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New Identities Relating Wild Goppa Codes

For a given support L ∈ F n q m and a polynomial g ∈ F q m [x] with no roots in F q m , we prove equality between the q-ary Goppa codes Γ q L, N (g ) = Γ q L, N (g )/g where N (g ) denotes the norm of g , that is g q m-1 +•••+q+1 . In particular, for m = 2, that is, for a quadratic extension, we get Γ q L, g q = Γ q L, g q+1 . If g has roots in F q m , then we do not necessarily have equality and we prove that the difference of the dimensions of the two codes is bounded above by the number of distinct roots of g in F q m . These identities provide numerous code equivalences and improved designed parameters for some families of classical Goppa codes.

Introduction

Let F q m /F q be an extension of finite fields. Given an ordered n-tuple L = (α 1 , . . . , α n ) ∈ F n q m and a polynomial G ∈ F q m [x] with no roots among the entries of L, the classical Goppa code over F q denoted by Γ q (L,G) is defined as

Γ q (L,G) def = (c 1 , . . . , c n ) ∈ F n q n i =1 c i x -α i ≡ 0 mod G(x) .
Since their introduction by V. D. Goppa in 1970 [START_REF] Goppa | A new class of linear correcting codes[END_REF], classical Goppa codes are subject to intense study and many questions remain open. For instance, even if the existence of asymptotic families of Goppa codes reaching the Gilbert-Varshamov bound is known for a long time, no explicit construction of such a family is known. More generally, the exact computation of the dimension and the minimum distance of a given Goppa code remain an open problem.

Besides, Goppa codes are particularly appealing for cryptographic applications. Indeed, since the introduction of code-based cryptography by McEliece in 1978 [START_REF] Mceliece | A Public-Key System Based on Algebraic Coding Theory[END_REF], Goppa codes still remain among the few families of algebraic codes which resist to any structural attack. This is one of the reasons why every improvement of our knowledge of these codes is of particular interest.

Goppa codes form a subfamily of alternant codes, that is subfield subcodes of Generalised Reed-Solomon codes.

As alternant codes, the classical results on the parameters of subfield subcodes provide lower bounds for their dimension and minimum distance. However, these bounds can be improved for some specific Goppa codes and for a relevant choice of the Goppa polynomial G. A major improvement of these parameters has been obtained in 1976 by Sugiyama et al. [START_REF] Sugiyama | Further results on Goppa codes and their applications to constructing efficient binary codes[END_REF] who proved that if g ∈ F q m [x] is squarefree, then, Γ q L, g q-1 = Γ q L, g q . This equality can easily be generalised as Γ q L, g sq-1 = Γ q L, g sq for any positive integer s. This identity relating the subfield subcodes of two Generalised Reed-Solomon codes with distinct parameters allows to take the best from each one. Namely, the dimension of such a code is at least the designed dimension of Γ q L, g q-1 which is nm deg(g )(q -1) and the minimum distance is at least the designed distance of Γ q L, g q which equals deg(g )q+1. In the binary case, this identity provides a lower bound for the minimum distance of Γ 2 (L, g ) which is almost twice the designed distance for alternant codes. Some extensions of Sugiyama et al.'s result to algebraic geometry codes are presented in [START_REF] Couvreur | Codes and the Cartier operator[END_REF][START_REF] Katsman | Representation theory, group rings, and coding theory[END_REF][START_REF] Wirtz | On the parameters of Goppa codes[END_REF]. The particular subclass of Goppa codes of the form Γ q L, g q-1 for a squarefree Goppa polynomial g has been called wild Goppa codes by Bernstein et al. [START_REF] Bernstein | Wild McEliece[END_REF][START_REF] Bernstein | Wild McEliece incognito[END_REF] who proposed them for McEliece's encryption scheme since their improved designed parameters allowed to reduce the size of the public and secret keys for a fixed security level. Beside Sugiyama et al.'s results, many improved lower bounds and exact computations of the true parameters -in particular the dimension -of some particular Goppa codes appear in the literature. For instance (and the list is far from being exhaustive), the authors of [START_REF] Loeloeian | A transform approach to Goppa codes[END_REF] propose a new lower bound for the minimum distance using the discrete Fourier transform. Improved lower bounds or exact values of the dimension of Goppa codes for specific families of Goppa polynomials are proved in [START_REF] Bezzateev | A subclass of binary Goppa codes with improved estimation of the code dimension[END_REF][START_REF] Roseiro | The trace operator and redundancy of Goppa codes[END_REF][START_REF] Van Der | The true dimension of certain binary Goppa codes[END_REF][START_REF] Véron | Goppa codes and trace operator[END_REF][START_REF] Véron | True dimension of some binary quadratic trace Goppa codes[END_REF][START_REF] Véron | Proof of conjectures on the true dimension of some binary Goppa codes[END_REF]. Many code equivalences and inclusions relating some particular binary Goppa codes are proved in [START_REF] Bezzateev | Chain of separable binary Goppa codes and their minimal distance[END_REF][START_REF] Bezzateev | Cumulative-Separable codes[END_REF]. Most of these results concern Goppa codes whose Goppa polynomial or one of its divisors sends every entry of the support L ∈ F n q m into a proper subfield of F q m . Such a feature induces in general the apparition of linear relations between the parity checks of the code when passing from the Generalised Reed-Solomon code to its subfield subcode, which guarantees a larger dimension compared to the generic estimate for subfield subcodes. Among the previously cited works we should point out Véron's examples [START_REF] Véron | Goppa codes and trace operator[END_REF], who studied Goppa codes whose Goppa polynomial is a trace polynomial, i.e. a polynomial

