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Abstract We study zero-sum dynamic games with deterministic transitions and alternating moves of
the players. Player 1 aims at reaching a terminal set and minimising a running and final cost. We propose
and analyse an algorithm that computes the value function of these games extending Dijkstra’s algorithm
for shortest paths on graphs. We also show the connection of these games with numerical schemes for
differential games of pursuit-evasion type, if the grid is adapted to the dynamical system. Under suitable
conditions we prove the convergence of the value of the discrete game to the value of the differential game
as the step of approximation tends to zero.
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1 Introduction

In this paper we study two-person zero-sum dynamic games where the players move a state variable in
a finite state space X . Each action has a (possibly discounted) positive cost for player 1, that he pays
to player 2, which depends on the position and actions. Player 1 aims at reaching a given terminal set
Xf and once this is done the game is finished and a final cost is incurred. We adopt a rule of alternating
moves that gives an informational advantage to one of the players.

Our purpose is to provide an efficient algorithm to compute the value. We follow an approach inspired
by the classical Dijkstra algorithm (Dijkstra 1959) for finding shortest paths in finite graphs, which has
running time O(e+ v log v) if a suitable data structure is used, where v, e denote respectively the number
of vertices and edges, see Fredman and Tarjan (1987). The algorithm we propose updates the approximate
value function only in the immediate neighbours of those nodes where the value is already computed, thus
reducing the computation time, and converges in a finite number of steps. In particular, if the running
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and terminal costs are constant the algorithm is single-pass as Dijkstra’s, namely, the value function is
computed only once in each node.

Our assumptions are designed to cover discrete approximations of generalised pursuit-evasion differ-
ential games (Bardi and Soravia 1991, Bardi, Falcone, and Soravia 1994, Bardi, Bottacin and Falcone
1995; see also the surveys by Bardi, Falcone and Soravia. 1999 and Cardaliaguet, Quincampoix, and
Saint-Pierre 1999 and the references therein) if the grid of the numerical scheme is suitably adapted to
the controlled dynamical system. We discuss this connection in detail and prove a convergence result of
the value of the discrete game to the value of the differential game as the step of approximation tends to
zero. Different from the known theory (e.g., Bardi, Falcone and Soravia 1994 and 1999) we do not require
the usual condition ∆x/∆t→ 0, where ∆x is the mesh size and ∆t is the time step.

Our motivation comes from the so-called Fast Marching Methods (briefly, FMM) for Hamilton-Jacobi
equations with convex Hamiltonian arising in deterministic control and front propagation problems, intro-
duced in Tsitsikilis (1995) and Sethian (1996) and developed by Sethian (1999), Sethian and Vladimirsky
(2003), Cristiani (2009), see also the references therein and Cacace, Cristiani, and Falcone (2014) for
some recent improvements. These numerical methods approximate time-optimal control in continuous
time and space with a fully discrete Bellman equation on a grid, and then rely on the classical Dijkstra
algorithm for an efficient solution of the discrete approximation. We recall that the methods based on
Dynamic Programming have several good properties, especially robustness, but they face the well-known
”curse of dimensionality”. A large amount of research in the last twenty years was devoted to overcoming
this difficulty in some cases and FMM played an important role for problems with positive costs. We
refer to McEneaney (2006), Cacace, Cristiani, Falcone, and Picarelli (2012), and the references therein
for other approaches.

Recently various forms of FMM were also proposed for solving some Hamilton-Jacobi-Isaacs equations
arising from differential games (Cristiani and Falcone 2006, von Lossow 2007, Grüne and Junge 2008,
Cristiani 2009), with possible applications to the stabilization of perturbed systems and to front propaga-
tion problems with non-convex Hamiltonian. They approximate the continuous problem with a discrete
Isaacs equation on a grid. However, so far there is no theoretical justification for using Dijkstra-type
algorithms for discrete dynamic games associated to such equations. One of the goals of this paper is
contributing to a rigorous foundation of these methods.

