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Automatic feature learning for spatio-spectral image

classification with sparse SVM
Devis Tuia, Member, IEEE, Michele Volpi, Student Member, IEEE,

Mauro Dalla Mura, Member, IEEE, Alain Rakotomamonjy, Rémi Flamary

Abstract—Including spatial information is a key step for suc-
cessful remote sensing image classification. Especially when deal-
ing with high spatial resolution (in both multi- and hyperspectral
data), if local variability is strongly reduced by spatial filtering,
the classification performance results are boosted. In this paper
we consider the triple objective of designing a spatial/spectral
classifier which is compact (uses as few features as possible),
discriminative (enhance class separation) and robust (works well
in small sample situations). We achieve this triple objective
by discovering the relevant features in the (possibly infinite)
space of spatial filters by optimizing a margin maximization
criterion. Instead of imposing a filterbank with pre-defined filter
types and parameters, we let the model figure out which set of
filters is optimal for class separation. To do so, we randomly
generate spatial filterbanks and use an active set criterion to
rank the candidate features according to their benefits to margin
maximization (and thus to generalization) if added to the model.
Experiments on multispectral VHR and hyperspectral VHR
data show that the proposed algorithm, which is sparse and
linear, finds discriminative features and achieve at least the
same performances as models using a large filterbank defined
in advance by prior knowledge.

Index Terms—Feature selection, Classification, Hyperspectral,
Very high resolution, Mathematical morphology, Texture, At-
tribute profiles

I. INTRODUCTION

RECENT advances in optical remote sensing opened new

highways for spatial analysis and geographical applica-

tions. Urban planning, crops monitoring, disaster management:

all these applications are nowadays aided by the use of satellite

images that provide a large scale and non-intrusive observation

of the surface of the Earth.

Two types of new generation sensors have attracted great

attention from the research community: very high spatial res-

olution (VHR) and hyperspectral sensors (HS). VHR images
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have the advantage of providing pixels with meter or even

sub-meter geometrical resolution (ground sample distance),

and thus permit to observe fine objects in urban environments,

such as details on buildings or cars, with enhanced precision

in their spatial description [1]–[5]. Typically, VHR images

are characterized by a limited spectral resolution since they

can only acquire few spectral channels (a single one for

panchromatic images, and less than ten for multispectral ones).

On the contrary, HS images are capable of a finer sampling of

the continuous electromagnetic spectrum, sensing the surveyed

surface in up to hundreds of narrow contiguous spectral ranges

(typically, each band has a range of about 5-20 nm). This

type of imagery can be very useful for agriculture [6], [7] or

forestry [8], [9], since it allows to discriminate types of vege-

tation and it inspects their conditions by fully exploiting subtle

differences in their spectral reflectance [10]–[12]. However, the

enhanced spectral resolution of HS imagery does not generally

allow a very high spatial resolution: for satellite HS, resolution

is typically of the order of decameters. On the contrary,

airborne new generation sensors, such as APEX [13], or more

recent solutions based on unmanned aerial vehicles [14], allow

nowadays to obtain VHR HS imagery, thus combining the

advantages (and drawbacks) of both types of sensors.

Despite the potential of new generation remote sensing,

the complexity of imagery of high resolution (either spatial

or spectral) greatly limits their complete exploitation by the

application communities in a daily use. Considering a classi-

fication task, on the one hand VHR images tend to increase

the intraclass spectral variance, as each type of landcover is

contaminated by the signature of the objects composing it. For

instance, antennas or flowers on a roof can mix the signature

of the tiles composing the roof with the one of metal or

vegetation. Furthermore, even if these objects are correctly

classified thanks to the high spatial resolution, their presence

makes the extraction of their semantic class (e.g., the whole

rooftop) more difficult.

On the other hand, HS images are confronted to problems

in the efficiency of data handling due to computational and

memory issues related to the large number of bands acquired.

Moreover, high dimensionality makes the modeling of the

class distributions more difficult to achieve, typically resulting

in degenerate solutions given by small sample scenarios. For

all these reasons, classifiers exploiting spatial information

extracted from hyperspectral data, but also applying dimension

reduction, tend to achieve better results than purely spectral

classifier applied on high dimensional feature spaces [10],

[15].
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Fig. 1. Standard flowchart for spatio-spectral classification.

