b•∈B N k∧n-1 n=0 (x n , α[b • ] n , b n )γ n + γ k∧n V -(x k∧n ) , ∀k ∈ N. (4) 
V

-(x) = max b∈B min a∈A (x, a, b) + γV -(S(x, a, b)) , ∀x / ∈ X f (5) V -(x) = g(x), ∀x ∈ X f . (6) 
The first equality ( 4) is the well known dynamic programming property. By taking k = 1 in (4) one can easily prove [START_REF] Bardi | Numerical methods for pursuit-evasion games via viscosity solutions[END_REF]. The last equality (6) follows directly from the definition.

The following form of the dynamic programming property will be useful later.

Proposition 2 Let X f ⊂ X ⊂ X and let ñ denote the arrival time to X , i.e. ñ = ñ(x, a • , b • ) = inf{n ∈ N : x n ∈ X }. Then V -(x) = inf α∈A sup b•∈B N ñ-1 n=0 (x n , α[b • ] n , b n )γ n + γ ñV -(x ñ) .
Proof This is a direct consequence of the dynamic programming property (4) since ñ ≤ n.

The algorithm

The following algorithm computes the lower value function:

Require: n = 0, Acc 0 := X f , W 0 (x) := +∞, ∀x ∈ X , V - 0 (x) = g(x), ∀x ∈ X f while Acc n = X do for x ∈ X \ Acc n , b ∈ B do A n (x, b) := {a ∈ A : S(x, a, b) ∈ Acc n } end for end while Cons n := {x ∈ X \ Acc n : A n (x, b) = ∅ ∀b ∈ B} while Cons n = ∅ do W n+1 (x) := max b∈B min a∈An(x,b) { (x, a, b) + γV - n (S(x, a, b))}, ∀x ∈ Cons n Acc n+1 := Acc n ∪ argminW n+1 V - n+1 (x) := W n+1 (x), ∀x ∈ argminW n+1 V - n+1 (x) := V - n (x), ∀x ∈ Acc n n ← n + 1 end while
The notations introduced in the algorithm have the following meaning -Acc n is the set of nodes accepted at the step n, at such nodes the approximate value is not re-computed in the next steps; -A n (x, b) ⊆ A is the set of controls that take the state x to Acc n if player 2 uses the control b; -Cons n is the set of nodes considered at the step n, they are the nodes from which player 1 can reach Acc n no matter what player 2 does;

-x ∈ argminW n+1 if W n+1 (x) = min X W n+1 , such nodes become accepted at step n + 1.
Note that Acc n is strictly increasing as long as Cons n = ∅, so the algorithm terminates in a finite number N of steps, at most the cardinality of X \ X f , which we denote with |X \ X f |. Denote also with R the set of nodes from which player 1 can reach the terminal set for any behavior of player 2, i.e., R := {x ∈ X : inf

α∈A sup b•∈B N n(x, α[b • ], b • ) < +∞}.
It is easy to see that if N is the terminal step of the algorithm, i.e., Cons N = ∅ or Acc N = X , then Acc N = R, i.e., the algorithm identifies the set R reachable by the the first player.

The main result of this section states that the algorithm indeed computes the value function. It requires the following additional assumption in the discounted case γ < 1 (see Remark 3 below for a discussion about this condition).

Condition 1 If γ < 1 L + γg 1 ≤ 0 1 -γ .
Proposition 3 Assume either γ = 1, or γ < 1 and Condition 1. Then, for any n ≤ N ,

V - n (x) = V -(x)
, for all x ∈ Acc n , and the algorithm converges in N ≤ |X \ X f | steps to the value function V -on the reachability set R.

Proof Observe that for n = 0 the conclusion holds by definition. It suffices to prove that V - 1 (x) = V -(x) for x ∈ Acc 1 since by Proposition 2, if we know V -on X = Acc 1 , then we can obtain V -as the value of the new problem with X f replaced by X and g by V -| X and thus conclude by induction.