G ∈ F q m [x] of the form G = g + g q + • • • + g q m-1 with g ∈ F q m [x].
Roughly speaking, the present article, deals with norms instead of traces. Namely, we consider Goppa polynomials of the form g q m-1 +•••+q+1 and prove a very surprising equality: for g ∈ F q m [x] with no roots in F q m , we have: 

Γ q L, g q m-1 +•••+q = Γ q L, g q m-

Results of the present article

Consider an extension of finite fields F q m /F q with m 2. Let n be a positive integer and L = (α 1 , . . . , α n ) be an ordered n-tuple of pairwise distinct elements of F q m and G ∈ F q m [x] be a polynomial with no roots among the entries of L, then the classical Goppa code associated to L and G over the subfield F q is defined as:

Γ q (L,G) def = (c 1 , . . . , c n ) ∈ F n q n i =1 c i x -α i ≡ 0 mod G(x) .
The n-tuple L is called the support of the code. If L contains every element of F q m , i.e. if n = q m , then the corresponding codes are said to have a full support. The polynomial G is called the Goppa polynomial. As an alternant code a Goppa code has a designed dimension nm deg(G) and a designed minimum distance deg(G) + 1 (see [START_REF] Van Lint | Introduction to coding theory[END_REF]Theorem 9.2.7]). Here we state Theorems 1 and 4 which are the main results of the present article. Their proofs are given in Section 3.

Theorem 1. Let g ∈ F q m [x] be a polynomial with no roots in F q m and L be an ordered n-tuple of pairwise distinct elements of F q m . Then,

Γ q L, g q m-1 +q m-2 +•••+q = Γ q L, g q m-1 +q m-2 +•••+q+1 . ( 1 
)
This result can be combined with Sugyiama et al. [START_REF] Sugiyama | Further results on Goppa codes and their applications to constructing efficient binary codes[END_REF] and gives the following corollary.

Corollary 2. Let L, g be as in Theorem 1 and assume in addition that g is squarefree, then

Γ q L, g q m-1 +q m-2 +•••+q-1 = Γ q L, g q m-1 +q m-2 +•••+q = Γ q L, g q m-1 +q m-2 +•••+q+1 . ( 2 
)
In addition, Theorem 1 provides improved designed parameters for the involved codes, namely, they can easily be proved to have parameters of the form:

[n, n -mt (q m-1 + • • • + q -1), t (q m-1 + • • • + q + 1) + 1],
where t denotes the degree of g . Actually, the dimension is far larger than this bound. Indeed, the polynomial g q m-1 +•••+q+1 sends every element α ∈ F q m on an element of F q , namely the norm of g (α). In [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF], the authors prove that such alternant codes are equivalent to a subfield subcode of a Reed-Solomon code, that is extended or shortened BCH codes. Furthermore, it is well-known that subfield subcodes of Reed-Solomon codes have a large dimension compared to subfield subcodes of random codes [START_REF] Bierbrauer | New code parameters from Reed-Solomon subfield codes[END_REF][START_REF] Hattori | Subspace subcodes of Reed-Solomon codes[END_REF][START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF][START_REF] Liao | On Reed-Solomon codes[END_REF]. For instance when m = 2, the codes Γ q L, g q and Γ q L, g q+1 are equal and have parameters of the form:

[n, n -2t (q -1) + t (t -2), t (q + 1) + 1].

Third, we point out that compared to Sugyiama et. al.'s result [START_REF] Sugiyama | Further results on Goppa codes and their applications to constructing efficient binary codes[END_REF], our identity (1) does not require the polynomial g to be squarefree. This has the following interesting consequence.

Corollary 3.

Let h be a polynomial in F q m [x] with no roots in F q m and L be a support. Then, for all integer s > 0, we have

Γ q L, h s(q m-1 +q m-2 +•••+q) = Γ q L, h s(q m-1 +q m-2 +•••+q+1)
and all the intermediary codes Γ q L, h s(q m-1 +q m-2 +•••+q)+i for 0 < i < s are also equal to the above codes.

This corollary can be also combined with Sugyiama et al.'s result assuming that the polynomial h is squarefree, which will extend the equality as:

Γ q L, h s(q m-1 +q m-2 +•••+q)-1 = • • • = Γ q L, h s(q m-1 +q m-2 +•••+q+1)
Finally, it is worth noting that, even if the code has not a full support, Theorem 1 holds true only if g has no roots in F q m . In particular, this result is not usable when the degree of g is 1. Nevertheless, in the general case one still has the following statement.

Theorem 4. Let L be a support and g ∈ F q m [x] be a polynomial with no roots in L. Let r be the number of distinct roots of g (i.e. not counted with multiplicity) in F q m . Then we have:

dim F q Γ q L, g q m-1 +q m-2 +•••+q -dim F q Γ q L, g q m-1 +q m-2 +•••+q+1 r.
Notice that in general the difference between the dimensions of Γ q L, g a and Γ q L, g a+1 is m deg(g ). Here the difference is smaller than deg(g ) and is not multiplied by m. Thus, the difference is small compared to the general case. This statement is of interest, since, using the very same argument as above, one can prove using [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF] that, if the support L is full (i.e. n = q m ), then Γ q L, g q m-1 +q m-2 +•••+q+1 is a subfield subcode of a Reed-Solomon code and hence has a dimension larger than the designed dimension for general alternant codes. By this manner, Theorem 4 provides an improved lower bound for the dimension of codes Γ q L, g q m-1 +q m-2 +•••+q , where g has degree 1.