These two problems have been tackled by two contradictory,

but related solutions: the first problem by the inclusion of

spatial information [2], [15]–[17], i.e. the augmentation of

the feature space by adding some spatial (e.g. contextual)

features enhancing the discrimination between spectrally sim-

ilar classes. Contextual features typically provide information

about the distribution of greylevels in a spatial neighborhood

of the pixel. There is a plethora of spatial features that

have been considered in the literature, the main being tex-

tural [3], [4], [18]–[20], morphological [16], [17], [21]–[26],

Gabor [27], [28], wavelets [29]–[31] and shape indexes [32],

[33]. The second issue related to the high dimensionality of the

input data has mainly been tackled by feature selection [?], [2],

[34], [35] or extraction [?], [16], [36]–[38] techniques, i.e. the

reduction of the feature space to a subspace containing only

the features which are considered to be the most important to

solve the problem.

When dealing with VHR HS images, the two aspects appear

simultaneously. In this case, the common practice is to apply

a predefined filterbank using prior knowledge on global, low

frequency features (for example a panchromatic image [4],

the first PCAs [16] or other features extracted with supervised

or unsupervised approaches [39]). Subsequently, the enriched

input space (the spatial features only [2], [4], [16] or a

combination of the spatial and spectral features [24], [40],

[41]) is entered into a classifier, often applying an additional

feature selection/extraction phase to reduce the dimensionality

of the enriched space [4], [24]. Figure 1 summarizes this

standard procedure.

However, this procedure has many drawbacks: first, the

filterbank is predefined and thus scale and image dependent.

As a consequence, the creation of such a specific set requires

expert knowledge from the user. Second, in the case of HS

images, the first feature extraction step is compulsory and

also imposed, as it is not possible to extract all the contextual

features from each spectral band. The choice of the feature

extraction technique directly influences classifier accuracy,

since the retained features or the criteria they optimize might

be suboptimal for class discrimination. Lastly, the optimization

of a classifier with integrated feature selection, in particular

when dealing with a large filterbanks, is often computationally

very costly.

In this paper, we consider these drawbacks in detail and

propose a joint solution: we let the model discover the good

features by itself. A desirable model is compact (contains as

few features as possible), discriminative (the features enhance

class separation) and robust (works well in situations charac-

terized by the availability of few labeled samples). Achieving

these three objectives simultaneously is extremely challenging,

especially since the space of possible spatial filters and feature

extraction methods is potentially infinite. We tackle the first

and last objective by proposing the use of a sparse ℓ1 linear

support vector machine [43], which naturally performs feature

selection without recurring to specific heuristics. Contrary to

standard support vector machines, which minimize the ℓ2 norm

of the model weights, the proposed classifier minimizes the ℓ1
norm, which forces most of the weights of the features to be

zero and thus performs selection of the relevant features among

a pre-defined set. Then, by extending the optimality conditions

of the sparse ℓ1 norm support vector machine, we are able

to provide a sound theoretical condition to asses whether a

novel feature would improve the model after inclusion. This

permits the exploration of a potentially infinite number of

features. The proposed algorithm bears resemblance to the

online feature selection algorithm described in [44]. While

both approaches alternate between the optimization of a model

given a finite set of features followed by the selection of a

novel feature, [44] uses an heuristic for assessing the goodness

of the new feature. This strategy has also been used in remote

sensing classification [45]. In this contribution, they tend

to separate the feature selection step and classifier learning

step by proposing several criteria for feature selection (hill

climbing, best fit, grafting), whereas we focus on a global

regularized empirical risk minimization problem leading to

a unique criterion (optimal w.r.t the risk). Moreover their

results suggest that the use of ℓ1 regularization leads to the

best feature selection, which emphasize the interest of our

approach. Another related paper is [46], where the authors use

genetic algorithms to select features from a possibly infinite

bag of randomly generated features. In this case, the feature

selection phase is prior to classification.

The second problem is the most complex and is the main

contribution of this article. We do not want the model only to

be sparse on the current set of features, but also to automat-

ically discover a relevant set of features without imposing it

in advance. By relevant, we mean a set of features enhancing

class separation is a margin-maximization sense. To discover

the relevant features, we explore the possibly infinite space
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of spatial filters, and assess whether one of the features

considered would improve class separation if added to the

model. The relevant features are discovered within a random

subset of the infinite set of possible ones, queried iteratively:

the size and richness of such set defines the portion of the filter

space that has been screened. To avoid trial-and-error or re-

cursive strategies involving model re-training for each feature

assessment, we propose to use a large margin-based fitness

function and an active set algorithm proposed by the authors

in [47]. Since we do not make assumptions on which band

is to be filtered, the type of features to be generated, or their

parameters, we explore the high dimensional (and continuous,

thus possibly infinite) space of features and retrieve the optimal

set of filters for classification. Unlike recursive strategies, we

re-train the SVM model only when a new feature has been

highlighted as relevant and has been added to the current input

space.

Finally, it is worth underlining that the feature optimization

is performed separately for each class, as the relevant spatial

variables might be different for classes with varying spatial

characteristics (e.g., roads can be better enhanced by spatially

anisotropic filters whereas crops by textural ones).