Observe first that V - 1 (x) ≥ V -(x) follows easily from the definitions. Now for x ∈ argmin x∈Cons1 W 1 (x) consider an optimal pair (α * , b * • ) ∈ A × B N and the corresponding optimal trajectory x n starting from x, that is, 4) and > 0 we have that

x n+1 = S(x n , α * [b * • ] n , b * n ), x 0 = x, V -(x) = J(x, α * [b * • ], b * • ). If n(x, α * [b * • ], b * • ) = 1 then V -(x) = W 1 (x) = V - 1 (x), which is the desired conclusion. If, instead, n := n(x, α * [b * • ], b * • ) > 1 we will distinguish two cases. -Case γ = 1. From (
V -(x) = n-2 n=0 (x n , α * [b • ] n , b * n ) + V -(x n-1 ) > V -(x n-1 ).
On the other hand, we have an optimal pair strategy-control and corresponding optimal trajectory starting from x n-1 that reaches X f in one step. Then V -(x n-1 ) = W 1 (x n-1 ) and so

V -(x n-1 ) = W 1 (x n-1 ) ≥ W 1 (x) = V - 1 (x) ≥ V -(x)
which is a contradiction.

-Case γ < 1.
Here (4) gives

V -(x) = n-2 n=0 (x n , α * [b • ] n , b * n )γ n + γ n-1 V -(x n-1 ) = n-2 n=0 (x n , α * [b • ] n , b * n )γ n + γ n-1 W 1 (x n-1 ) ≥ n-2 n=0 (x n , α * [b • ] n , b * n )γ n + γ n-1 W 1 (x) ≥ n-2 n=0 (x n , α * [b • ] n , b * n )γ n + γ n-1 V -(x).
Then,

V -(x)(1 -γ n-1 ) ≥ 0 1 -γ n-1 1 -γ =⇒ V -(x) ≥ 0 1 -γ .
On the other hand, since

V - 1 (x) ≤ L + γg 1 we get the inequality V - 1 (x) ≤ V -(x) by Condition 1.

Remarks and some open problems

Remark 1 The main advantage of our algorithm is that at each step the approximate value function is updated only on some nodes, namely on Cons n . Moreover, at least one of these nodes becomes accepted and will not be considered in the next steps. In particular, if the costs and g are constant (generalized pursuit-evasion games), then W n+1 is constant on Cons n and all considered nodes are accepted. In other words, the value function is computed only once on each node, which considerably speeds up the algorithm in comparison to iterative methods. Algorithms with this property are often called single-pass.

Remark 2 If we stop the algorithm before it terminates, say at ñ < N , Proposition 3 says that we have anyway computed the value function in the set Acc ñ, which may be enough for some practical problems with very large grids.

Remark 3 Condition 1 requires that the oscillation of the running cost and the size of the terminal cost g are not too high compared with 1/(1 -γ). It essentially says that, if player 1 is on a node where he can reach X f , it is convenient for him to do so even if the cost of this step is high, rather than following forever a trajectory with cheap running costs. For any and g verifying ( 2) and (3) the condition is satisfied for γ sufficiently close to 1. It is satisfied also for all γ ∈ (0, 1) in discounted pursuit-evasion games, where ≡ 1 and g ≡ 0.

Remark 4 If γ = 1, we can add a final step to the algorithm by setting V - N +1 (x) := W 0 (x) = +∞ for all x ∈ X \ Acc N , so V - N +1 (x) = V -(x) for x ∈ X \ R and we have convergence on the whole state space X . On the other hand, if γ < 1 the algorithm gives no information on the value V -outside R.

Remark 5 If γ = 1, ≡ 1, and g ≡ 0, the problem for player 1 is finding the path of shortest length that reaches X f , whereas player 2 seeks to make such length the longest possible (generalized pursuit-evasion). If, in addition, there is no player 2, i.e., B is a singleton, the problem reduces to the shortest path and the algorithm of this section is the classical Dijkstra algorithm.

In reachability games there is no running cost and all the states in X f have the same cost. Then the algorithm is essentially the same as Algorithm 2 in Alfaro et al. (2007), where the set Acc n+1 is updated by Acc n+1 := Acc n ∪ Cons n .

