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Probing locally the onset of slippage at a model multi-contact interface

V. Romero, E. Wandersman, G. Debrégeas, and A. Prevost*
CNRS / UPMC Univ Paris 06, FRE 3231, Laboratoire Jean Perrin LJP, F-75005, Paris, France
(Dated: November 8, 2013)

We report on the multi-contact frictional dynamics of model elastomer surfaces rubbed against
bare glass slides. The surfaces consist of layers patterned with thousands spherical caps distributed
both spatially and in height, regularly or randomly. Use of spherical asperities yields circular micro-
contacts whose radius is a direct measure of the contact pressure distribution. Optical tracking of
individual contacts provides the in-plane deformations of the tangentially loaded interface, yielding
the shear force distribution. We then investigate the stick-slip frictional dynamics of a regular
hexagonal array. For all stick phases, slip precursors are evidenced and found to propagate quasi-
statically, normally to the iso-pressure contours. A simple quasi-static model relying on the existence
of interfacial stress gradients is derived and predicts qualitatively the position of slip precursors.

PACS numbers: 46.55.4+d, 68.35.Ct, 81.40.Pq

In recent years, our understanding of the transi-
tion from static to dynamic friction has been markedly
changed with the development of new imaging techniques
to probe spatially the interfacial dynamics at the onset
of sliding [1-3]. Slip phases were found to involve the
propagation of a series of dynamical rupture fronts, far
from Amontons-Coulomb’s classic picture. Using true
contact area imaging with evanescent illumination of a
1D Plexiglas-Plexiglas plane contact, Rubinstein et al.
[1] measured in particular slow fronts with velocities or-
ders of magnitude lower than the Rayleigh wave velocity,
along with sub-Rayleigh and fast intersonic fronts. Slow
fronts were also reported to propagate at soft elastomer-
glass interfaces with a similar phenomenology [4, 5]. Dur-
ing stick phases, slow slip precursors were also observed
well before macroscopic slippage occurs [2]. In all these
experiments, a single physical quantity is measured, ei-
ther the real area of contact directly related to the lo-
cal normal stress, or the local interfacial stress using
displacement measurements. In a recent work [6], Ben-
David and Fineberg provided both types of measurement
in a system treated as a 1D interface. Using strain gauges
sensors distributed directly above the interfacial plane,
they reported strong correlations between the fronts char-
acteristics and the ratio of tangential to normal local
stresses. For a 2D contact, simultaneous measurements
of both pressure and tangential interfacial fields is still
lacking and out of reach using Ben-David and Fineberg’s
approach. It also remains unclear what physical mecha-
nism underlies the existence of slip precursors in the stick
phase and their propagation velocity, despite numerous
theoretical as well as numerical works [7-11].

In this Letter, we take advantage of recent develop-
ments in micro-milling techniques to design model elas-
tomer multi-contact surfaces. These consist of thou-
sands of spherical caps distributed on top of a rectangular
block, all made from the same elastomer. We show that
spherical caps provide a unique way to measure optically
local normal and shear forces once in contact with bare

glass slides. We apply this novel technique to analyze
the stick-slip frictional dynamics of an hexagonal array
of spherical caps of equal height and radius of curvature.
Local analysis first reveals that pressure gradients are in-
herently present for this plane-plane contact, and second
that each slip event is mediated by slip precursors. These
are found to be quasi-static and to propagate normally
to the iso-pressure lines. We compare our findings with a
simplified pressure gradient based model where individ-
ual asperities are taken as elastically independent.