Outline of the article

This article is organised as follows. Elementary properties of Goppa codes are recalled and discussed in Section 1. The particular case of Goppa codes whose Goppa polynomial sends every entry of L into a proper subfield of F q m is discussed in Section 2. Section 3 is devoted to the proofs of the main results of the article, namely Theorems 1 and 4. Finally, some numerical examples illustrating our results are presented in Section 4.

Some Well Known Properties of Goppa Codes

Notation 1. For a given support L = (α 1 , . . . , α n ) of pairwise distinct elements of F q m , we denote by π L the polynomial

π L def = n i =1 (x -α i ).
We denote by π ′ L its first derivative. Finally, for a positive integer a, we denote by F q m [x] <a the subspace of F q m [x] of polynomials of degree less than a.

Recall that q-ary Goppa codes are alternant codes, i.e. subfield subcodes over F q of a Generalised Reed-Solomon (GRS) code over F q m . Therefore, from Delsarte's Theorem [START_REF] Macwilliams | The theory of error-correcting codes[END_REF]Theorem 7.7.11], the dual of the Goppa code, is the trace of a GRS code. Lemma 5. Let L be a support and h ∈ F q m [x] with no roots in L and C ,C ⊥ be the GRS codes defined by

C def = h(α 1 ) f (α 1 ) π ′ L (α 1 ) , . . . , h(α n ) f (α n ) π ′ L (α n ) α i ∈ L, f ∈ F q m [x] <n-t ; C ⊥ = f (α 1 ) h(α 1 ) , . . . , f (α n ) h(α n ) α i ∈ L, f ∈ F q m [x] <t .
Then, Γ q (L, h) = C |F q and Γ q (L, h) ⊥ = Tr(C ⊥ ) where Tr denotes the map Tr F q m /F q applied component-wise.

Proof. See [START_REF] Macwilliams | The theory of error-correcting codes[END_REF]Theorems 12.4 and 12.5] for binary Goppa codes. The q-ary case is obtained using the very same proof.

The following elementary lemma is useful in what follows.

Lemma 6. Let L = (α 1 , . . . , α n ) be a support and g , h ∈ F q m [x] be two relatively prime polynomials such that both have no roots among the entries of L. Set na = dim F q Γ q L, g and nb = dim F q Γ q (L, h) Then,

Γ q L, g h = Γ q L, g ∩ Γ q (L, h) ; (3) dim F q Γ q L, g h n -a -b. ( 4 
)
Proof. The Chinese remainder Theorem in the ring

F q m [x, 1 π L ] asserts that n i =1 c i x -α i ≡ 0 mod (g h) ⇐⇒          n i =1 c i x -α i ≡ 0 mod (g ) n i =1 c i x -α i ≡ 0 mod (h).
This yields (3) and implies that Γ q L, g h ⊥ = Γ q L, g ⊥ + Γ q (L, h) ⊥ , which gives (4).

Remark 1. Let L, g be as in Theorem 1 and h ∈ F q m [x] be a polynomial prime to g and with no roots in L. Then, Theorem 1 generalises as:

Γ q L, hg q m-1 +•••+q-1 = Γ q L, hg q m-1 +•••+q = Γ q L, hg q m-1+•••+q+1 .
The Goppa codes described above for m = 2 are proposed for cryptographic applications in [START_REF] Bernstein | Wild McEliece incognito[END_REF].

Lemma 7. Let L, L ′ be two supports such that L can be obtained from L ′ by removing some entries without changing the ordering. Let g ∈ F q m [x] be a polynomial with no roots in L ′ (and hence in L), then Γ q L, g is equal to the shortening of Γ q L ′ , g on L.

Proof. This follows immediately by viewing α∈L c α

x-α as the sum β∈L ′ c β

x-β such that c β = 0 for all β ∈ L ′ \L.

Goppa Codes and Subfield Subcodes of Reed-Solomon Codes

Definition 8 (Diagonal equivalence). Let C ,C ′ be two codes in F n q . C ,C ′ are said to be diagonally equivalent and we write C ∼ F q C ′ in this case, if C ′ is the image of C by a Hamming isometry of F n q of the form:

F n q -→ F n q (x 1 , . . . , x n ) -→ (u 1 x 1 , . . . , u n x n ) ,
where the u i 's are all in F × q . This choice of terminology comes from the fact that the codes can be sent onto each other using an invertible diagonal matrix.

Here, we reformulate for our purpose some results stated in [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]. Proposition 9. Let L be an n-tuple of pairwise distinct elements of F q m and g , h be two polynomials in F q m [x] which have no roots among the entries of L (but possibly elsewhere in F q m ), such that deg(g ) = deg(h), then the codes Γ q L, g q m-1 +•••+q+1 and Γ q L, h q m-1 +•••+q+1 are diagonally equivalent.

Proof. For all α ∈ L, note that g q m-1 +•••+q+1 (α) (resp. h q m-1 +•••+q+1 (α)) is nothing but N F q m /F q (g (α)) (resp. N F q m /F q (h(α))) and hence is in F q . Thus both Goppa polynomials send every entry of L into F q . One concludes using [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]Proposition 3.5].

Remark 2. The result stated in [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF] concerns codes on a support avoiding 0. However, their result extends straightforwardly to a full support.