Then the reachability set R is computed exactly as in the above generalized pursuit-evasion game, although here the length of the path is not of interest. When the moves are alternating, this algorithm runs in a linear time with respect to the size of the game, defined as1 

G := |X| + |A| + |B|.
Remark 6 All the results of this section can be adapted to the upper value function

V + (x) := sup β∈B inf a•∈A N J(x, a • , β[a • ]),
where B is the set of non-anticipating strategies for the second player, defined in the obvious symmetric way. Although in general V -(x) < V + (x), we will see in the next Section that the informational advantage disappears in the continuum limit of discrete approximations of differential games, under suitable assumptions, see Remark 12.

Remark 7 It would be interesting to study the model of Section 2.1 in the case of simultaneous moves, where players select their actions randomly. This falls within the theory of stochastic games initiated by [START_REF] Shapley | Stochastic games[END_REF] (for more recent accounts, see the book by [START_REF] Filar | Competitive Markov Decision Processes[END_REF] or Chapter 5 in Sorin (2002) , although the transition map S is deterministic here. Even in the case of deterministic transitions, there are algebraic obstructions that make the extension of our approach difficult, see for instance the first example provided by [START_REF] Parthasarathy | An orderfield property for stochastic games when one player controls transition probabilities[END_REF]. In their example, the data of the problem consist of rational numbers but the value is irrational. The authors suggest that any algorithm that terminates in a finite number of steps, such as ours, would require that the data and the value of the game remain in the same ordered field. See, for instance, [START_REF] Filar | Competitive Markov Decision Processes[END_REF] for several classes of games with this so-called ordered field property.

Remark 8

The adaptation of the algorithm to the case of stochastic transitions presents several additional difficulties. For a single player the Dijkstra algorithm was extended to the stochastic case in Bertsekas (2001) if there exists a consistently improving optimal policy. A deeper study of the causality properties needed in stochastic shortest path problems with one controller is in [START_REF] Vladimirsky | Label-setting methods for multimode stochastic shortest path problems on graphs[END_REF]. As hinted in the preceding remark, the case of zero-sum two-person stochastic games appears completely open.

Discretisation of differential games

Consider a continuous-time dynamical system controlled by two players

y (t) = f (y(t), a(t), b(t)), y(0) = x, (7) 
where It is well known that under suitable conditions v -coincides with the upper value function and it is therefore the value of the game, see Remark 12 for more details. It is also known (see, e.g., Chapter VIII in Bardi and Capuzzo-Dolcetta 1997) that it is a viscosity solution of the (lower) Hamilton-Jacobi-Isaacs equation

f : R d × A × B → R is
λv --max b∈B min a∈A f (x, a, b) • Dv -+ l(x, a, b) = 0 in Ω := R d \ T . ( 8 
)
Now take a finite grid X and set X f := X ∩ T , i.e., the final nodes are those in the target. Next fix h > 0 and set

S(x, a, b) = x + hf (x, a, b), (x, a, b) = hl(x, a, b), γ = e -λh .
Then the dynamic game of Section 2.1 is a natural discretisation of the differential game, with the control system replaced by its Euler scheme with step h and the integral cost functional replaced by a Riemann sum. This discretisation is the basis of some semi-Lagrangian approximation schemes for the Hamilton-Jacobi-Isaacs equation, see, e.g., [START_REF] Bardi | Numerical methods for pursuit-evasion games via viscosity solutions[END_REF] and [START_REF] Falcone | Semi-Lagrangian approximations schemes for linear and Hamilton-Jacobi equations[END_REF]. In such schemes one solves the finite difference equation

W (x) = max b∈B min a∈A { (x, a, b) + γW (S(x, a, b))} , ∀ x ∈ X \ X f , (9) 
with the boundary condition

W (x) = g(x), ∀ x ∈ X f . (10) 
Note, however, that in general S(x, a, b) might not be in X , so in the right hand side W is extended by interpolation among the neighbouring nodes. The main assumption of this section is that the grid is adapted to the dynamics (with time step h), that is,

S(x, a, b) ∈ X ∀ x ∈ X \ X f , a ∈ A, b ∈ B. (11) 
Then W can be computed only on the nodes, without any interpolation procedure.