Experiments conducted on a multi-spectral VHR and VHR

HS images confirm these hypothesis and allow one to identify

and qualify the important filters to efficiently classify the

scenes. The proposed method constructs class-specific filter-

banks that maximize the margin with respect to the other

classes, in a one-against-all discrimination setting.

A significant improvement in accuracy with respect to ℓ2
SVM with predefined sets of features was not the principal

aim. Indeed, the main advantage of the proposed approach

is the ability to select automatically from an extremely large

set of potential features, hence alleviating the work of the

user. We believe that it is easier for a non-specialist to define

a sensible interval of values instead of a fixed sampling for

feature extraction parameters. The conjunction of a sparse

SVM with this automatic feature selector provides a reduced

amount of filters that maximizes class separation, which is

thus desirable from both the prediction and model compactness

perspectives. We also show that the selected features can be

efficiently re-used in a traditional ℓ2 SVM, thus leading to

additional boosts in performance . Finally, the discovery of

the compact discriminative set of filters from the large input

space is also beneficial in scenarios dealing with a limited

number of training samples, since the amount of sparsity can

be controlled.

The reminder of the paper is as follows: Section II presents

the proposed methodology and the active set algorithm. Sec-

tion III presents the VHR and HS data used in the experi-

ments, that are detailed and discussed in Section IV. Finally,

Section V concludes the paper.

II. LEARNING WITH INFINITELY MANY FEATURES

Consider a set of n training examples {xi, yi}ni=1 where

xi ∈ R
b corresponds to the vector characterizing a pixel in the

image with b bands and yi ∈ {−1, 1} to its label. We define

a θ-parametrized function φθ(·) that maps a given pixel into

some feature space (the output of a filter or feature extraction).

Let F be the set of all possible finite subset of features

and ϕ an element of F composed of d features {φθj}di=1, in

the following called active set. For a given x, we denote as

Φϕ(x) the vector of Rd whose j-th component is φθj (x). Note

that the vector Φϕ(x) only involves a finite number of feature

maps d with associated parameters {θj}dj=1. We also suppose

in the sequel that
∑

i φθj (xi)
2 = 1, ∀θj which means that

the vector resulting from the application of a feature map to

all the pixels is unit-norm. This normalization is necessary in

order to compare fairly features with different range of values.

In this framework, we are looking for a decision function

f(·) of the form

f(x) =
d

∑

j=1

wjφθj (x) = w
TΦϕ(x) (1)

with w = [w1, . . . , wd]
T the vector of all weights in the

decision function.

We propose to learn both the best finite set of feature maps

ϕ (i.e., φs and θs) and the f(·) function by jointly optimizing

the following problem:

min
ϕ∈F

min
w

n
∑

i=1

H(yi,w
TΦϕ(xi)) + λ‖w‖1 (2)

where H(y, f(x)) = max(0, 1−yf(x))2 is the squared hinge

loss and λ is a regularization parameter. The squared hinge

loss is selected for optimization reasons. Indeed, since it is

differentiable, it allows us to use efficient gradient descent

optimization in the primal as discussed in [?]. This is a bilevel

optimization problem but for a fixed ϕ, optimizing the inner

problem boils down to a ℓ1 regularized linear SVM.

The optimality conditions of the problem (2) are [43]:

rθj + λ sign(wi) = 0 ∀j wj 6= 0 (3)

|rθj | ≤ λ ∀j wj = 0 (4)

|rθ| ≤ λ ∀φθ 6∈ ϕ (5)

with

rθ = −2
∑

i

φθ(xi)max(0, 1− yiw
TΦϕ(xi)) (6)

the scalar product between feature φθ(·) and the hinge loss

error, which can be interpreted as the alignment between the

current prediction error and the feature under consideration.

Optimality conditions (3) and (4) are the usual conditions for

a ℓ1 regularized SVM, i.e. for the inner problem of (2), while

condition (5) is the optimality condition related to features

that are not included in the active set ϕ. Interestingly, this last

condition shows that at optimality, if a feature is not included

in the active set, then it has the same optimality condition as

if it were included in the active with a 0 weight.