Micro-structured surfaces are obtained by pouring
and curing (see [12] for details) a PolyDimethylSilox-
ane (PDMS Sylgard 184, Dow Corning) in a Plexiglas
mold fabricated with a desktop CNC Mini-Mill machine
(Minitech Machinary Corp., USA). The molds consist of
10 x 10 mm? square cavities, 2.5 mm deep. Their bottom
surface is covered with spherical holes whose constant ra-
dius of curvature R = 100 pm is set by the ball miller
used. Holes are positioned spatially with 1 gm resolution
either over a regular lattice or at random and their max-
imum depths are either equal or taken at random from
a uniform distribution in the range 40-60 pm. Resulting
PDMS surfaces are decorated with spherical caps which
match the designed pattern. For the present work, differ-
ent types of patterns were fabricated — two hexagonal lat-
tices with a base surface coverage ® = 0.4, one with con-
stant height asperities (LLC) and one with random height
asperities (LR), and two random distributions with ran-
dom height asperities (RR), with ® = 0.2 and 0.4. Sam-
ples are maintained by adhesion against a solid glass plate
and put in contact with a clean bare glass slide under
constant normal load P. The glass slide is mounted on a
double cantilever system (normal and tangential stiffness
resp. 81048 Nm ™' and 106734285 Nm ™) which allows
to measure both P and the applied shear force Q with mN
resolution in the range [0-2.5] N. The glass slide can be
driven at constant velocity v in the range [4-1000] pm/s
(see [12] for a full description of the setup). The interface
is imaged in transmission with an LED array through the
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FIG. 1. (Color online) (a) Contact image of a RR sample (& = 40%, P = 2 N). Inset: single asperity in contact (contact
diameter 2a;). (b) P. vs P for all patterns (different colored symbols) loaded normally. (¢) Micro-contacts (resp. back layer)
displacements u.(t) (resp. uy(t)) for 23 micro-contacts chosen at random in the LC sample (v = 80 pum/s, P = 2 N). p; increases
from bottom to top (blue to red). (d) Q. vs Q for all patterns (different colored lines) in shear experiments. Inset: Q(¢) (solid
lines) and Q.(t) (dashed lines) for the LC pattern with P = 0.5,1,2 N (bottom to top) and v = 80 pum/s.

glass slide, with a megapixel CMOS sensor based camera
(Photon Focus, 30 Hz) or a fast camera (Photron Fast-
cam APX-RS, 1000 Hz). As shown on Fig. la, light is
transmitted at every single micro-contact and refracted
by the spherical caps elsewhere, resulting in a myriad
of white circular spots, whose radii a; can be extracted
using image analysis (Fig. la, inset). Assuming Hertz’s
model to describe the glass-spherical cap contact, the lo-
cal applied load p; is given by
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where F is the elastomer Young’s modulus and v = 0.5
[12] its Poisson’s ratio. This allows computing the to-
tal normal load P, = ), p;. For all experiments, a lin-
ear relationship is systematically found between P, and
P over two orders of magnitude in P, irrespective of
the type of disorder and pressure distributions (Fig. 1b).
Hertz assumption is thus clearly validated in normal con-
tact conditions. However, the slope of P, versus P de-
pends slightly on the optical threshold used to detect a;.
To recover a unit slope, we thus calibrated the optical
threshold with a reference sample whose Young’s modu-
lus £ = 4.1+0.1 MPa has been measured independently
with a JKR test [13]. We then kept the resulting thresh-
old for other samples and tuned E within experimental
errors to recover a unit slope. Upon shearing the inter-
face, obtained by driving the translation stage at con-
stant v in the range [20-120] pm/s, the micro-contacts
size changes marginally from circular to slightly elliptic,
still allowing p; to be extracted within Hertz assumption.

Contrary to the usual pillar geometry of asperities
[5, 14, 15], spherical asperities do not bend nor buckle. It
is thus possible to locate unambiguously with sub-pixel
accuracy (1/24 pixels, ~ 400 nm) positions of the micro-
contacts centers and follow, using a custom made algo-
rithm written in Matlab (MathWorks), their displace-

ments with respect to their initial position, u. (Fig. lc,
upper panel). The same methods allow to extract the
displacement of the back layer by monitoring positions of
the base of spherical asperities, u; (Fig. 1c, lower panel).
Defining § = u. — up as the displacement of the cap top
with respect to the back layer, we measured § ~ avt
with o = 0.032. Neglecting any micro-slip at the edges
of the micro-contacts [12], the local shear force g; is pro-
portional to a; [13], according to
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The total shear force Q. is obtained writing that
Q. = Y, q;- For all patterns, Eq. 2 provides a good ap-
proximation for the local shear force as shown on Fig. 1d.
A one-to-one linear relationship between Q). and ) over
two orders of magnitude is found. The inset of Fig. 1d
illustrates this agreement with Q(t) and Q.(t).