Proposition 4 Under the assumption (11) the solution W of the discrete Isaacs equation (9) coincides with the lower value function V -defined in Section 2.2. Thus it can be computed by the algorithm of Section 2.3.

Proof Under the assumption (11) the discrete Isaacs equation ( 9) coincides with the one-step Dynamic Programming Principle (5) satisfied by V -. On the other hand, from (5) one gets the general Dynamic Programming Principle (4) by induction, and therefore the equality W = V -.

Note that, given a finite set X f , the dynamics f , and h, a grid adapted to the dynamics can be easily constructed, at least in principle, by setting

X 0 := X f , X n+1 := {x ∈ R d : S(x, a, b) ∈ X n , for some a ∈ A, b ∈ B}
and iterating a finite number of times, where the set X n+1 is truncated to a finite set in case it is not finite.

Example 1 Assume that f = f (a, b) does not depend on x. Then the previous construction of a grid adapted to the dynamics becomes explicit

X 0 := X f , X n+1 := {x -hf (a, b) for some x ∈ X n , a ∈ A, b ∈ B},
and after a finite number of iterations it produces a finite grid X , since X f , A and B are finite.

Example 2 Consider the convex-concave eikonal equation in R 2 with Dirichlet boundary conditions

|u x | -δ|u y | = l(x, y) in Ω, u(x, y) = g(x, y) on ∂Ω,
with δ, l > 0 and Ω a rectangle, say Ω = (0, c) × (0, d) (see Bardi and Terrone 2013 for other results on such equation). An associated differential game can be chosen with dynamics

x = a, y = b, a ∈ {-1, 0, 1}, b ∈ {-δ, 0, δ}.
A rectangular grid X = {(jh, kδh) : j = 1, . . . , c h , k = 1, . . . , d δh } is adapted to the dynamics if c h , d δh ∈ N, and this occurs for a suitable sequence of steps h going to 0 if cδ/d = m/n for some m, n ∈ N. In fact we can take h = d δnK for any K ∈ N, because c h = mK and d δh = nK.

The locally uniform convergence of the solution W of the discrete Isaacs equation ( 9) to the lower value function v -as h and the mesh size k of the grid X tend to zero was proved in [START_REF] Bardi | Fully discrete schemes for the value function of pursuit-evasion games[END_REF] in the case v -is continuous, T has a Lipschitz boundary, and k/h → 0, see also [START_REF] Cristiani | Fully-discrete schemes for the value function of pursuit-evasion games with state constraints. Advances in dynamic games and their applications[END_REF], the survey by [START_REF] Bardi | Numerical methods for pursuit-evasion games via viscosity solutions[END_REF], and the recent book by [START_REF] Falcone | Semi-Lagrangian approximations schemes for linear and Hamilton-Jacobi equations[END_REF]. In the case of discontinuous v -the convergence is weaker and the precise statements are more technical, see [START_REF] Bardi | Convergence of discrete schemes for discontinuous value functions of pursuitevasion games[END_REF]. For grids adapted to the dynamics it is unlikely that k/h → 0 because the space and time step are of the same order, as it can be seen in the preceding examples. However, by taking advantage of the property [START_REF] Cacace | A patchy dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equations[END_REF] we can remove such restriction, as we show now.

We consider a sequence h n → 0 and sequences X n , X n f = X n ∩ T , such that X n is a grid adapted to the dynamics with time step h n and

∀ x ∈ R d ∃ x (n) ∈ X n such that lim n x (n) = x. (12) 
We call this an admissible sequence of grids. For each pair h n , X n we solve the discrete Isaacs equation [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF] with boundary conditions [START_REF] Cacace | Can local single-pass methods solve any stationary Hamilton-Jacobi equation?[END_REF] and call W n its solution. Then we define for x ∈ Ω the viscosity semi-limits

W (x) := sup lim sup n W n (x (n) ) : X n x (n) → x , W (x) := inf lim inf n W n (x (n) ) : X n x (n) → x .
(13) Note that they are finite at x if W n are equibounded in a neighborhood of x.

The following lemma about the semi-limits is a straightforward extension of a standard result in viscosity theory, see Lemma V.1.6 in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF].