These optimality conditions suggest the use of an active set

algorithm that solves iteratively the inner problem, restricted

to the features in the current active set ϕ. At each iteration, if

a feature not in the active set violates optimality constraint (5),

it is added to the active set of the next iteration, leading to a

decrease of the cost after re-optimization of the inner problem.
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Algorithm 1 Active set algorithm

Inputs

- Initial active set ϕ

1: repeat

2: Solve a ℓ1 SVM with current active set ϕ
3: Generate a new feature bank {φθj}pj=1

/∈ ϕ
4: Compute rθj as in (6) ∀j = 1 . . . p
5: Find feature φ∗

θj
maximizing |rθj |

6: If |rθ∗

j
| > λ+ ǫ, then ϕ = φ∗

θj
∪ ϕ

7: until stopping criterion is met

In addition, if the ith feature in the active set has a zero weight

after re-optimization (i.e., wi = 0) it can be removed from

the active set in order to keep small the size of the inner

problem. Note that Equation (6) demonstrates the necessity of

normalized features. Without unit-norm normalization, feature

will be selected by their norm and not by their alignment with

the classification residuals.

With continuously parametrized filters, the number of pos-

sible features could be infinite, so a comprehensive test of

the candidate features is intractable. In this situation, [48]

proposed to randomly sample a finite number of features and

add to the active set the one violating the most constraint (5).

Furthermore, in order to ensure convergence in a finite number

of iteration, we choose to use an ǫ−approximate condition for

updating the active set. A feature φθ is added to the active set

only if |rθ| > λ + ǫ. The resulting approach is provided in

Algorithm 1.

Note that the algorithm is designed to handle large scale

datasets. Indeed checking the optimality conditions and se-

lecting a new feature has complexity O(n) and solving the

inner problem is performed only on a small number of features

di using an accelerated gradient algorithm combined with

a warm-starting scheme (see [48]). Note that the active set

strategy allows to solve several small scale problems with a

number of features di ≪ d. The iteration complexity of the

inner problem solver at iteration i of algorithm 1 line 2 is

O(ndi). For comparison, using a classical linear SVM on d
features requires the computation of a O(nd) gradient at each

iteration, and a O(d3) matrix inversion for a second order

solver such as [?]. Moreover, a warm starting scheme is used

at each iteration in the incremental algorithm. This means that

a reasonable solution is provided to the ℓ1 SVM solver as

starting point, thus providing faster convergence with respect

to a random or zero initialization.

III. DATA AND SETUP

A. Datasets

Experiments have been carried out on two classification

tasks, the former considering a VHR urban problem and the

latter an agricultural scene sensed with a HS sensor.

a) Brüttisellen 2002 (QuickBird sensor, VHR): the

first image is a 4-bands optical image of a residential

neighborhood of the city of Zurich (Switzerland), named

Brüttisellen, acquired in 2002 (Fig. 2). The image has a

size of 329 × 347 pixels, and a geometrical resolution

(a) (b)

Fig. 2. Zurich Brüttisellen QuickBird data. (a) RGB composition and (b)
ground truth. Color references are in Tab. I (unlabeled samples are in black).

TABLE I
LEGEND AND NUMBER OF LABELED SAMPLES AVAILABLE FOR THE

BRÜTTISELLEN 2002 DATA

ID Color Class name No samples

1 Residential 6746
2 Commercial 5277
3 Meadows 14225
4 Harvested vegetation 2523
5 Bare soil 3822
6 Roads 6158
7 Pools 283
8 Parkings 1749
9 Trees 2615

of 2.4m. Nine classes of interest have been highlighted

by photointerpretation and 40, 762 pixels are available

(see Tab I). Spatial context is necessary to discriminate

spectrally similar classes such as ‘trees’ – ‘meadows’ and

‘roads’ – ‘parking lots’.

b) Indian Pines 2010 (ProSpecTIR spectrometer, VHR

HS): the ProSpecTIR system acquired multiple flightlines

near Purdue University, Indiana, on May 24-25, 2010

(Fig. 3). The image subset analyzed in this study con-

tains 445×750 pixels at 2m spatial resolution, with 360

spectral bands of 5nm width. Sixteen land cover classes

were identified by field surveys, which included fields of

different crop residue covers, vegetated areas, and man-

made structures. Many classes have regular geometry

associated with fields, while others are related with roads

and isolated man-made structures. Table II shows class

labels and number of training samples per class.

B. Experimental setup

In the experiments, we tested different initial setups, to

assess stability of the method with respect to initial conditions.

In all cases, we report average results over five independent

starting training sets. We run the active set algorithm (AS) for

200 iterations for each class, thus discovering the discriminant

features for each class separately. This means that we extract

at most 200 features per class. The algorithm stops according

to two criteria: i) either the 200 iterations are met or ii) 40

filter generations have not provided a single feature violating

the constraint of Eq. (5) by ǫ.

a) Brüttisellen 2002: we extracted 5% of the available

training samples randomly and used them to optimize the



5

(a) (b)

Fig. 3. Indian Pines 2010 SpecTIR data.(a) RGB composition and (b) ground
truth. Color references are in Tab. II (unlabeled samples are in black).