Let us mention that some discrete games related to ours are the reachability games studied in Alfaro
et al. (2007), where also some numerical algorithms are provided. Moreover, if the players move simul-
taneously and use random strategies, the game becomes a special case of the zero-sum stochastic games
introduced in the seminal paper of Shapley (1953). Several algorithms have also been proposed to compute
the value function of stochastic games, starting with the value iteration algorithm in Shapley (1953). Some
variants designed to accelerate the convergence can be found in the survey by Filar and Vrieze (1991),
the more recent paper by Raghavan and Syed (2003) and the references therein, and in Kushner (2004),
where a Gauss-Seidel procedure for value iteration is studied. The extension of Dijkstra-type algorithms
to some stochastic games is an interesting open problem.

2 The discrete dynamic game

2.1 The model

Let X be a finite set belonging to an Euclidean space Rd, representing the state space of a system and
whose elements we call nodes. Let A,B be finite sets where the players choose their controls. For a
function S : X ×A×B → X define the trajectory x• = x•(x, a•, b•) recursively by

xn+1 = S(xn, an, bn), x0 = x. (1)

Let Xf ⊂ X , denote a terminal set of nodes (which player 1 wishes to attain) and let γ ∈ (0, 1] be a
discount factor. We introduce the running and terminal cost

` : X ×A×B → R, 0 < `0 ≤ `(x, a, b) ≤ L, ∀(x, a, b) ∈ X ×A×B (2)

g : Xf → R, g0 ≤ g(x) ≤ g1,∀x ∈ Xf (3)
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and additionally define the arrival time n̂ : X ×AN ×BN → R by

n̂(x, a•, b•) =

{
min{n ∈ N : xn ∈ Xf}, if {n ∈ N : xn ∈ Xf} 6= ∅

+∞ else,

where xn is the trajectory of (1) corresponding to the control sequences a•, b•. To alleviate the notation,
we will often write n̂ instead of the more explicit n̂(x, a•, b•) when no confusion arises. We have then the
following total cost functional J : X ×AN ×BN → R

J(x, a•, b•) :=

n̂−1∑
n=0

`(xn, an, bn)γn + γn̂g(xn̂),

where the discount factor γ satisfies 0 < γ ≤ 1. Observe that if n̂ = +∞ the cost is finite for γ < 1 and
+∞ for γ = 1 (i.e., no discount). Player 1 chooses a• ∈ AN and player 2 chooses b• ∈ BN. The aim of
player 1 is to minimize the cost functional, whereas player 2 has the opposite goal.

We assume that both players observe each other’s actions and the state x•.
We refer to G = G 〈X ,Xf , S,A,B, `, g, γ〉 as the game.

2.2 The lower value function

We consider an information pattern where player 1 is informed in advance of the action that player 2
will play at each time. Although not realistic in many situations, this is relevant in the discretization of
the lower value of a differential game, as we will see in Section 3, and also in the case of discrete robust
control problems, where player 2 represents a disturbance.

Definition 1 A map α : BN → AN is a non anticipating strategy for player 1 if

bn = b̃n, ∀n ≤ m =⇒ α[b•]n = α[b̃•]n, ∀n ≤ m.

Denote with A the set of non anticipating strategies for player 1. The definition of the set B of non
anticipating strategies for player 2 is completely analogous.

This allows us to introduce the lower value function

V −(x) := inf
α∈A

sup
b•∈BN

J(x, α[b•], b•).

The following result follows from familiar arguments, see for instance Chapter 8, Theorem 3.18 in Bardi
and Capuzzo-Dolcetta 1997.

Proposition 1 The lower value function satisfies

V −(x) = inf
α∈A

sup
b•∈BN

{
k∧n̂−1∑
n=0

`(xn, α[b•]n, bn)γn + γk∧n̂V −(xk∧n̂)

}
, ∀k ∈ N. (4)

V −(x) = max
b∈B

min
a∈A

{
`(x, a, b) + γV −(S(x, a, b))

}
, ∀x /∈ Xf (5)

V −(x) = g(x), ∀x ∈ Xf . (6)

The first equality (4) is the well known dynamic programming property. By taking k = 1 in (4) one can
easily prove (5). The last equality (6) follows directly from the definition.