Corollary 10. Let g be a polynomial in F q m [x] with no roots in F q m and L 0 be a "full support", i.e. an ordered q m -tuple containing all the elements of F q m , then we have the diagonal equivalence of codes

Γ q L 0 , g q m-1 +q m-2 +•••+q+1 ∼ F q RS k (L 0 ) |F q ,
where RS k (L 0 ) |F q denotes the subfield subcode of the Reed-Solomon code over F q m of dimension k = q mdeg(g )(q m-1 + q m-2 + • • • + q + 1) with full support. In particular the diagonal equivalence class of this code depends only on the degree of g .

Proof. See [12, §3].

It is worth noting that a subfield subcode of a full support Reed-Solomon code is nothing but an extended BCH code. In [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]Theorem 4.4], the authors give a formula for the dimension of such codes involving the number and the size of some cyclotomic classes. See Section 4 for further discussion. Remark 3. Corollary 10 holds for every Goppa Polynomial sending every entry of the support into F q . In particular, this gives another interpretation of Véron's results [START_REF] Véron | Goppa codes and trace operator[END_REF] showing that the dimension of Goppa codes with a Goppa polynomial of the form g + g q + • • • + g q m-1 exceeds the generic bound for alternant codes. Indeed, since such a Goppa polynomial sends every entry of the support into F q , the corresponding Goppa code is F q -equivalent to a BCH code.

Proof of Theorems 1 and 4 3.1 Notation

In what follows we frequently consider F n q m and F n q as rings for their canonical product ring structure. The component-wise product of two n-tuples a, b in F n q m is denoted by

a ⋆ b def = (a 1 b 1 , . . . , a n b n ).
We also allow ourselves the notation a s to denote the component-wise s-th power and 1/a for the componentwise inverse when a is in (F × q m ) n . Recall that Tr : F n q m → F n q is the component-wise trace map. In the same manner, N : F n q m → F n q is the component-wise norm map. Furthermore, we denote by ev L the evaluation function:

ev L : F q m [x] -→ F n q m f -→ f (α 1 ), . . . , f (α n ) . ( 5 
)
This turns out to be a ring homomorphism. We also need to introduce the map τ defined as the composition of ev L and Tr, namely:

τ : F q m [x] -→ F n q f -→ Tr(ev L ( f )) . ( 6 
)
Finally, for convenience, we denote by e the integer e def = q m-1 + q m-2 + • • • + q.

Preliminaries

Local reformulation

Thanks to Lemma 6, one can assume that g is a power h s of an irreducible polynomial h ∈ F q m [x] with s 1.

Hence we are reduced to prove the following statement.

Theorem 11 (Local version of Theorems 1 and 4). Let L ∈ F n q m be a support and g ∈ F q m [x] be a polynomial of degree t which is either irreducible or a power of an irreducible polynomial. Only two cases can occur: (i) g has no roots in F q m then Γ q L, g e = Γ q L, g e+1 ;

(ii) or g = (xρ) t for some t 1 and some ρ ∈ F q m which does not appear in the entries of L, then:

dim F q Γ q L, g e -dim F q Γ q L, g e+1 1.

Duality and role of the norm

Theorem 11 can be reformulated using duality together with an argument involving the norm N F q m /F q which is strongly related to the results of Section 2.

Proposition 12. Theorem 11 (i) and (ii) are respectively equivalent to

(i') If g has no roots in F q m then τ F q m [x] <(e+1)t = τ g F q m [x] <et .
(ii') If g = (xρ) t for some ρ ∈ F q m and some t 1, then

dim F q τ F q m [x] <(e+1)t -dim F q τ g F q m [x] <et 1.
Proof. Let us prove that Theorem 11 (i) is equivalent to (i ′ ). Let g be a polynomial with no roots in F q m . By using Lemma 5, Theorem 11 (i) is equivalent to its dual reformulation, namely

Tr ev L f ev L g e+1 f ∈ F q m [x] <(e+1)t = Tr ev L f ev L g e f ∈ F q m [x] <et (7) 
Note that

Tr ev L f ev L g e f ∈ F q m [x] <et = Tr ev L f ⋆ ev L g ev L g e ⋆ ev L g f ∈ F q m [x] <et (8) 
= Tr ev L (h) ev L g e+1 h ∈ g F q m [x] <et . (9) 
In addition, since ev L g e+1 = N ev L g , this vector has its entries in F q . Hence these denominators can be pulled out of the traces. Therefore, ( 7) is equivalent to

1 ev L g e+1 ⋆ Tr ev L f f ∈ F q m [x] <(e+1)t = 1 ev L g e+1 ⋆ Tr (ev L (h)) h ∈ g F q m [x] <et . ( 10 
)
Finally, this equality is clearly equivalent to

Tr ev L f f ∈ F q m [x] <(e+1)t = Tr (ev L (h)) | h ∈ g F q m [x] <et . ( 11 
)
This concludes the proof. The proof of the equivalence between Theorem 11 (ii) and (ii') is the very same one replacing equalities by inclusions with codimension 1.

The spaces K and T

Proposition 13 below explains that the proof of Proposition 12, which is equivalent to Theorem 11, can be achieved by proving the existence of two special vector spaces K and T .

Proposition 13. If there exists a subspace K of F q m [x] <(e+1)t satisfying:

(I) K ⊂ ker τ (II) K ∩ g F q m [x] <et = {0} (III) dim F q K = mt -1 then it implies: dim F q τ F q m [x] <(e+1)t -dim F q τ g F q m [x] <et 1.
In addition, if g has no roots in F q m , and if there exists another F q subspace T of

F q m [x] <(e+1)t such that (IV) K ⊕ T ⊂ ker τ and F q m [x] <(e+1)t = K ⊕ T ⊕ g F q m [x] <et , then the equality τ F q m [x] <(e+1)t = τ g F q m [x] <et holds.
Proof. This follows basically from the fact that dim F q F q m [x] <(e+1)t = m(e + 1)t whereas dim F q F q m [x] <et = met . If such a space K exists, then from (II) and (III), we get the existence of an F q -one-dimensional subspace

T 0 of F q m [x] <(e+1)t such that F q m [x] <(e+1)t = K ⊕T 0 ⊕g F q m [x] <et .
Then, (I) leads to Proposition 12 (ii') or equivalently Theorem 11 (ii). If in addition, there exists a space T satisfying (IV), then we clearly get Proposition 12 (i') or equivalently Theorem 11 (i).