TABLE II
LEGEND AND NUMBER OF LABELED SAMPLES AVAILABLE FOR THE

INDIAN PINES 2010 DATA

ID Color Class name No. samples

1 Corn-high 3387
2 Corn-mid 1740
3 Corn-low 356
4 Soy-bean-high 1365
5 Soy-bean-mid 37865
6 Soy-bean-low 29210
7 Residues 5795
8 Wheat 3387
9 Hay 50045
10 Grass/Pasture 5544
11 Cover crop 1 2746
12 Cover crop 2 2164
13 Woodlands 48559
14 Highway 4863
15 Local road 502
16 Houses/Buildings 546

ℓ1 linear one-against-all SVM in the proposed active set

algorithm. We extract filters from one of the four original

bands (AS-Bands) and add to the learned feature set

the one most violating the constraint of Eq. (5). At each

iteration, a new set of features (from which the most

beneficial feature is elected) is randomly generated by

filtering the selected band with j random filters θj ∈ Θ.

b) Indian Pines 2010: in the hyperspectral case, we

preferred to opt for balanced classes and thus used 100

labeled pixels per class. This choice was led by the

presence of mixed and highly unbalanced classes in the

data. Additionally to the AS-Bands setting, we also

tested a second one extracting the filters from the first 50

PCA projections as base “images” (AS-PCAs). This is

closer to a classical hyperspectral classification setting.

However, we do not limit the extraction to the first

principal components, but to a large number to study

if relevant information is contained in the projections

related to lower variance. Since the input space is higher

dimensional (360 in the AS-Bands case and 50 in the

AS-PCAs case, against only 4 in the Brüttisellen exper-

iment), we considered many variables at the same time.

Each filterbank contains the selected filters applied on 20

randomly selected bands (respectively PCs). This ensures

a sufficient exploration of the wider input space. In this

case, we allow the model to select more than one feature

per bank: we do not re-generate the filterbank at each

iteration, but we only remove the selected feature, re-

optimize the SVM and add the variable most violating the

updated constraints. We generate a new filterbank if no

feature violates the constraints or if a sufficient number of

features has been extracted from the current filterbank (in

the experiments reported, we set the maximum number

of features to be selected in a same filterbank to 5).

For each experiment, the spatial filters library contains three

features types, namely texture TXT, morphological MOR and

attribute ATT filters. The set of filters considered and the

range of possible parameters is reported in Table III. Inertia

and standard deviation ATT filters are not included in the HS

experiment, for computational reasons. Note that the procedure

is general and any type of filter / variable can be added to Θ
(such as wavelet decompositions, Gabor, vegetation indices,

etc.). For the AS experiments, the same features are used, but

with parameters unrestricted, thus allowing the method to scan

a wider space of possible filters.

For each one of the settings presented above, we report

results obtained i) by using the AS algorithm as is and ii)

by training a ℓ2 SVM with the features selected by the AS

algorithm (ℓ+2 in the Tables).

As goodness reference, we compare the AS algorithm with

SVM results using predefined filterbanks: the original bands

(Bands), the 10 first PCAs (PCA, only in the hyperspectral

case), the ensemble of possible morphological filters, whose

parameters are given in Table III (MOR) and the same for

attribute filters (ATT) and the totality of filterbanks in the

filters library (ALL)1. For each precomputed filterbank family

(Bands, PCA, MOR, ATT and ALL), we consider three SVMs:

1) ℓ1 SVM on all the input features,

2) ℓ2 SVM on the features selected by the ℓ1 SVM (re-

ported as ℓ◦2 in the tables)

3) ℓ2 SVM trained on all the input features.

For the hyperspectral case (Indian Pines), the level of

sparsity is varied for cases 1) and consequently to 2) by

varying the λ parameter (λ = 100 for a very sparse solution

and λ = 1 for a less sparse one).

The AS model is allowed to generate features with all

possible filters in the Table and unrestricted parameters, while

the experiments with predefined filterbanks generate a smaller

set of filters beforehand, considering a disk structuring element

only (as a consequence, no angular features are considered2).

For example, in the MOR case and for the Brüttisellen dataset,

1Results considering texture features alone (TXT) are not reported for space
reasons, especially since these features alone were always outperformed by
the other contextual features (MOR and ATT). Nonetheless, TXT features are
included in the ALL set and in the proposed AS.

2Moreover, as their parameters are continuous, there would be an infinity
of them
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a predefined filterbank will include six scales from 1 to 11

pixels with steps of 2 (in short [1 : 2 : 11]), eight types of

filters and one structuring element type (disk), which makes

6∗8∗1 = 48 features per band. Since we have four bands, that

makes 48 ∗ 4 = 192 filters. Each OAA subproblem considers

these features in conjunction with the original bands, which

makes a total of 192+4 = 196 features per class (as reported

in Tab. IV).