We now turn onto analyzing in details the frictional dy-
namics of the LC pattern, the simplest available texture,
sheared along z. @ is found to increase up to a static
threshold, beyond which a stick-slip instability always
sets for all P and v within [20 pm/s-120 pm/s] (Fig. 1d,
inset). In the stick-slip regime, the spatial distribution
of local normal forces is found to be non-uniform with
a characteristic saddle-like shape (Fig. 2a) and is time
invariant. Such non-uniformity presumably results from
combined effects of the existence of a curvature of the
sample at long wave lengths, contact loading history
and Poisson expansion [5]. Analysis of the displacement
curves u.(t) reveals that during initial and subsequent
stick phases, slip precursors nucleate and eventually in-
vade the whole contact. In the stick-slip regime, they
can be best evidenced when looking at 2D velocity field
snapshots du./dt (Figs. 3a-b-c at three instants shown on
Fig. 3d). In the stick phase (¢ < 5, where ¢, is the time
of slip, different for each event), they appear as spatially
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FIG. 2. (Color online) (a) Spatial distribution of normal local
forces (in N) for the LC pattern in the stick-slip regime (P =
2.36 N). (b) Pressure (o) and radii (+) distributions averaged
along x in the region bounded by the two vertical lines in (a).
The line is a fit a(y) = a0 + a1 y + a2 y? with {ao,a1,a2} =
{8.37 pm, 6.27 1073, -0.51 m~'}.

localized structures with large negative velocities, indica-
tive of a collective back-snapping of the micro-contacts
(Figs. 3a-b). A secondary slip pulse also forms several as-
perities behind the first one (Fig. 3b). In the slip phase
(t > ts) however, all remaining micro-contacts back-snap
coherently. These two consecutive slip pulses are sys-
tematically observed for all stick-slip events, and always
nucleate on the contact edges. When focusing on the
central band 4 < z < 9 mm, front lines are essentially
oriented along x normally to the iso-pressure lines (see
Fig. 3a-b) [16]. Within this band, the velocity field along
the y direction is averaged over z to help visualizing how
the front propagates spatially over time.

On the resulting spatiotemporal plot (Fig. 3e), both
first and second slip pulses are visible, each of them con-
sisting of two branches, almost symmetric with respect
to the y ~ 6 mm axis. The first slip pulse appears to
propagate initially with a constant velocity before con-
tinuously accelerating as t approaches t5, reaching a max-
imum velocity of about 10 mm/s, three orders of mag-
nitude lower than the Rayleigh wave velocity (= 10 m/s
for PDMS). The observed scenario remains qualitatively
similar for the first loading stick phase, but slip precur-
sors are more heterogeneously distributed, preventing a
direct quantitative analysis. This difference is likely re-
lated to slight pressure distribution rearrangements dur-
ing the first loading phase. For the present work, we have
thus chosen to focus on the stick-slip regime only.

For each stick-slip event, front positions were obtained
by detecting individual times of slip for each asperity in
contact, using their displacement u.(t), allowing to ob-
tain them with a better accuracy. Mean front positions
versus mean times of slip were deduced by averaging
both individual slip times of all asperities at the same
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FIG. 3. (Color online) (a-c) Velocity field snapshots at times
t1 (a), t2 (b) and t3 (c). SP1 (resp. SP2) stands for 1%
(resp. 2”d) slip pulse. The black arrow shows the direction
of sliding. Vertical lines delimit the region defined in Fig. 2a.
(d) Qc(t) for the stick-slip event of (a-c). Dashed lines are
drawn at times ¢1,t2 and t3. (e) Spatiotemporal plot of the
velocity field along y averaged for 4 < x < 9 mm. Velocities
are given in mm/s. T is the delay between SP1 and SP2.

y-position (within the central z-band) and mean front
positions on all stick-slip events. Similarly to the veloc-
ity spatiotemporal representation, such curves are almost
axisymmetric around y ~ 6 mm, allowing to extract the
distance ¢ to this axis of symmetry, which is a direct
measure of the remaining stick zone extension. This pro-
cedure was applied for 6 experiments at P = 2.36 N with
increasing driving velocities v. Figure 4 shows the result-
ing ¢ vs (ts —t) for the first slip pulse (Fig. 4a) and the
same data with the time axis multiplied by v (Fig. 4b).
All curves at different v are found to overlap on the same
master curve, suggesting that propagation of slip precur-
sors results from a quasi-static mechanism.
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FIG. 4. (Color online) (a) ¢ vs. (ts —t) for the first slip pulse
and v = 20(+), 30(0), 50(¢), 80(*), 100(57), 120(oc) pum/s. (b)
cvs. v(ts—t). (c) Log-log plot of (b). The solid line is a power
law of exponent 1/3. The dashed line is the model prediction.

