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Abstract. In real applications, time series are generally of complex
structure, exhibiting different global behaviors within classes. To discrim-
inate such challenging time series, we propose a multiple temporal match-
ing approach that reveals the commonly shared features within classes,
and the most differential ones across classes. For this, we rely on a new
framework based on the variance/covariance criterion to strengthen or
weaken matched observations according to the induced variability within
and between classes. The experiments performed on real and synthetic
datasets demonstrate the ability of the multiple temporal matching ap-
proach to capture fine-grained distinctions between time series.

1 Introduction

The problem of exploring, classifying or clustering multivariate time series arises
in a natural way in a lot of domains, inducing a notable increase activity in this
area of research these last years. The Dynamic Time Warping (dtw) [1] is fre-
quently and successfully used in many domains to classify time series that share
similar global behaviors within classes subject to some delays. However it fails on
complex time series, namely, that present different global shapes within classes,
or similar ones between classes. In fact, the applied dtw alignment yields a lo-
cal view, as it is performed in light of a single pair of time series, ignoring all
other time series dynamics within and between clusters; furthermore, the align-
ment process used is achieved regardless of the analysis process (as clustering
or classification), weakening its efficiency on complex data. Several variants of
dtw have been proposed to improve performance in classification or clustering.
They mostly aim to more finely estimate the dtw parameters, namely, warping
constraints, the time weighting, or the underlying divergence function between
mapped values. Without being exhaustive, the first part of these works mainly
rely on the Sakoe-Chiba, Itakura or Rabiner [2] approches to constrain globally
or locally the dtw warping space [3]. The second propositions concentrate on the
estimation of time weighting functions [4], whereas the last works pay particular
attention to the definition of adaptive divergence functions involving both values
and behaviors components of time series [5]. Although these approaches yield
more accurate temporal alignments, time series of the same class are assumed
to share a single global behavior. In real application time series are generally of
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more complex structure. In particular, time series may exhibit different global
behaviors within classes, or similar ones between classes. Consequently, for clas-
sification purpose, it appears important that the temporal alignment relies on
the commonly shared features within the classes and the most differential ones
between classes. Such challenging problem is addressed in a recent work [6] [7]
to learn pattern graphs from sequential data. For time series, such linkages are
hardly reachable by conventional alignments strategies that are mainly limited
to monotone warping functions preserving temporal order constraints [1].
To do so, we propose a new approach for multiple temporal alignment that high-
lights class-specific characteristics and differences. The main idea rely on a dis-
criminant criterion based on variance/covariance to strengthen or weaken links
according to their contributions to the variances within and between classes. The
variance/covariance measure is used in many approaches, including exploratory
analysis, discriminant analysis, clustering and classification [8]. However, to the
best of our knowledge, it has never been investigated to define temporal align-
ment for time series classification. To this end, we propose a new formalization of
the classical variance/covariance for a set of time series, as well as for a partition
of time series (Section 2). In Section 3, we present a method for training the
intra and inter class time series matching, driven by within-class variance min-
imization and between-class variance maximization. Subsequently, the learned
discriminative matching is used to define a locally weighted time series metric
that restricts the time series comparison to discriminative features (Section 4).
In Section 5, the experiments carried out on both simulated and real datasets
reveal the proposed approach able to capture fine-grained distinctions between
time series, all the more so that time series of a same class exhibit dissimilar
behaviors.

2 Variance/covariance for time series

We first recall the definition of the conventional variance/covariance matrix,
prior to introducing its formalization for time series data. Let X be the (n× p)
data matrix containing n observations of p numerical variables. The conventional
(p× p) variance/covariance matrix expression is:

V = X
t(I − UP )tP (I − UP )X (1)

where, I is the diagonal identity matrix, U the matrix of ones, and P a diago-
nal weight matrix of general term pi =

1
n
for equally weighted observations. In

the following, we provide a generalization of the variance/covariance expression
Eq.(1) to multivariate time series observations.