We compare the average Kappa of the AS- methods, κ̄AS
with those obtained with pre-defined features, κ̄PRE (where

PRE can stand for Bands, PCA, MOR, ATT and ALL) using a

standard single tailed mean-test. For a given confidence level

α, κ̄AS is significantly higher than κ̄PRE if

(κ̄AS − κ̄PRE)
√
nAS + nPRE − 2

√

( 1

nAS

+ 1

nPRE

)(nASσ2
AS

+ nPREσ2
PRE)

> t1−α[nAS + nPRE − 2]

(7)

where t1−α[nAS + nPRE − 2] is the Student’s t-distribution.

In our case, nAS = nPRE = 5 (number of experiments),

σ are observed standard deviation among the five runs and

α = 5%. All the comparisons reported in Tables IV and V

are performed solely between models considering the same ℓ-
norm and illustrated by three color codes: Yes (AS outperforms

significantly the method with pre-defined library), Same (the

Kappas are equivalent) and No (PRE outperforms significantly

the proposed method).

IV. RESULTS AND DISCUSSION

A. VHR image of Brüttisellen

Numerical assessment. Averaged numerical accuracies for

the Brüttisellen dataset are reported in Table IV. The dif-

ferent settings introduced in Section III aim at comparing

the proposed active set feature discovery with standard SVM

classification OAA schemes using ℓ1 and ℓ2 norms. We

first consider the result obtained by the standard models.

As expected, by using only the original image composed

by the 4 spectral bands, accuracies are generally lower than

when adding the spatial context to the feature vector. In

the ℓ1 SVM, which naturally performs feature selection, the

estimated Cohen’s Kappa statistic (κ) increases from 0.61 to

0.90 when considering spatial context in the classification.

The appropriateness of feature selection is underlined by the

close (but slightly higher) accuracy of the standard ℓ◦2 linear

SVM. In this case, κ scores increase from 0.65 to 0.93. The

slightly higher accuracy for the ℓ◦2 strategy is related to a better

weighting of the features: when using the ℓ1 regularization,

the model forces many features to go to zero, while naturally

non-zero weights deviate significantly from zero. However, the

optimality of these models is emphasized by the results of the

ℓ2 SVM (not enforcing selection of the features and known

to be less biased than ℓ1). In this case, the estimated κ grows

from 0.66 to 0.95. Nonetheless, note that all the approaches

discussed so far require as input a precomputed filterbank of

up to 556 variables per each OAA subproblem, while the

proposed AS models require on average 23 features per class.

Now consider the proposed method. By observing the ℓ1
AS-Bands results in Table IV it appears clearly that the pro-

posed feature learning converges to both accurate and sparse

solution, without exploiting any precomputed set of features.

The only information given to the AS-Bands SVM is the

list of possible filters: the algorithm automatically retrieves

features optimizing the SVM separating margin for the OAA

classification sub-problems, by evaluating randomly generated

variables. In this case, the ℓ1 AS-bands model converges to

an estimated average κ statistic of 0.91, thus slightly higher

and comparable to the one obtained with the standard ℓ1
SVM on the predefined filterbank. Also, the ℓ+

2 approach –

plugging the features selected by the ℓ1 AS-Bands into an

ℓ2 linear SVM – provided the same accuracy of the ℓ◦2 setting

(using the features selected from the pre-defined filterbank).

This confirms that the retained features possess the same

discriminative power of the ones selected from a very large

and manually predefined filterbank. The proposed method

significantly outperforms most of the other experiments (Yes in

the Table) or performs at least equivalently (Same, situations

with large predefined banks, where the relevant features are

present from the beginning). The only case outperforming

AS-Bands is the ℓ2 SVM using the complete filterbank in

Θ. The average number of active features for all the OAA

sub-problems from the ℓ1 AS-Bands is 23, thus slightly

higher than the 20 features selected by a standard ℓ1 SVM.

Note that, some important features may not be available in

the precomputed setting, while the AS-Bands strategy could

have retrieved them (typically the angular features, that would

have increased the size of the pre-computed sets beyond

reason).

A last issue with the numerical assessment is related to

the dependence between training and testing samples: in the

setting discussed above, the test pixels are all the labeled pixels

not contained in the training set. Therefore, and especially

since we are using mostly spatial filters based on moving win-

dows, the values of adjacent pixels can be highly correlated,

which biases positively the results. To study this phenomenon,

we eliminated from the test set pixels located in the spatial

proximity of the training samples, by applying a buffer of

increasing size around all the training samples. Figure 4

compares the performance of the proposed AS-Bands with

the ALL ℓ1 linear SVM: the positive bias is clearly observed,

since the Kappa score decreases for buffers of increasing size.