Quasi-static slip precursors have already been reported



numerically [8, 17] but not experimentally, and its under-
lying physics remains elusive. In an attempt to provide
an answer within the framework of our measurements, let
us model our system with asperities distributed along y
(the direction normal to the iso-pressure lines) on a unidi-
mensional regular lattice of lattice constant b, and let us
neglect the elastic interaction between them (4.e. absence
of any back layer). In Amontons-Coulomb’s description,
slip of an asperity ¢ occurs once q; = usp;, where ps is a
static friction coefficient. Combining Egs. 1 and 2 yields
the maximum displacement §% beyond which slip occurs
and the asperity snaps back, as

0y = psa; /R 3)

An asperity i initially at position y§ = b x i will slip
when its position reaches y: = yi + 0% ~ yj, since
8 < b. Combined with Eq. 3, this expression allows
to predict for a given pressure profile, the front position
and time of slip, respectively y,, = y% and ti = 6 /(av).
In an ideal plane-plane contact where pressure is uni-
formly distributed over the contact (to the exception of
the edges of the contact), all asperities should slip si-
multaneously and no slip pulse should be observed. In
our experiments however, pressure gradients are clearly
present along y as evidenced on the example of Fig. 2a.
Taking a continuous limit, the contact radius a; vs po-
sition in the sample can be reasonably well fitted by a
parabola a(y) = ag + a1 y + as y* (see Fig. 2b). Us-
ing this expression with Eq. 3 provides directly the posi-
tion of the front with respect to its position at threshold,

2 2
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threshold displacement at t = t5. It reads
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This quasi-static model can be extended to any pres-
sure distribution if needed, and provides a description
of the first loading phase, where all micro-spheres start
from their initial unloaded position. Once a sphere slips,
it relaxes back from its maximum displacement &% by
5 = %52 before the beginning of a next loading phase,
where Ap = pg — pg with pg a dynamical friction coeffi-
cient. The model can be extended to the stick-slip events
by replacing us by Aup in Eq. 4. Note that close to the
threshold (§ — §5 < J5), ¢(d) behaves asymptotically as

c(8) = K (6, — 6)"/? (5)

with K = (2R/(Ap(a3—4agaz)))/? and one thus expects
¢(0) to follow a power law of exponent 1/2. Predictions
of Eq. 4 are plotted on Fig. 4c, with {ag, a1, a2} given by
the parabolic fit (see caption of Fig. 2b) and Ay = 0.157,

obtained by averaging values of Ap for all experiments.
The predicted curve qualitatively succeeds in reproduc-
ing the measured trend and right order of magnitude of
¢(6), but fails quantitatively, as measured ¢ values are
systematically above it. In addition, careful examination
of the data tend to suggest that ¢ follows indeed a power
law, but with a characteristic exponent closer to 1/3 than
1/2 (Fig. 4c). The present toy model lacks several ingre-
dients which could explain the observed discrepancies.
First, it is limited to a 1D description whereas the slip
propagation is clearly 2D. Second, it does not take into
account the elastic coupling between neighboring asper-
ities connected to the elastic back layer. Including both
effects is expected to improve comparison, but is beyond
the scope of this Letter.

Beyond its limitations, this model provides however a
simple mechanism to generate slip pulses, relying on in-
terfacial stress gradients. Interestingly, it also predicts
the existence of second slip pulses whose propagation is
delayed by T, as evidenced on Fig. 3e. This delay re-
sults from the sum of (i) the individual relaxation time
7 of a given sphere sliding back from its maximum po-
sition &% of the distance %, and (ii) the time to reach
8% again, yielding T = 7 + 6%/(av). Such relationship
is actually verified experimentally (not shown), asserting
furthermore the quasi-static character of the measured
slip pulses. Taking 7 = 7.6 + 0.5 ms, obtained by
averaging times of relaxation for all individual trajecto-
ries, one gets 0 ~ 0.35 um, comparable to the mea-
sured averaged value of 1 pm. In addition, the second
slip pulse can only be identified if T(i = 0) < t5, dura-
tion of the slip event for which the global collapse of the
interface happens. This criterion gives a limiting driv-
ing velocity v; above which no second slip pulse can be

. 2
observed, vy = (6, — 6i70) = f]‘g((émzz%%)z —a?).
Using the experimental values and 7 = 7.6 ms, one gets
v, ~ 4.4 mm/s, much larger than the maximum tested
driving velocity. This agrees with a systematic observa-
tion of a second slip pulse at all velocities.

This work has been purposely limited to the stick-slip
regime where slip precursors could be characterized and
compared to a non-interacting model. As mentioned ear-
lier, a similar phenomenology is observed for the first
stick event, and will be explored further in a future
work. Our results demonstrate how combining surface
micro-patterning and interface imaging allows accessing
the mechanics at the level of single asperities. This has
been applied to a hexagonal array of equal height micro-
asperities, revealing that slip precursors propagate quasi-
statically orthogonally to the iso-pressure lines. It will be
extended to more elaborate patterns in a future work.
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