From now on, the polynomial g is assumed to be either irreducible or of the form g = h s for some irreducible polynomial h ∈ F q m [x] and some integer s > 1. The degree of g is denoted by t .

The construction of K and the existence of T

First, we recall a well known result concerning elements whose trace is zero (see [START_REF] Lidl | Finite fields[END_REF]Theorem 2.25] for a proof ).

Lemma 14. For all α ∈ F q m such that Tr F q m /F q (α) = 0, there exists β ∈ F q m such that α = ββ q .

We look for an F q -subspace K ⊂ F q m [x] <(e+1)t satisfying (I), (II) and (III) of Proposition 13. Notice that we have ker τ = a ∈ F q m [x] <(e+1)t | Tr(ev L (a)) = 0 . This point, together with Lemma 14, explain the rationale behind the following definition.

Definition 15. We denote by K the image of the map µ :

F q m [x] <t -→ F q m [x] a -→ a q -a . ( 12 
)
Lemma 16. We have, K ⊂ ker τ and dim F q K = mt -1.

Proof. First, let us check that K ⊂ F q m [x] <(e+1)t . Let a be an element of F q m [x] <t , we have a qa ∈ F q m [x] <q t .

Since, e = q m-1 + • • • + q and m 2, we have e q and hence a qa ∈ F q m [x] <(e+1)t . Next, by definition of Tr and its elementary properties, we have:

Tr ev L a qa = Tr ev L (a) q -Tr (ev L (a)) = 0.

This yields the inclusion K ⊂ ker τ. To get the dimension, we prove that dim F q ker µ = 1. Let a be an element of ker µ, i.e. a is a polynomial in F q m [x] <t satisfying a(x) q = a(x). Then the degree of a is zero and a is nothing but a constant polynomial satisfying a q = a. Thus, ker µ consists in the subspace of constant polynomials lying in

F q .
In what follows some proofs require the use of congruences modulo some polynomials. For this reason we introduce the following notation.

Notation 2. For f ∈ F q m [x] and for all a ∈ F q m [x], we denote by a mod ( f ) the class of a in F q m [x] ( f ) . In the same manner, the image of K by the canonical map F q m [x] → F q m [x] ( f ) will be denoted by (K mod f ). Finally, after the map µ introduced in (12) we define for all f ∈ F q m [x], the map µ f as

µ f : F q m [x] ( f ) -→ F q m [x] ( f ) a mod ( f ) -→ a q -a mod ( f ) . ( 13 
)
Lemma 17. Let h be an irreducible polynomial of degree r such that g = h s for some positive integer s (possibly s = 1). Viewing F q m [x] (h) as the finite field F q mr it turns out that K mod (h) satisfies:

K mod (h) = ker Tr F q mr /F q .

Remark 4. In particular, if g is irreducible (s=1) then K mod (g ) = ker Tr F q mt /F q .

Proof. Since

r def = deg(h) t , the map F q m [x] <t → F q m [x] (h
) is surjective and hence (K mod (h)) is nothing but the image of µ h (see [START_REF] Katsman | Representation theory, group rings, and coding theory[END_REF] in Notation 2). Considering the quotient ring F q m [x] (h) as the finite field F q mr we conclude by using Lemma 14.

Proposition 18. We have

dim F q (K mod (g )) = mt -1.
Proof. If g is irreducible, then it is a straightforward consequence of Lemma 17. Let us assume that g is of the form h s for some irreducible polynomial h and some integer s > 1. Recall that the space K mod (g ) is nothing but the image of µ g (see [START_REF] Katsman | Representation theory, group rings, and coding theory[END_REF] in Notation 2). Therefore, we wish to prove that dim F q ker µ g = 1. We will show that ker µ g is isomorphic to

F q . Let a ∈ F q m [x] such that (a mod (g )) ∈ ker µ g . That is a ≡ a q mod (g ) (14) 
Since g = h s , we have a fortiori a ≡ a q mod (h). Since F q m [x] (h) is a field containing F q , then a mod (h) is represented by a constant polynomial lying in F q . Therefore, there exists α ∈ F q and a 1 (x) ∈ F q m [x], such that

a(x) = α + h(x)a 1 (x).
From ( 14), we get a ≡ a q i mod (g ) for all i > 0. Choose i such that q i s. Then, h q i ≡ 0 mod (g ) since g = h s . Therefore, a ≡ a q i mod (g ) entails a ≡ α q i mod (g ).

Finally, since α ∈ F q , we have α q i = α which entails a ≡ α mod (g ). This yields an F q -isomorphism between ker µ g and F q , which concludes the proof.

Corollary 19. K ∩ g F q m [x] <et = {0}.
Proof. From Lemma 16, the space K has F q -dimension mt -1 and, from Proposition 18, K mod (g ) has F qdimension mt -1 too. Thus, the canonical projection K → F q m [x] (g ) is injective and its kernel, which is nothing but

K ∩ g F q m [x] is equal to zero. Consequently, K ∩ g F q m [x] <et is zero too.
Proposition 20. The F q -space K of Definition 15 satisfies Conditions (I), (II) and (III) of Proposition 13.