This is related both to the dependence between training and

testing samples, but also to the fact that, for large buffers,

almost the entirety of the test set is located at the borders

of the labeled polygons in the ground reference; these areas

are those with the highest degree of spectral mixing and are

more complex to classify. However, the gain of the proposed

system on the method using pre-defined filterbanks is constant,

showing the consistency of the approach over the competing

methods.

Features discovered. We now analyze the features extracted

by the AS approach for one of the five runs performed (Fig. 5).

We remind the reader that the AS method can generate all

possible filters of the type described in Table III and thus scans

the wide space Θ of the morphological, textural and attribute
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TABLE III
FILTERS LIBRARY USED IN THE EXPERIMENTS, ALONG WITH THEIR PARAMETERS AND POSSIBLE VALUES

Bank Filters Parameters Type Search range

Brüttisellen Indian Pines

All filters - Band (or PCA) int [1 : b]

Opening, Closing, Opening top-hat, - Shape of structuring element str {disk, diamond∗,
Closing top-hat, Opening by recon- square∗, line∗}

Morphological
struction, Closing by reconstruction, - Size of structuring element int [1 : 2 : 11] [1 : 2 : 21]

(MOR [16])
Opening by reconstruction top-hat and
Closing by reconstruction top-hat

- Angle∗ (if Shape = ‘line’) float [0, π]

Texture [4] Mean, Range, Entropy and Std. dev. - moving window size int [3 : 2 : 21]

Attribute Area - Area int [100 : 1000 : 10000]
(ATT [25]) Diagonal - Diagonal of bounding box int [10 : 10 : 100]

Inertia - Moment of inertia float [0.1 : 0.1 : 1] N/A
Standard deviation - Standard deviation float [0.5 : 5 : 50] N/A

∗ used only in the AS experiment

TABLE IV
AVERAGED NUMERICAL FIGURES OF MERIT OF THE CONSIDERED STRATEGIES FOR THE BRÜTTISELLEN DATASET. RESULTS ARE COMPARED TO ℓ1 AND

ℓ2 SVMS USING THE ORIGINAL BANDS (BANDS , NO SPATIAL INFORMATION) AND CONTEXTUAL FILTERS GENERATED FROM THE 3 FIRST PCS AND THE

WHOLE SET OF POSSIBLE FEATURES IN TABLE III (THE ALL SET CONTAINS ALL MORPHOLOGICAL, ATTRIBUTE AND TEXTURE FILTERS).

Pre-generated filterbanks library Active set
SVM Model ℓ1 ℓ◦

2
ℓ2 ℓ1 ℓ+

2

Feature set Bands MOR ATT ALL Bands MOR ATT ALL Bands MOR ATT ALL AS-Bands AS-Bands

Residential 76.71 87.60 92.44 88.75 77.78 90.93 91.76 92.15 76.50 93.65 92.64 94.24 96.71 95.89
Commercial 51.49 76.08 66.42 87.66 50.88 79.50 71.35 90.84 50.11 87.92 79.97 93.88 83.73 87.82
Meadows 99.93 87.76 99.58 97.63 99.80 96.13 99.18 99.25 99.80 98.83 99.43 99.64 99.60 99.37
Harvested 0 98.61 83.24 97.13 0.25 97.58 97.99 98.26 0.53 97.73 98.80 98.91 97.51 99.61

Bare soil 49.53 96.86 99.41 99.95 70.76 99.82 99.97 99.97 82.48 99.93 99.93 99.98 99.91 99.98

Roads 88.92 76.56 84.32 83.44 86.74 80.55 84.67 88.15 86.40 85.58 86.46 90.42 89.39 89.73
Pools 21.09 99.92 98.28 100.0 92.89 99.14 99.92 98.09 92.96 90.85 99.61 97.30 96.40 98.75
Parking 0 74.93 31.26 80.67 0 73.55 44.59 82.28 0 81.96 72.38 87.03 51.99 71.37
Trees 0 94.21 12.81 93.93 19.21 93.52 34.25 92.22 20.05 94.60 76.33 94.64 65.93 88.61

Overall accuracy 69.75 85.27 85.50 92.16 72.47 90.20 88.08 94.41 73.25 93.67 92.06 95.90 92.46 94.42
Cohen’s Kappa 0.613 0.816 0.819 0.903 0.650 0.879 0.852 0.931 0.660 0.922 0.902 0.950 0.907 0.931

# features per class 4 196 324 556 4 196 324 556 4 196 324 556 ∞
Active features (µ) 4 10 13 20 4 10 13 20 4 196 324 556 23