Variance induced by a set of time series For a set of time series, let X
be the (nT × p) matrix providing the description of n multivariate time series
S1, ..., Sn by p numerical variables at T time stamps. The matching between n
time series can be described by a matrix M of positive terms composed of n2

block matrices M ll′ (l = 1, ..., n; l′ = 1, ..., n). A block M ll′ is a (T × T ) matrix

that specifies the matching between Sl and Sl′ , of general term mll′

ii′ ∈ [0, 1]
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giving the weight of the link between the observation i of Sl and i′ of Sl′ . Then,
the (p×p) variance/covariance matrix VM induced by a set of time series S1, ..., Sn

connected to one another according to the matching matrix M can be defined
on the basis of Eq.(1), as:

VM = X
t(I −M)tP (I −M)X (2)

where P is a (nT × nT ) diagonal matrix of weights, with pi = 1
n T

for equally
weighted observations. Note that for a complete linkage matching, M is equal to
UP and VM leads to a conventional variance covariance V Eq.(1). For clarity and
to simplify notation, we focus for the theoretical developments on univariate time
series. The extension to the multivariate case is direct and will be used in the
experiments. Thus, let xl

i be the value of the variable X taken by Sl (l = 1, ..., n)
at the ith time stamp (i = 1, ..., T ).

Definition 1. The variance VM of the variable X is given by:

VM =
n
∑

l=1

T
∑

i=1

pi(x
l
i −

n
∑

l′=1

T
∑

i′=1

m
l l′

i i′x
l′

i′)
2 (3)

Note that each value xl
i is centered relative to the term

∑n

l′=1

∑T

i′=1 m
l l′

i i′x
l′

i′

estimating the average of X in the neighborhood of the time i of Sl. The neigh-
borhood of i is the set of instants i′ of Sl′ (l′ = 1...n) connected to i with
mll′

ii′ 6= 0. We now proceed to define the variance within and between classes
when the set of time series is partitioned into classes.

Variance induced by a partition of time series Let us now consider a set
of time series S1, ..., Sn partitioned into K classes, with yi ∈ {1, ...,K} the class
label of Si and nk the number of time series belonging to class Ck. The definition
of the within variance (i.e. the variance within classes) and the between variance

(i.e. the variance between classes) induced by K classes is obtained by using the
expression given in Eq.(2) based on a matching M specified below.

Definition 2. The within variance with an intra-class matching matrix M is
given by:

WVM =
1

nT

K
∑

k=1

nk
∑

l=1

T
∑

i=1

(xl
i −

nk
∑

l′=1

T
∑

i′=1

m
ll′

ii′x
l′

i′)
2

with

M
ll′ =







I if l = l′

6= 0 if yl = yl′ and l 6= l′

0 if yl 6= yl′

(4)

where I and 0 are the (T × T ) identity and zero matrices, respectively.

The general setting for the blocks M ll′ of the intra-class matching M is based on
three considerations: (a) the Euclidean alignment (M ll = I) linking each time
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series to itself ensures a variance of zero when comparing a time series with itself,
(b) time series within the same class should be connected, while (c) time series
of different classes are not connected, as they do not contribute to the within
variance. Similarly, we have:

Definition 3. The between variance with an inter-class matching matrix M
is given by:

BVM = 1
nT

∑K

k=1

∑nk

l=1

∑T

i=1(x
l
i

−(mll
iix

l
i +

∑

k′ 6=k

∑nk′

l′=1

∑T

i′=1 m
ll′

ii′x
l′

i′))
2

with

M
ll′ =







I if l = l′

0 if yl = yl′ and l 6= l′

6= 0 if yl 6= yl′

(5)

where I and 0 are the (T × T ) identity and zero matrices, respectively.

The setting of the inter-class matching M is symmetric with respect to the
preceding one, matching between time series of the same class being forbidden,
while matching between time series of different classes is taken into account.
As one can note, the matching matrix M plays a crucial role in the definition of
the within and between variances. The main issue for time series classification
is therefore to learn a discriminative matching that highlights shared features
within classes and distinctive ones between classes. To do so, we look for the
matching matrix M , under the general settings given in Eqs. (4) and (5), that
minimizes the within variance and maximizes the between variance. We present
an efficient way to do this in the following section.

3 Learning discriminative matchings

We present here an efficient method to learn the matching matrixM , so as to con-
nect time series based on their discriminative features. The proposed approach
consists of two successive phases. In the first phase, the intra-class matching
is learned to minimize the within variance. The learned intra-class matching
reveals time series connections based on class-specific characteristics. In the sec-
ond phase, the learned intra-class matching is refined to maximize the between
variance.