Lemma 1 Assume W n : X n → R are locally equibounded, X n satisfies (12), φ ∈ C(Ω), and W -φ attains at y a strict maximum relative to the ball B centered at y with radius r > 0. Choose x n ∈ argmax X N ∩B (W n -φ). Then there is a subsequence x n k → y and such that

W n k (x n k ) → W (y) as k → ∞.
The next proposition is the main result of this section.

Proposition 5 Assume h n → 0, X n is an associated admissible sequence of grids, W n solves (9) on X = X n , and the sequence W n is locally equibounded. Then W and W are, respectively, a viscosity suband supersolution of the Isaacs equation [START_REF] Bardi | On the Homogenization of some Non-coercive Hamilton-Jacobi-Isaacs Equations, Commun[END_REF].

Proof We prove that W is a subsolution, the statement about W is obtained in a similar way. Take φ ∈ C 1 (Ω) such that W -φ attains at y ∈ Ω a strict maximum relative to the ball B centered at y with radius r > 0. We must prove that λW (y) -max 

Consider the subsequence of maximum points of W n -φ produced in Lemma 1 and relabel it so that x n → y and W n (x n ) → W (y). Since x n ∈ X n \ X n f , the discrete Isaacs equation ( 9) gives

W n (x n ) = max b∈B min a∈A {h n l(x n , a, b) + γ n W n (x n + h n f (x n , a, b))} , γ n := e -λhn .
Then for all n there exists b n ∈ B such that

γ n [W n (x n ) -W n (x n + h n f (x n , a, b n ))] ≤ h n l(x n , a, b n ) + (γ n -1)W n (x n ) ∀a ∈ A.
Since x n is a local maximum point of W n -φ we have, for h n small enough,

φ(x n ) -φ(x n + h n f (x n , a, b n )) ≤ W n (x n ) -W n (x n + h n f (x n , a, b n )).
Combining the last two inequalities gives

min b∈B max a∈A γ n φ(x n ) -φ(x n + h n f (x n , a, b)) h n -l(x n , a, b) ≤ γ n -1 h n W n (x n ) and letting n → ∞ we get min b∈B max a∈A {-Dφ(y) • f (y, a, b)) -l(y, a, b)} ≤ -λW (y),
which implies the desired inequality ( 14).

Now we can get the convergence of the scheme under suitable assumptions.

Corollary 1 Assume λ > 0, ∂T is a Lipschitz hypersurface, f is bounded on ∂T × A × B, h n → 0, X n
is an associated admissible sequence of grids, and the lower value v -∈ C(Ω). Then the semilimits (13) of the solutions W n of ( 9) and (10) satisfy

W (x) = W (x) = v -(x) ∀ x ∈ Ω. ( 15 
)
Proof It is easy to see that for λ > 0 the sequence W n is uniformly bounded by sup R d ×A×B |l|/λ+sup R d g.

The rest of the proof is similar to that of Theorem 1 in Bardi, Falcone and Soravia (1994) or Theorem 2.3 in Bardi, Falcone and Soravia (1999). In addition to Proposition 5 we use the following boundary conditions in the viscosity sense:

W ≤ g or λW -max b∈B min a∈A f (x, a, b) • W + l(x, a, b) ≤ 0 on ∂Ω, (16) 
W ≥ g or λW -max b∈B min a∈A {f (x, a, b) • W + l(x, a, b)} ≥ 0 on ∂Ω.
To prove, for instance, ( 16), we proceed as in Proposition 5. We take φ ∈ C 1 (Ω) such that W -φ attains a strict local maximum at y ∈ ∂Ω. By extracting a subsequence from the sequence of maximum points of W n -φ produced in Lemma 1 we can assume that either x n ∈ X n \ X n f for all n or x n ∈ X n f or all n. In the former case the argument of Proposition 5 gives the inequality [START_REF] Cristiani | A Fast Marching Method for Pursuit-Evasion Games[END_REF]. In the latter case g(x n ) = W n (x n ) → W (y), and the continuity of g implies W (y) = g(y).