The following form of the dynamic programming property will be useful later.

Proposition 2 Let Xf ⊂ X̃ ⊂ X and let ñ denote the arrival time to X̃ , i.e. ñ = ñ(x, a•, b•) = inf{n ∈
N : xn ∈ X̃}. Then

V −(x) = inf
α∈A

sup
b•∈BN

{
ñ−1∑
n=0

`(xn, α[b•]n, bn)γn + γñV −(xñ)

}
.

Proof This is a direct consequence of the dynamic programming property (4) since ñ ≤ n̂.
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2.3 The algorithm

The following algorithm computes the lower value function:

Require: n = 0,Acc0 := Xf , W0(x) := +∞,∀x ∈ X , V −0 (x) = g(x),∀x ∈ Xf
while Accn 6= X do

for x ∈ X \Accn, b ∈ B do
An(x, b) := {a ∈ A : S(x, a, b) ∈ Accn}

end for
end while
Consn := {x ∈ X \Accn : An(x, b) 6= ∅ ∀b ∈ B}
while Consn 6= ∅ do

Wn+1(x) := maxb∈B mina∈An(x,b){`(x, a, b) + γV −n (S(x, a, b))},∀x ∈ Consn
Accn+1 := Accn ∪ argminWn+1

V −n+1(x) := Wn+1(x),∀x ∈ argminWn+1

V −n+1(x) := V −n (x),∀x ∈ Accn
n← n+ 1

end while

The notations introduced in the algorithm have the following meaning

– Accn is the set of nodes accepted at the step n, at such nodes the approximate value is not re-computed
in the next steps;

– An(x, b) ⊆ A is the set of controls that take the state x to Accn if player 2 uses the control b;
– Consn is the set of nodes considered at the step n, they are the nodes from which player 1 can reach

Accn no matter what player 2 does;
– x ∈ argminWn+1 if Wn+1(x) = minX Wn+1, such nodes become accepted at step n+ 1.

Note that Accn is strictly increasing as long as Consn 6= ∅, so the algorithm terminates in a finite
number N of steps, at most the cardinality of X \ Xf , which we denote with |X \ Xf |. Denote also with
R the set of nodes from which player 1 can reach the terminal set for any behavior of player 2, i.e.,

R := {x ∈ X : inf
α∈A

sup
b•∈BN

n̂(x, α[b•], b•) < +∞}.

It is easy to see that if N is the terminal step of the algorithm, i.e., ConsN = ∅ or AccN = X , then

AccN = R,

i.e., the algorithm identifies the set R reachable by the the first player.
The main result of this section states that the algorithm indeed computes the value function. It

requires the following additional assumption in the discounted case γ < 1 (see Remark 3 below for a
discussion about this condition).

Condition 1 If γ < 1

L+ γg1 ≤
`0

1− γ
.

Proposition 3 Assume either γ = 1, or γ < 1 and Condition 1. Then, for any n ≤ N ,

V −n (x) = V −(x), for all x ∈ Accn,

and the algorithm converges in N ≤ |X \ Xf | steps to the value function V − on the reachability set R.

Proof Observe that for n = 0 the conclusion holds by definition. It suffices to prove that V −1 (x) = V −(x)
for x ∈ Acc1 since by Proposition 2, if we know V − on X̃ = Acc1, then we can obtain V − as the value
of the new problem with Xf replaced by X̃ and g by V −|X̃ and thus conclude by induction.

Observe first that V −1 (x) ≥ V −(x) follows easily from the definitions. Now for

x̄ ∈ argminx∈Cons1W1(x)

consider an optimal pair (α∗, b∗•) ∈ A×BN and the corresponding optimal trajectory xn starting from x̄,
that is,

xn+1 = S(xn, α
∗[b∗•]n, b

∗
n), x0 = x̄,
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V −(x̄) = J(x̄, α∗[b∗•], b
∗
•).