Proof. Lemma 16 yields Condition (I). Lemma 16 also yields Condition (III) and Corollary 19 gives Condition (II).

Therefore, we proved Theorem 11 (ii) and there remains to prove Theorem 11 (i). Thus, from now on, we assume that g has no roots in F q m and we will prove the existence of a one-dimensional F q -space T satisfying (IV). The strategy to find such a T is to choose it as T = 〈λa e+1 〉 F q for some a ∈ F q m [x] <t and some λ ∈ F × q m satisfying Tr F q m /F q (λ) = 0. Clearly, we have the following statement.

Lemma 21. For any nonzero element λ ∈ F q m such that Tr F q m /F q (λ) = 0 and for any a ∈ F q m [x] <t , we have

λa e+1 ∈ ker τ.
Proof. We first observe that for all a ∈ F q m [x] <t , we have λa e+1 ∈ F q m [t ] <(e+1)t , which is elementary. We finish the proof with Tr ev L λa e+1 = Tr (λ

• N(ev L (a))) = Tr F q m /F q (λ) • N (ev L (a)) = 0.
The following proposition is the key to conclude the proof of Theorem 1.

Proposition 22. Let r > 1 be an integer and F q mr be the degree r extension of F q m . Let λ ∈ F × q m be such that Tr F q m /F q (λ) = 0. Then, there exists α ∈ F q mr such that Tr F q mr /F q (λα e+1 ) = 0.

Proof. Set Z def = z ∈ F q mr Tr F q mr /F q (λz e+1 ) = 0 . Our point is to show that |Z | < q mr . For all z ∈ Z , we have

Tr F q mr /F q (λz e+1 ) = λz e+1 + λ q z e+1 q + • • • + λ q mr -1 z e+1 q mr -1 = λz q m-1 +•••+1 + λ q z q m +•••+q + • • • + λ q mr -1 z q mr +m-2 +•••+q mr -1 .
Using the relation z q mr = z, we get

Tr F q mr /F q (λz e+1 ) = λz R 0 (q) + λ q z R 1 (q) + • • • + λ q mr -1 z R mr -1 (q)
where R 0 (q), . . . , R mr -1 (q) are integers < q mr which are sums of m distinct powers of q with exponents < mr . Namely,

R 0 (q) = q m-1 + q m-2 + • • • + q + 1 R 1 (q) = q m + q m-1 + • • • + q 2 + q . . . R mr -1 (q) = q m-2 + • • • + q + 1 + q mr -1 .
For all i , we have R i (q) < q mr . Next, it is not difficult to check that, since by assumption r 2, the R i (q)'s are pairwise distinct since they have pairwise distinct q-adic expansions. Let Q ∈ F q mr [x] be the polynomial

Q(x) def = λx R 0 (q) + λ q x R 1 (q) + • • • + λ q mr -1 x R mr -1 (q) .
The elements of Z are roots of Q lying in F q mr . Since the R i 's are pairwise distinct and λ is assumed to be nonzero, the polynomial Q is nonzero. In addition, its degree is strictly less than q mr . Consequently, Q has strictly less than q mr roots. Therefore, |Z | < q mr , which concludes the proof.

Proposition 23. Assume that g has no roots in F q m . Let λ be a nonzero element of F q m such that Tr F q m /F q (λ) = 0.

Then, there exists a ∈ F q m [x] <t such that

(i) K ∩ 〈λa e+1 〉 F q = {0}; (ii) K ⊕ 〈λa e+1 〉 F q ⊂ ker τ; (iii) K ⊕ 〈λa e+1 〉 F q ⊕ g F q m [x] <et = F q m [x] <(e+1)t .
Proof. Recall that g is assumed to be of the form g = h s where h is irreducible and s 1. The degree of h is denoted by r so that t = sr . The case s = 1 corresponds to g irreducible. Since h is assumed to have no roots in F q m , we necessarily have r = deg(h) 2. Thus, one can apply Proposition 22, which asserts the existence of α ∈ F q mr ≃ F q m [x] (h) such that λα e+1 ∉ ker Tr F q mr /F q . From Lemma 17, this asserts the existence of α ∈ F q m [x] (h) such that

λα e+1 ∉ (K mod (h)). (15) 
Let α 0 be a lift of α in F q m [x] (g ) . Then, we clearly have

λα e+1 0 ∉ (K mod (g )). (16) 
Indeed, if we had λα e+1 0 ∈ (K mod (g )), then reducing modulo (h) we would contradict [START_REF] Lidl | Finite fields[END_REF]. From Proposition 18, we know that K mod (g ) has F q -codimension 1 in F q m [x] (g ) and hence ( 16) yields

(K mod (g )) ⊕ 〈λα e+1 0 〉 F q = F q m [x] (g ) . (17) 
Now, let a ∈ F q m [x] <t be a lift of α 0 . Here again, we clearly have λa e+1 ∉ K . This proves (i). Afterwards, (ii) is a direct consequence of Lemma 21.

Finally, from Lemma 16, we have dim

F q K ⊕ 〈λa e+1 〉 F q = mt . ( 18 
)
Since mt is nothing but the F q -dimension of F q m [x] (g ) , we see that [START_REF] Macwilliams | The theory of error-correcting codes[END_REF] together with [START_REF] Mceliece | A Public-Key System Based on Algebraic Coding Theory[END_REF] prove that the space K ⊕ 〈λa q+1 〉 F q is isomorphic to its reduction modulo (g ), which entails:

(K ⊕ 〈λa e+1 〉 F q ) ∩ g F q m [x] = {0}.
This leads to (iii) and terminates the proof.