Next we use a comparison principle between a continuous semi-solution of (8) attaining the boundary data g and a semicontinuous semi-solution of (8) with boundary condition in viscosity sense. It can be found in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] for Ω bounded and in [START_REF] Bardi | Fully discrete schemes for the value function of pursuit-evasion games[END_REF] for Ω unbounded. Here we need the Lipschitz regularity of ∂Ω, the boundedness of f on ∂Ω, and the fact that, if v -∈ C(Ω), it solves (8) and v -= g on ∂Ω. Then we get the inequalities

W ≤ v -≤ W in Ω.
Then W = v -= W .

Remark 9

The equality (15) implies the following form of uniform convergence of W n to v -: for all > 0 and compact set K there exists n and δ > 0 such that

|W n (x (n) ) -v -(x)| < ∀ x ∈ K, x (n) ∈ X n , n ≥ n, |x (n) -x| < δ,
as it is easy to prove by contradiction.

Remark 10 Proposition 5 and Corollary 1 appear to be new even in the case of a single player, although the convergence of FMM schemes for Hamilton-Jacobi equations with convex Hamiltonian has been studied, e.g., in (Sethian and[START_REF] Sethian | Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms[END_REF][START_REF] Cristiani | A fast marching method for Hamilton-Jacobi equations modeling monotone front propagations[END_REF].

Remark 11

The case of discontinuous v -, which may occur in pursuit-evasion games, could also be treated in the framework of [START_REF] Bardi | Convergence of discrete schemes for discontinuous value functions of pursuitevasion games[END_REF].

Remark 12 All the results of this section can be adapted to the upper value of the differential game the upper H-J-I equation coincides with [START_REF] Bardi | On the Homogenization of some Non-coercive Hamilton-Jacobi-Isaacs Equations, Commun[END_REF]. By the uniqueness of viscosity solutions to the Dirichlet problem, if either v -or v + is known to be continuous, we get that v -= v + and the differential game has a value. In this case the informational advantage of player 1 in the discrete game of Section 2 vanishes in the continuum limit.

  Lipschitz with respect y, and A, B are given finite sets, as in the previous section. The admissible controls for the players are à := {a : [0, +∞) → A, measurable} , B := {b : [0, +∞) → B, measurable} . We are given a closed target T ⊆ R n , and define the first time the trajectory hits T as t x (a, b) := inf{t : y x (t; a, b) ∈ T }, where y x (•; a, b) is the solution of (7) corresponding to a ∈ à and b ∈ B, and t x (a.b) := +∞ if the target is never reached. Consider also the cost functional J(x, a, b) := tx 0 l(y(t), a(t), b(t))e -λt dt + e -λtx g(y x (t x ; a, b)), t x = t x (a, b), a ∈ Ã, b ∈ B; where λ ≥ 0 is the discount rate, and the running and terminal costs l : R d × A × B → R and g : T → R are continuous and bounded, with l > 0. In differential games non-anticipating strategies for the first player are maps α : B → à such that, for all t > 0, b(s) = b(s) for all s ≤ t implies α[b](s) = α[ b](s) for all s ≤ t. We denote with Γ the set of such strategies. The lower value function of the game, in the sense of Varaiya, Roxin, Elliott and Kalton, is defined as v -(x) := inf α∈Γ sup b∈ B J(x, α[b], b).

  b∈B min a∈A {Dφ(y) • f (y, a, b)) + l(y, a, b)} ≤ 0.

v

  + (x) := sup β∈∆ inf a∈ Ã J(x, a, β[a]), where ∆ is the set of non-anticipating strategies for the second player. It is known that v + satisfies the upper Hamilton-Jacobi-Isaacs equation λv + -min a∈A max b∈B f (x, a, b) • Dv + + l(x, a, b) = 0 in Ω := R d \ T . If the Isaacs condition holds, namely, min a∈A max b∈B {f (x, a, b) • p + l(x, a, b)} = max b∈B min a∈A {f (x, a, b) • p + l(x, a, b)} ∀ p ∈ R d , x ∈ Ω,

This definition is slightly different than the one in[START_REF] Alfaro | Concurrent reachability games[END_REF], since there only the actions available at each state are considered. Without loss of generality, we assume that all actions are available in all states.
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