If n̂(x̄, α∗[b∗•], b
∗
•) = 1 then V −(x̄) = W1(x̄) = V −1 (x̄), which is the desired conclusion. If, instead, n̂ :=

n̂(x̄, α∗[b∗•], b
∗
•) > 1 we will distinguish two cases.

– Case γ = 1. From (4) and ` > 0 we have that

V −(x̄) =

n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n) + V −(xn̂−1) > V −(xn̂−1).

On the other hand, we have an optimal pair strategy-control and corresponding optimal trajectory
starting from xn̂−1 that reaches Xf in one step. Then V −(xn̂−1) = W1(xn̂−1) and so

V −(xn̂−1) = W1(xn̂−1) ≥W1(x̄) = V −1 (x̄) ≥ V −(x̄)

which is a contradiction.
– Case γ < 1.

Here (4) gives

V −(x̄) =

n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1V −(xn̂−1)

=
n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1W1(xn̂−1)

≥
n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1W1(x̄)

≥
n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1V −(x̄).

Then,

V −(x̄)(1− γn̂−1) ≥ `0
1− γn̂−1

1− γ
=⇒ V −(x̄) ≥ `0

1− γ
.

On the other hand, since
V −1 (x̄) ≤ L+ γg1

we get the inequality V −1 (x̄) ≤ V −(x̄) by Condition 1.

2.4 Remarks and some open problems

Remark 1 The main advantage of our algorithm is that at each step the approximate value function is
updated only on some nodes, namely on Consn. Moreover, at least one of these nodes becomes accepted
and will not be considered in the next steps. In particular, if the costs ` and g are constant (generalized
pursuit-evasion games), then Wn+1 is constant on Consn and all considered nodes are accepted. In other
words, the value function is computed only once on each node, which considerably speeds up the algorithm
in comparison to iterative methods. Algorithms with this property are often called single-pass.

Remark 2 If we stop the algorithm before it terminates, say at ñ < N , Proposition 3 says that we have
anyway computed the value function in the set Accñ, which may be enough for some practical problems
with very large grids.

Remark 3 Condition 1 requires that the oscillation of the running cost ` and the size of the terminal cost
g are not too high compared with 1/(1− γ). It essentially says that, if player 1 is on a node where he can
reach Xf , it is convenient for him to do so even if the cost of this step is high, rather than following forever
a trajectory with cheap running costs. For any ` and g verifying (2) and (3) the condition is satisfied for
γ sufficiently close to 1. It is satisfied also for all γ ∈ (0, 1) in discounted pursuit-evasion games, where
` ≡ 1 and g ≡ 0.
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Remark 4 If γ = 1, we can add a final step to the algorithm by setting V −N+1(x) := W0(x) = +∞ for all

x ∈ X \AccN , so V −N+1(x) = V −(x) for x ∈ X \R and we have convergence on the whole state space X .
On the other hand, if γ < 1 the algorithm gives no information on the value V − outside R.

Remark 5 If γ = 1, ` ≡ 1, and g ≡ 0, the problem for player 1 is finding the path of shortest length that
reaches Xf , whereas player 2 seeks to make such length the longest possible (generalized pursuit-evasion).
If, in addition, there is no player 2, i.e., B is a singleton, the problem reduces to the shortest path and
the algorithm of this section is the classical Dijkstra algorithm.

In reachability games there is no running cost and all the states in Xf have the same cost. Then the
algorithm is essentially the same as Algorithm 2 in Alfaro et al. (2007), where the set Accn+1 is updated
by

Accn+1 := Accn ∪ Consn.

Then the reachability set R is computed exactly as in the above generalized pursuit-evasion game, al-
though here the length of the path is not of interest. When the moves are alternating, this algorithm runs
in a linear time with respect to the size of the game, defined as1

‖G‖ := |X|+ |A|+ |B|.

Remark 6 All the results of this section can be adapted to the upper value function

V +(x) := sup
β∈B

inf
a•∈AN

J(x, a•, β[a•]),

where B is the set of non-anticipating strategies for the second player, defined in the obvious symmetric
way. Although in general V −(x) < V +(x), we will see in the next Section that the informational advan-
tage disappears in the continuum limit of discrete approximations of differential games, under suitable
assumptions, see Remark 12.