Conclusion.

Proposition 23 gives the existence of a vector space T satisfying Condition (IV) of Proposition 13. This concludes the proof of Theorem 11 (i) and hence of Theorem 1.

Remark 5. It is worthwhile noting that the condition "g has no roots in F q m " is necessary to prove the result since it is necessary to prove Proposition 22. Indeed, it is easy to see that if g had roots in F q m , then we would need to prove Proposition 22 for r = 1. However, the proof of Proposition 22 does not hold for r = 1, since in that case all the R i (q)'s in the proof would be equal and the polynomial Q would be zero. Using MAGMA [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF], it is easy to compute examples of Goppa codes Γ q L, g e and Γ q L, g e+1 , which are distinct when g has roots in F q m . Thus, one cannot expect better than Theorem 4. This is illustrated by the examples in § 4.2.

Examples

In this section we consider some specific situations to illustrate our results. We first focus on the case of quadratic extensions, that is to say m = 2. Next, we illustrate Theorem 11 by considering such codes with a polynomial g of degree 1 and an extension degree that is equal to 3.

Wild Goppa codes from quadratic extensions

In this subsection, the extension degree m will be equal to 2. In this particular situation, our Theorem 1 asserts that for a squarefree polynomial g with no roots in F q 2 , we have Γ q L, g q-1 = Γ q L, g q = Γ q L, g q+1 .

Therefore, the minimum distance of this code is bounded below by deg(g )(q + 1) + 1 instead of deg(g )q + 1, which was its designed distance up to now. Another striking fact is that its dimension is also larger than the lower bound n -2 deg(g )(q -1). This is a consequence of the results of § 2, which assert that such a code is diagonally equivalent to a subfield subcode of a Reed-Solomon code or a shortening of it. The following statement yields a lower bound for the dimension of these wild Goppa codes.

Theorem 24. Let g ∈ F q 2 [x] be a polynomial of degree t 2 with no roots in F q 2 and L be a support of length n, then dim F q Γ q L, g q+1 n -2t (q + 1) + t (t + 2).

In addition, the inequality is an equality when L is a full-support or a support of length q 2 -1.

Proof. First, let us assume that L is a full support, i.e. n = q 2 . From Corollary 10, the Goppa code Γ q L, g q+1 is F q -equivalent to the subfield subcode of RS q 2 -t (q+1) (L). The dimension of such a code is bounded below in [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]. This bound concerns codes supported by F q m \{0} and its shortenings. However, the case of a full support can easily be deduced from that of the support F q m \ {0}, since the latter is nothing but the shortening of the former at one position. Before stating this lower bound, let us recall some notions and notation on cyclotomic classes. We call a cyclotomic class an orbit of Z (q 2 -1)Z for the multiplication by q. One sees easily that, in this situation, cyclotomic classes contain either one or two elements. For instance {0}, {q + 1} or {1, q} are cyclotomic classes. From now, on, we denote by B the set of smallest elements in the cyclotomic classes. For all b ∈ B , we denote by I b the corresponding class and by n b the cardinality of I b . In addition, we denote by A the set {0, . . . , t (q +1)-1}. From [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]Theorem 4.4] (applied to m = 2), we have

dim F q (RS q 2 -t (q+1) (L)) |F q = q 2 -2t (q + 1) + b∈B ∩A (2(|I b ∩ A| -1) + 2 -n b ). (19) 
Actually, [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]Theorem 4.4] is an inequality, but below this statement in [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF], the equality cases are discussed and equality holds always for a full support. The sum in [START_REF] Roseiro | The trace operator and redundancy of Goppa codes[END_REF] involves two kinds of cyclotomic classes, namely:

• the classes I b with I b ⊂ A and n b = 1. These classes are {0}, {q + 1}, . . . , {(t -1)(q + 1)}. Their number is equal to t .

• the classes I b with I b ⊂ A and n b = 2. These classes are of the form {a 0 + a 1 q, a 0 q + a 1 } for (a 0 , a 1 ) ∈ {0, . . . , t } 2 and a 0 = a 1 . The number of such classes is t +1 2 .

It is easy to observe that the other cyclotomic classes have no contribution in the sum in [START_REF] Roseiro | The trace operator and redundancy of Goppa codes[END_REF]. Consequently, we get

dim F q (RS q 2 -t (q+1) (L)) |F q = q 2 -2t (q + 1) + 2 t + 1 2 + t = q 2 -2t (q + 1) + t (t + 2).
Now, if L is an arbitrary support, then, from Lemma 7, the code Γ q L, g q+1 is the shortening of a full support Goppa code. Hence it is F q -equivalent to the shortening of RS q 2 -r (q+1) (L 0 ) |F q , where L 0 denotes a full support. Therefore, the general case results straightforwardly from the full support case.

Remark 6. If we reconsider the wild Goppa code Γ q L, g q-1 whose designed dimension is n -2t (q -1), we see that if t 3 then the actual dimension is larger and the difference between the actual and the designed dimension is t (t -2). It is quadratic in t .

Table 1 lists the parameters of some of these codes. It turns out that all these parameters reach those of the best known codes listed in [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF]. 

q = 5 q = 7 q = 8 q = 9 deg(g ) = 3 [25 ,

Further examples

Now, let us consider the case of cubic extensions, that is m = 3 and the particular case of a polynomial g of degree 1. First, let us state a general result on the dimension of such codes from cubic extensions.