Learning the intra-class matching We are interested in inferring commonly
shared structure within classes, that is in identifying the set of time stamps i′

connected to each time stamp i regardless of their weights. Thus, the problem of
learning the intra-class matching matrix M to minimize the within variance. We
introduce here an efficient approach that iteratively evaluates the contribution
of each linked observation (i, i′) to the within variance; the weights mll′

ii′ are then
penalized for all links (i, i′) that significantly increase the within variance. For a
given class Ck, this process, called TrainIntraMatch, is described in Algorithm 1
and involves the following steps.
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Algorithm 1 TrainIntraMatch(X,α, k)

M = complete intra-class matching Step 1

for all (l, l′) with yl = yl′ = k and l 6= l′ do

for all (i, i′) ∈ [1, T ] × [1, T ] do

Cll′

ii′
evaluation with Eq. (7) Step 2

end for

end for

repeat

LinkRemoved = false

for all (i, l) ∈ [1, T ] × [1, n] do

Link = argmaxi′,l′ (C
ll′

ii′
) satisfying Eq. (9) Step 3

if Link 6= ∅ then

Remove Link (ml,l′

i,i′
= 0) and

Update weights with Eq. (8)
Update contributions
LinkRemoved = true

end if

end for

until ¬LinkRemoved Step 4

return(MIntra = M)

1. Initialization (Step 1) A complete linkage is used to initialize the intra-
class matching matrix M , to ensure that all possible matchings are consid-
ered and that no a priori constraints on the type of matching one should
look for are introduced.

M
ll′ =







I if l = l′

1
T
U if yl = yl′ and l 6= l′

0 if yl 6= yl′

(6)

2. Computing link contributions (Step 2)We define the contribution Cl1l2
i1i2

of the link (i1, i2) between Sl1 and Sl2 (yl1 = yl2) as the induced variation
on the within variance after the link (i1, i2) has been removed:

C
l1l2
i1i2

= WVM −WVM\(i1,i2,l1,l2) (7)

where M\(i1, i2, l1, l2) denotes the matrix obtained from M by setting ml1l2
i1i2

to 0 and re-normalizing its ith1 row:

ml1l
′

i1i′
←

ml1l
′

i1i′

1−ml1l2
i1i2

(8)

The evaluated contributions reveal two types of links: the links of positive
contribution Cll′

ii′ > 0 that decrease the within variance if removed, and the

links of negative contribution Cll′

ii′ < 0 that increase the within variance if
removed.

3. Link deletion (Step 3) The deletion of a link with positive contribution
ensures that the within variance will decrease. In addition, if all links within
a row have a negligible contribution to the variance, one can dispense with
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removing them in order to (a) avoid overtraining and (b) speed up the pro-
cess. Thus, a link (i, i′) between Sl and Sl′ is deleted if it satisfies:

C
ll′

ii′ > α.WVM1 and
T
∑

i′′=1,(i′′ 6=i′)

m
ll′

ii′′ > 0 (9)

where α ∈ [0, 1] and WVM1
is the initial within variance.

Because the normalization in Eq.(8) performed after the deletion of (i1, i2)
impacts only the weights of the ith1 row, deleting a single link per row at
each iteration of the process guarantees that the global within variance will
decrease. Thus, at each iteration one can simply delete the link on each row
of maximal contribution compliant with Eq.(9).

4. Stopping the learning process (Step 4) The algorithm iterates steps 2,
3 and 4 until there are no more links satisfying the conditions specified in
Eq.(9).

From the learned intra-class matching obtained at step 4, noted MIntra, one may
induce for each time series Sl one intra-blockM l.

Intra to indicate the characteristic
linkage between Sl and time series of the same class. This intra-block is obtained
by summing the block matrices learned for Sl, as follows:

M
l.
Intra =

∑

l′∈1,...,nk

M
ll′

Intra (10)

Learning the inter-class matching The goal of this second phase is to re-
fine the highlighted connections in MIntra (i.e., that connects shared features
within classes) to capture the links that are additionally differentiating classes.
For this, we refer to a similar algorithm called TrainInterMatch, where the inter-
class matching is initialized with MIntra, then trained to maximize the between
variance BVM of Definition 3. As for the within variance minimization problem,
we adopt the same approach, which consists in iteratively evaluating the con-
tribution of each linked observations (i, i′) to the between variance; the weights
mll′

ii′ are then penalized for all links (i, i′) significantly decreasing the between
variance. We now turn to the application of the learned matching matrix to time
series classification.

4 Time series classification based on the learned matching

Our aim here is to present a way of using learned discriminative matching to lo-
cally weight time series for k-nearest neighbor classification. The purpose of the
proposed weighting is to restrict the time series comparison to the discriminant
(characteristic and differential) features. Let M∗ be the discriminative matching
learned by the TrainIntraMatch and TrainInterMatch algorithms, where dis-
criminant linkages are highly weighted. For each Sl of the training sample, we
note M l .