Remark 7 It would be interesting to study the model of Section 2.1 in the case of simultaneous moves,
where players select their actions randomly. This falls within the theory of stochastic games initiated by
Shapley (1953) (for more recent accounts, see the book by Filar and Vrieze (1996) or Chapter 5 in Sorin
(2002) , although the transition map S is deterministic here. Even in the case of deterministic transitions,
there are algebraic obstructions that make the extension of our approach difficult, see for instance the
first example provided by Parthasarathy and Raghavan (1981). In their example, the data of the problem
consist of rational numbers but the value is irrational. The authors suggest that any algorithm that
terminates in a finite number of steps, such as ours, would require that the data and the value of the
game remain in the same ordered field. See, for instance, Filar and Vrieze (1996) for several classes of
games with this so-called ordered field property.

Remark 8 The adaptation of the algorithm to the case of stochastic transitions presents several additional
difficulties. For a single player the Dijkstra algorithm was extended to the stochastic case in Bertsekas
(2001) if there exists a consistently improving optimal policy. A deeper study of the causality properties
needed in stochastic shortest path problems with one controller is in Vladimirsky (2008). As hinted in
the preceding remark, the case of zero-sum two-person stochastic games appears completely open.

3 Discretisation of differential games

Consider a continuous-time dynamical system controlled by two players

y′(t) = f(y(t), a(t), b(t)), y(0) = x, (7)

where f : Rd × A×B → R is Lipschitz with respect y, and A,B are given finite sets, as in the previous
section. The admissible controls for the players are

Ã := {a : [0,+∞)→ A, measurable} , B̃ := {b : [0,+∞)→ B, measurable} .

1 This definition is slightly different than the one in Alfaro et al (2007), since there only the actions available at each
state are considered. Without loss of generality, we assume that all actions are available in all states.
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We are given a closed target T ⊆ Rn, and define the first time the trajectory hits T as

tx(a, b) := inf{t : yx(t; a, b) ∈ T },

where yx(·; a, b) is the solution of (7) corresponding to a ∈ Ã and b ∈ B̃, and tx(a.b) := +∞ if the target
is never reached. Consider also the cost functional

J̃(x, a, b) :=

∫ tx

0

l(y(t), a(t), b(t))e−λtdt+ e−λtxg(yx(tx; a, b)), tx = tx(a, b), a ∈ Ã, b ∈ B̃;

where λ ≥ 0 is the discount rate, and the running and terminal costs l : Rd ×A×B → R and g : T → R
are continuous and bounded, with l > 0.

In differential games non-anticipating strategies for the first player are maps α : B̃ → Ã such that, for
all t > 0, b(s) = b̃(s) for all s ≤ t implies α[b](s) = α[b̃](s) for all s ≤ t. We denote with Γ the set of such
strategies. The lower value function of the game, in the sense of Varaiya, Roxin, Elliott and Kalton, is
defined as

v−(x) := inf
α∈Γ

sup
b∈B̃

J̃(x, α[b], b).

It is well known that under suitable conditions v− coincides with the upper value function and it is
therefore the value of the game, see Remark 12 for more details. It is also known (see, e.g., Chapter VIII
in Bardi and Capuzzo-Dolcetta 1997) that it is a viscosity solution of the (lower) Hamilton-Jacobi-Isaacs
equation

λv− −max
b∈B

min
a∈A

{
f(x, a, b) ·Dv− + l(x, a, b)

}
= 0 in Ω := Rd \ T . (8)

Now take a finite grid X and set Xf := X ∩T , i.e., the final nodes are those in the target. Next fix h > 0
and set

S(x, a, b) = x+ hf(x, a, b), `(x, a, b) = hl(x, a, b), γ = e−λh.