Theorem 25. Let g ∈ F q 3 [x] be a polynomial of degree t and L ∈ F n q 3 be a support of length n avoiding the roots of g . Then,

dim F q Γ q L, g q 2 +q+1
n -3t (q 2 + q + 1)

+ 2t + 2t (t + 1)(t + 2) + 3(q -1 -t )t (t + 1)
and equality holds if L is a full support or has length q 3 -1.

Proof. We use the very same techniques as in the proof of Theorem 24 and use the same notation with the only change that here cyclotomic classes are subsets of Z (q 3 -1)Z and A = {0, . . . , t (q 2 + q + 1) -1}. Here [START_REF] Hernando | The dimension of subcode-subfields of shortened generalized Reed-Solomon codes[END_REF]Theorem 4.4] asserts that dim F q Γ q L, g q 2 +q+1 n -3t (q 2 + q + 1)

+ b∈B ∩A (m(|I b ∩ A| -1) + m -n b ). (20) 
We consider three kinds of cyclotomic classes.

• The classes {0}, {q 2 + q + 1}, . . . , {(t -1)(q 2 + q + 1)}. Their number is t , they satisfy n b = 1 and |I b ∩ A| = 1. They yield a term 2t in the sum in the second member of (20).

• The classes {a 0 + a 1 q + a 2 q 2 }, {a 2 + a 0 q + a 1 q 2 }, {a 1 + a 2 q + a 0 q 2 } for a i t and at least one of the a i 's is distinct from the others. They satisfy n b = 3, |I b ∩ A| = 3 and their number is (t +1) 3 -(t +1)

3

. They provide a term 2t (t + 1)(t + 2) in the sum in the second member of (20).

• The classes {a 0 + a 1 q + a 2 q 2 }, {a 2 + a 0 q + a 1 q 2 }, {a 1 + a 2 q + a 0 q 2 } for t < a 2 q -1 and 0 a 0 < t and 0 a 1 t . They satisfy n b = 3 and |I b ∩ A| = 2. Their number is (q -1t )((t + 1) 2 -(t + 1)) and they provide a term 3(q -1t )t (t + 1) in the sum in the second member of [START_REF] Sugiyama | Further results on Goppa codes and their applications to constructing efficient binary codes[END_REF].

It can be checked that no other cyclotomic class contributes in the sum in [START_REF] Sugiyama | Further results on Goppa codes and their applications to constructing efficient binary codes[END_REF] and combining the three above items, we get the result.

Now, let us focus on the case of a polynomial g of degree 1. For the support L we take a vector of length q 3 -1 listing every element of F q 3 but the single root of g . Here, Theorem 25 gives dim F q Γ q L, g q 2 +q+1 (q 3 -1) -3(q 2 + q + 1) + 14 + 6(q -2).

On the other hand, the classical bound for alternant codes yields dim F q Γ q L, g q 2 +q (q 3 -1) -3(q 2 + q). (

Obviously, since we have the inclusion Γ q L, g q 2 +q+1 ⊂ Γ q L, g q 2 +q , and comparing the bounds, we see that [START_REF] Van Lint | Introduction to coding theory[END_REF] is far from being sharp and that (21) gives a better lower bound for the dimension of the code Γ q L, g q 2 +q .

In addition, Theorem 4 asserts that Γ q L, g q 2 +q might have one dimension more than Γ q L, g q 2 +q+1 . This is what happens in general. In Table 2, we give the parameters of such Goppa codes when the polynomial g is x. The true dimensions have been verified with MAGMA [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]. They coincide with the above discussed lower bounds.

q = 4 q = 5 q = 7 q = 8 Γ q L, x q 2 +q+1 [63, [START_REF] Wirtz | On the parameters of Goppa codes[END_REF][START_REF] Van Lint | Introduction to coding theory[END_REF] 

Conclusion

We proved two new identities relating so-called wild Goppa codes. The first one asserts that if g is a polynomial with no roots in F q m , then Γ q L, g q m-1 +•••+q 2 +q = Γ q L, g q m-1 +•••+q 2 +q+1 . The second one asserts that if g has roots in F q m then, the equality fails but the difference of the F q -dimensions of the two codes is bounded above by the number of distinct roots of g in F q m . The corresponding codes are of particular interest since they turn out to be extended or shortened BCH codes and have a very high dimension compared to the designed dimension of alternant codes. It should be pointed out that the proofs of our main results in the present article involve duals of Goppa codes. Getting direct proofs of such identities involving only the rational fractions used to define Goppa codes would be of interest.

  ••+q+1 . To the best of our knowledge, this article provides the first new general identity relating Goppa codes since Sugiyama et al.'s article.

Table 1 :

 1 Parameters of Wild Goppa codes over a quadratic extension (m = 2).

		4 , 19] [49, 16, 25] [64, 25, 28] [81, 36, 31]
	deg(g ) = 4	-	[49, 9, 33]	[64, 16, 37] [81, 25, 41]
	deg(g ) = 5	-	[49, 4, 41 ]	[64, 9, 46]	[81, 16, 51]
	deg(g ) = 6	-	-	[64, 4, 55]	[81, 9, 61]
	deg(g ) = 7	-	-	-	[81, 4, 71]

Table 2 :

 2 Parameters of wild Goppa codes with g = x and m = 3.

		[124, 63, 32] [342, 215, 58] [511, 342, 74]
	Γ q L, x q 2 +q	[63, 27, 21] [124, 64, 31] [342, 216, 57] [511, 343, 73]
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