∗ the average of the learned matrices M ll′

∗ (yl′ 6= yl = k):

M
l .
∗ =

1

(n− nk)T

∑

l′

M
ll′

∗
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It defines the linkage schema of Sl to a given time series (of the same or of
different class) according to Sl own discriminative features. To damp the effect
of outliers, the geometric mean could be used for M l .

∗ as well.
In k-nearest neighbor classification, one can compare a new time series Stest to
a sample series Sl of Ck based on its learned discriminative matching M l .

∗ . This
can be achieved by looking for the delay r that leads to the minimal distance
between Stest and Sl:

Dl(Sl, Stest) = min
r∈{0,..,T−1}

(
∑

|i−i′|≤r; (i,i′)∈[1,T ]2

ml .
ii′

∑

|i−i′|≤r
ml .

ii′

(xl
i − x

test
i′ )2) (11)

where r corresponds to the Sakoe-Chiba band width [2]. Note that for r = 0,
Dl defines a locally weighted Euclidean distance involving the diagonal weights
ml.

ii.

5 Experiments

Synthetic datasets The first objective of these experiments is to show through
challenging synthetic datasets that the proposed approach successes to recover
the a priori known discriminative features. For this, two synthetic datasets bme
and umd are considered, where a given class may be composed of time series
of different global behaviors and including amplitude and delay variations. bme
is composed of three classes Begin, Middle, and End of time series of length
128. Figure 1 illustrates the time series variability within each class, it shows
the profile of one time series (in black) compared to the remaining time series
(in grey) of the class. In the Begin (respectively the End) class, time series are
characterized by a small bell arising at the initial (respectively final) period. The
overall behavior may be different within a same class depending on whether the
large bell is up or down positioned. Furthermore, time series of the Begin and
the End classes composed of an up-positioned large bell are quite similar to the
Middle class time series. The second dataset umd, composed of three classes
Up, Middle, and Down (time series length of 150), introduces an additional
complexity with the Up and Down classes characterized by a small bell that
may occur at different time stamps, as illustrated in Figure 1.

Electric power consumption classification The proposed approach is mo-
tivated by a classification problem of a real electrical power consumption of
customers, to adequately meet consumer demands. To classify such challenging
data, we refer to the proposed approach to: a) localize the periods that charac-
terize the daily power consumption of each class, b) highlight periods that dif-
ferentiate the power consumption of different classes, c) and classify new power
consumption based on the learned discriminative features.
The application relies on two public datasets1 conslevel and consseason pro-
viding the electric power consumption recorded in a personal home over almost

1 These data are available at http://bilab.enst.fr/wakka.php?wiki=HomeLoadCurve,
and analyzed in [9]
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Fig. 1. bme (top three classes) and umd (bottom three classes) datasets

one year (349 days). Each time series consists of 144 measurements that give
the power consumption of one day with a 10 minute sampling rate. conslevel
is composed of 349 time series distributed in two classes (Low and High) de-
pending on whether the average electric power during the peak demand period
[6:00pm-8:00pm] is lower or greater than the annual average consumption of that
period. Figure 2 shows the electric consumption profiles within the conslevel

classes; the red frames delineate the time interval [108,120], corresponding to the
peak period [6:00pm-8:00pm]. On the other hand, consseason is composed of
349 time series distributed in two season classes (Warm and Cold) depending
on whether the power consumption is recorded during the warm (from April
to September) or cold (from October to March) seasons (Figure 2). Note that
the electric power consumption profiles differ markedly within classes in both
datasets.

Fig. 2. The electrical power consumption of Low and High conslevel classes

Character trajectories classification The objective of this latter dataset is
to verify whether the proposed approach can recover standard time series struc-
tures within classes, namely, when the classes are mainly composed of time series
of similar global behaviors. For this, we have considered a standard dataset on
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character trajectories traj [10], where time series share a quite similar global
behavior within classes (20 classes of 50 time series each).

Validation protocol The proposed approach is applied for the classification of
the above datasets. First, the discriminative features are localized, then used to
define a locally weighted time series metric d as given in Eq.(11). The relevance
of the learned discriminative features and of the induced metric is then studied
through a k-nearest neighbor classification for several neighborhood sizes k =
1, 3, 5, 7. For bme and umd datasets a training and test sets of 360 and 1440 time
series, respectively, are considered. For the real datasets the performances are
evaluated based on 10-fold cross-validation protocol. Finally, the results obtained
are compared to two baselines: the Euclidean de and dynamic time warping dtw
distances (Table 1).