Then the dynamic game of Section 2.1 is a natural discretisation of the differential game, with the control
system replaced by its Euler scheme with step h and the integral cost functional replaced by a Riemann
sum. This discretisation is the basis of some semi-Lagrangian approximation schemes for the Hamilton-
Jacobi-Isaacs equation, see, e.g., Bardi, Falcone and Soravia (1999) and Falcone and Ferretti (2014). In
such schemes one solves the finite difference equation

W (x) = max
b∈B

min
a∈A
{`(x, a, b) + γW (S(x, a, b))} , ∀x ∈ X \ Xf , (9)

with the boundary condition
W (x) = g(x), ∀x ∈ Xf . (10)

Note, however, that in general S(x, a, b) might not be in X , so in the right hand side W is extended
by interpolation among the neighbouring nodes. The main assumption of this section is that the grid is
adapted to the dynamics (with time step h), that is,

S(x, a, b) ∈ X ∀x ∈ X \ Xf , a ∈ A, b ∈ B. (11)

Then W can be computed only on the nodes, without any interpolation procedure.

Proposition 4 Under the assumption (11) the solution W of the discrete Isaacs equation (9) coincides
with the lower value function V − defined in Section 2.2. Thus it can be computed by the algorithm of
Section 2.3.

Proof Under the assumption (11) the discrete Isaacs equation (9) coincides with the one-step Dynamic
Programming Principle (5) satisfied by V −. On the other hand, from (5) one gets the general Dynamic
Programming Principle (4) by induction, and therefore the equality W = V −.

Note that, given a finite set Xf , the dynamics f , and h, a grid adapted to the dynamics can be easily
constructed, at least in principle, by setting

X0 := Xf , Xn+1 := {x ∈ Rd : S(x, a, b) ∈ Xn, for some a ∈ A, b ∈ B}

and iterating a finite number of times, where the set Xn+1 is truncated to a finite set in case it is not
finite.
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Example 1 Assume that f = f(a, b) does not depend on x. Then the previous construction of a grid
adapted to the dynamics becomes explicit

X0 := Xf , Xn+1 := {x− hf(a, b) for some x ∈ Xn, a ∈ A, b ∈ B},

and after a finite number of iterations it produces a finite grid X , since Xf , A and B are finite.

Example 2 Consider the convex-concave eikonal equation in R2 with Dirichlet boundary conditions

|ux| − δ|uy| = l(x, y) in Ω, u(x, y) = g(x, y) on ∂Ω,

with δ, l > 0 and Ω a rectangle, say Ω = (0, c) × (0, d) (see Bardi and Terrone 2013 for other results on
such equation). An associated differential game can be chosen with dynamics

x′ = a, y′ = b, a ∈ {−1, 0, 1}, b ∈ {−δ, 0, δ}.

A rectangular grid X = {(jh, kδh) : j = 1, . . . , ch , k = 1, . . . , dδh} is adapted to the dynamics if c
h ,

d
δh ∈ N,

and this occurs for a suitable sequence of steps h going to 0 if cδ/d = m/n for some m,n ∈ N. In fact we
can take h = d

δnK for any K ∈ N, because c
h = mK and d

δh = nK.

The locally uniform convergence of the solution W of the discrete Isaacs equation (9) to the lower
value function v− as h and the mesh size k of the grid X tend to zero was proved in Bardi, Falcone and
Soravia (1994) in the case v− is continuous, T has a Lipschitz boundary, and k/h→ 0, see also Cristiani
and Falcone (2009), the survey by Bardi, Falcone, and Soravia (1999), and the recent book by Falcone and
Ferretti (2014). In the case of discontinuous v− the convergence is weaker and the precise statements are
more technical, see Bardi, Bottacin, and Falcone (1995). For grids adapted to the dynamics it is unlikely
that k/h → 0 because the space and time step are of the same order, as it can be seen in the preceding
examples. However, by taking advantage of the property (11) we can remove such restriction, as we show
now.

We consider a sequence hn → 0 and sequences Xn, Xnf = Xn ∩ T , such that Xn is a grid adapted to
the dynamics with time step hn and

∀x ∈ Rd ∃x(n) ∈ Xn such that lim
n
x(n) = x. (12)

We call this an admissible sequence of grids. For each pair hn,Xn we solve the discrete Isaacs equation (9)
with boundary conditions (10) and call Wn its solution. Then we define for x ∈ Ω the viscosity semi-limits

W (x) := sup

{
lim sup

n
Wn(x(n)) : Xn 3 x(n) → x

}
, W (x) := inf

{
lim inf

n
Wn(x(n)) : Xn 3 x(n) → x

}
.

(13)
Note that they are finite at x if Wn are equibounded in a neighborhood of x.

The following lemma about the semi-limits is a straightforward extension of a standard result in
viscosity theory, see Lemma V.1.6 in Bardi and Capuzzo-Dolcetta (1997).

Lemma 1 Assume Wn : Xn → R are locally equibounded, Xn satisfies (12), φ ∈ C(Ω), and W − φ
attains at y a strict maximum relative to the ball B centered at y with radius r > 0. Choose xn ∈
argmaxXN∩B(Wn − φ). Then there is a subsequence xnk

→ y and such that Wnk
(xnk

) → W (y) as
k →∞.

The next proposition is the main result of this section.

Proposition 5 Assume hn → 0, Xn is an associated admissible sequence of grids, Wn solves (9) on
X = Xn, and the sequence Wn is locally equibounded. Then W and W are, respectively, a viscosity sub-
and supersolution of the Isaacs equation (8).

Proof We prove that W is a subsolution, the statement about W is obtained in a similar way. Take
φ ∈ C1(Ω) such that W − φ attains at y ∈ Ω a strict maximum relative to the ball B centered at y with
radius r > 0. We must prove that

λW (y)−max
b∈B

min
a∈A
{Dφ(y) · f(y, a, b)) + l(y, a, b)} ≤ 0. (14)



A Dijkstra-type algorithm for dynamic games 9

Consider the subsequence of maximum points of Wn − φ produced in Lemma 1 and relabel it so that
xn → y and Wn(xn)→W (y). Since xn ∈ Xn \ Xnf , the discrete Isaacs equation (9) gives

Wn(xn) = max
b∈B

min
a∈A
{hnl(xn, a, b) + γnWn(xn + hnf(xn, a, b))} , γn := e−λhn .

Then for all n there exists bn ∈ B such that

γn [Wn(xn)−Wn(xn + hnf(xn, a, bn))] ≤ hnl(xn, a, bn) + (γn − 1)Wn(xn) ∀a ∈ A.

Since xn is a local maximum point of Wn − φ we have, for hn small enough,

φ(xn)− φ(xn + hnf(xn, a, bn)) ≤Wn(xn)−Wn(xn + hnf(xn, a, bn)).

Combining the last two inequalities gives

min
b∈B

max
a∈A

{
γn
φ(xn)− φ(xn + hnf(xn, a, b))

hn
− l(xn, a, b)

}
≤ γn − 1

hn
Wn(xn)

and letting n→∞ we get

min
b∈B

max
a∈A
{−Dφ(y) · f(y, a, b))− l(y, a, b)} ≤ −λW (y),

which implies the desired inequality (14).

Now we can get the convergence of the scheme under suitable assumptions.

Corollary 1 Assume λ > 0, ∂T is a Lipschitz hypersurface, f is bounded on ∂T ×A×B, hn → 0, Xn
is an associated admissible sequence of grids, and the lower value v− ∈ C(Ω). Then the semilimits (13)
of the solutions Wn of (9) and (10) satisfy

W (x) = W (x) = v−(x) ∀x ∈ Ω. (15)

Proof It is easy to see that for λ > 0 the sequence Wn is uniformly bounded by supRd×A×B |l|/λ+supRd g.
The rest of the proof is similar to that of Theorem 1 in Bardi, Falcone and Soravia (1994) or Theorem
2.3 in Bardi, Falcone and Soravia (1999). In addition to Proposition 5 we use the following boundary
conditions in the viscosity sense:

W ≤ g or λW −max
b∈B

min
a∈A

{
f(x, a, b) ·W + l(x, a, b)

}
≤ 0 on ∂Ω, (16)

W ≥ g or λW −max
b∈B

min
a∈A
{f(x, a, b) ·W + l(x, a, b)} ≥ 0 on ∂Ω.