Results and discussion The algorithms TrainIntraMatch and TrainInterMatch

are applied to the above datasets with α = 0.5%. As an example, let us first illus-
trate, for the bme dataset, the progression of the within and between variances
during the learning processes (Figure 3). The clearly monotonically decreas-
ing (respectively increasing) behavior of the within (respectively between) class
variance, which ends at a plateau, assesses: a) the pertinence of the conducted
links penalization to minimize the within variance and maximize the between
variance, b) the convergence of the proposed algorithms.

Fig. 3. The within and between variance progression for bme dataset.

For conslevel, Figure 4 shows the learned intra-class (left) and inter-class
(right) blocks for a given time series of the Low class. The intra-class block reveals
a checkerboard structure, indicating that the electric power consumption within
the Low class alternates, in a daily period, between a low and a moderately
high consumption. The corresponding inter-class block shows the discriminative
matching between the considered Low class time series and time series of the High
class (on column). This block displays many discriminative regions; for example,
it shows that the power consumption within the High class within the period
underlined in red (prior to 6:00pm-8:00pm) is especially important in predicting
the consumption during the peak period. For each above described dataset, a
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Fig. 4. The intra (left) and inter (right) class matching learned for Low class

locally weighted time series metric d is defined based the learned discriminative
matching, as given in Eq.(11), then used for the time series classification. The
relevance of the proposed approach and of the induced metric are studied accord-
ing to the validation process described above. The results obtained are compared
to two baselines: the Euclidean de and dynamic time warping dtw distances.

k d de dtw

1 0.032 0.165 0.130
bme 3 0.034 0.208 0.132

5 0.062 0.234 0.136
7 0.079 0.297 0.191
1 0.055 0.173 0.121

umd 3 0.111 0.333 0.177
5 0.173 0.343 0.225
7 0.222 0.378 0.274

Table 1. k-Nearest Neighbor classifi-
cation error rates on synthetic data

k d de dtw

1 0.056 0.306 0.289
conslevel 3 0.044 0.267 0.261

5 0.028 0.233 0.239
7 0.017 0.233 0.233
1 0.094 0.239 0.283

consseason 3 0.128 0.228 0.311
5 0.205 0.200 0.300
7 0.111 0.222 0.306
1 0.014 0.012 0.019

traj 3 0.018 0.017 0.022
5 0.022 0.021 0.028
7 0.019 0.021 0.026

Table 2. k-Nearest Neighbor classifi-
cation error rates on real data

The misclassification error rates obtained in Table 1 show the efficiency of the
proposed locally weighted metric d in discriminating between complex time se-
ries classes, compared to standard metrics for time series. In particular, one can
note that for all datasets but traj, the best results (in bold) are obtained with
d. For traj, the three metrics lead to comparable results suggesting that the
Euclidean alignment is an appropriate matching for this dataset. In Figure 5,
we can see that the learned discriminative matching, for example, for ”c”, ”o”
and ”i” characters is close to the Euclidean one, which shows the ability of the
proposed approach to recover standard time series alignments. In addition, one
can see that for nearly all datasets the best performances are obtained for k = 1.
For conslevel, a slight improvement is reached for k = 7, indicating a great
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clusters overlap for this dataset.

c

5 10 15 20

20
15

10
5

o

5 10 15 20

20
15

10
5

l

5 10 15 20

20
15

10
5

Fig. 5. The learned discriminative matching for the characters ”c”, ”o”, and ”i” of
traj dataset.

Conclusion and future works Our future work will mainly focus on calculus
complexity reduction to ensure the proposed method be useable for large scale
data. The main idea consists to sparse the initial intra-class matching matrix
M . Performances of the scalable variant of the approach will then be compared
to alternative methods on large scale data. Furthermore, we aim to study new
ways to define weighted metrics based on the discriminative masks M l .

∗ , for
instance, by generalizing conventional dtw to achieve alignments limited to the
discriminative regions of M l .

∗ .
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7. S. Peter, F. Höppner, M. R. Berthold, Learning pattern graphs for multivariate
temporal pattern retrieval, in: Intelligent Data Analysis, Springer Verlag, 2012.

8. R. Fisher, The use of multiple measures in taxonomic problems, Annals of Eugenics
7 (1936) 179–188.

9. G. Hebrail, B. Hugueney, Y. Lechevallier, F. Rossi, Exploratory analysis of func-
tional data via clustering and optimal segmentation, Neurocomputing 73 (2010)
1125–1141.

10. A. Asuncion, D. Newman. uci, machine learning repository [online] (2007).