To prove, for instance, (16), we proceed as in Proposition 5. We take φ ∈ C1(Ω) such that W − φ
attains a strict local maximum at y ∈ ∂Ω. By extracting a subsequence from the sequence of maximum
points of Wn − φ produced in Lemma 1 we can assume that either xn ∈ Xn \ Xnf for all n or xn ∈ Xnf
or all n. In the former case the argument of Proposition 5 gives the inequality (14). In the latter case
g(xn) = Wn(xn)→W (y), and the continuity of g implies W (y) = g(y).

Next we use a comparison principle between a continuous semi-solution of (8) attaining the boundary
data g and a semicontinuous semi-solution of (8) with boundary condition in viscosity sense. It can be
found in Bardi and Capuzzo-Dolcetta (1997) for Ω bounded and in Bardi, Falcone and Soravia (1994)
for Ω unbounded. Here we need the Lipschitz regularity of ∂Ω, the boundedness of f on ∂Ω, and the
fact that, if v− ∈ C(Ω), it solves (8) and v− = g on ∂Ω. Then we get the inequalities

W ≤ v− ≤W in Ω.

Then W = v− = W .

Remark 9 The equality (15) implies the following form of uniform convergence of Wn to v−:
for all ε > 0 and compact set K there exists n and δ > 0 such that

|Wn(x(n))− v−(x)| < ε ∀x ∈ K, x(n) ∈ Xn, n ≥ n, |x(n) − x| < δ,

as it is easy to prove by contradiction.
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Remark 10 Proposition 5 and Corollary 1 appear to be new even in the case of a single player, although
the convergence of FMM schemes for Hamilton-Jacobi equations with convex Hamiltonian has been
studied, e.g., in (Sethian and Vladimirsky 2003 and Cristiani 2009).

Remark 11 The case of discontinuous v−, which may occur in pursuit-evasion games, could also be treated
in the framework of Bardi, Bottacin, and Falcone (1995).

Remark 12 All the results of this section can be adapted to the upper value of the differential game

v+(x) := sup
β∈∆

inf
a∈Ã

J̃(x, a, β[a]),

where ∆ is the set of non-anticipating strategies for the second player. It is known that v+ satisfies the
upper Hamilton-Jacobi-Isaacs equation

λv+ −min
a∈A

max
b∈B

{
f(x, a, b) ·Dv+ + l(x, a, b)

}
= 0 in Ω := Rd \ T .

If the Isaacs condition holds, namely,

min
a∈A

max
b∈B
{f(x, a, b) · p+ l(x, a, b)} = max

b∈B
min
a∈A
{f(x, a, b) · p+ l(x, a, b)} ∀ p ∈ Rd, x ∈ Ω,

the upper H-J-I equation coincides with (8). By the uniqueness of viscosity solutions to the Dirichlet
problem, if either v− or v+ is known to be continuous, we get that v− = v+ and the differential game has
a value. In this case the informational advantage of player 1 in the discrete game of Section 2 vanishes in
the continuum limit.
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5. Bardi M, Falcone M. and Soravia P (1999) Numerical methods for pursuit-evasion games via viscosity solutions, in
“Stochastic and differential games: theory and numerical methods”, M. Bardi, T. Parthasarathy e T.E.S. Raghavan
eds., pp. 105-175, Ann. Internat. Soc. Dynam. Games, 4, Birkhäuser, Boston.
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31. Tsitsiklis J N (1995) Efficient algorithms for globally optimal trajectories, IEEE Transactions on Automatic Control

40:1528–1538.
32. Vladimirsky A (2008) Label-setting methods for multimode stochastic shortest path problems on graphs, Math. Oper.

Res. 33 4:821–838.
33. von Lossow M (2007) A min-max version of Dijkstra’s algorithm with application to perturbed optimal control problems,

in Proceedings of the 6th International Congress on Industrial and Applied Mathematics (ICIAM07), Proc. Applied
Math. Mechanics 7:4130027–4130028.