Is AS-Bands better? Yes Yes Yes Same Yes Yes Yes Same Yes Same Yes No – –
+ = on features selected by the active set algorithm only
◦ = on features selected by the l1 SVM only
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Fig. 4. Performance bias introduced by adjacency of training and testing
samples. Comparison between the ℓ1 SVM (ALL feature set) and the proposed
AS-Bands strategy.

filters. As there are continuously parametrized filters (angular

filters, attribute filters), the space of valid filter functions is

infinitely dimensional. The first pie chart in Fig. 5(a) illustrates

the proportion of filter types selected by the ℓ1 AS-Bands

Top hat

25%

Attribute

inertia

17%

Attribute area 13%

Opening / closing

12%

Top-hat by 

reconstruction

9%

Texture, 

std 6%

Texture, entropy, 5%

Attribute, diagonal 5%

Texture, range 4%

Reconstruction, 3%
Other, 2%

Residential

(31)

Commercial

(50)

Meadows

(30)
Harvested (21)

Bare soil

(7)

Roads

(49)

Pools

(5)

Parkings

(22)

Trees (14)

(a) (b)

Fig. 5. Infinite active set algorithm: (a) selected filterbank per type and (b)
number of retained features per class.

method. Morphological top hat, inertia and area attributes

filters compose more the 55% of the discovered features. This

is clearly related to the object characteristics: top-hat pro-

vides important information about the contrast of the objects

(depending on the scale, locally dark or bright objects are

emphasized), while inertia is important for elongated objects

(such as roads) and area for wide smooth classes (such as

bare soil). Since the process is run independently for each

class, the classification sub-problems can be analyzed in terms

of selected variables. Since the proposed AS method extracts
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separate features for each class, it is possible to study the

features that have been selected specifically for a given land

use discrimination problem. Figure 5(b) depicts the number of

active features for each OAA subproblem. This gives rough

information about the spatial complexity of the classes, as

strongly textured classes will require more spatial features to

be discriminated. For instance, the class ‘commercial’ required

50 features to be optimally discriminated from the rest: by

observing the spatial arrangement of this class, this choice

results appropriate since the discrimination of commercial

buildings with different spatial arrangements (parkings on

roofs, for example) mainly rely on the geometrical properties

of this class. Another spectrally ambiguous category are the

‘roads’. The separation of this class required the use of

49 features, again mainly composed by morphological top-

hat and attribute inertia (the objects are mainly elongated).

Even more interestingly, a large portion of the latter were

directional filters, i.e. the structuring element was a line with

a specific orientation. In particular, three main orientations

arise, as illustrated in Fig. 6(a): these correspond to the main

road directions in the image (three peaks in the angles).

This observation can be coupled with the plot depicting the

frequency of the chosen size of the structuring elements of

the morphological operators for each class, in Fig. 6(b). By

looking at the curve for the ‘road’ class, it appears that these

three main directions are selected among a uniform range

of possible sizes of the structuring element. It makes sense

that longer structuring elements are oriented as the main road

directions, while the shortest are acting inside the road, to filter

arbitrarily oriented roads. Otherwise, for the other classes, the

optimal size of the structuring elements is correlated to the

size of the objects represented in the ground, for instance 7

pixels for trees, from 8 to 14 for bare soil and so on.

Summing up, the results illustrated that the proposed feature

learning system selects automatically the variables optimizing

class discrimination, since their selection is based on the

maximization of the SVM margin. Note that these are not

formally the best possible features, as we do not consider

the entirety of the generable possible filtered images in the

infinitely large filters space. Nonetheless, the features retained

are those that optimized class separation among the large

amount of features considered. We recall that the only in-

formation provided to the system, is the type and family of

the possible filters Θ, from Tab. III. As a result, extracted

features related to characteristics directly observable on the

ground cover are retained for classification, in a completely

automatic way. In addition, since the selection is performed

per class, the parameters of the transformations corrsponding

to the selected features are directly related to the geometrical,

textural or spectral characteristics of the objects belonging to

that semantic class.

B. Hyperspectral image of Indiana

Numerical assessment. Table V presents the numerical

accuracy for the Indian Pines 2010 dataset. Experiments are

organized as for the previous case study, but the standard ℓ1
SVM has been run varying the value of the λ parameter: we
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Fig. 6. (a) Orientation of linear structuring elements for the class ‘roads’.
(b) Structuring element size within the morphological filters selected for five
classes (for color legend, refer to Tab. IV).

report two cases, one obtained with a large λ (λ = 100),

thus enforcing strong sparsity and a second one with a small

λ (λ = 1), thus allowing more features in the model. For

the baseline methods, the choice of the regularizer λ is

driven by the need of compact vs accurate solution: at a

first glance, the sparse model performs much worse than the

one obtained reducing the λ parameter: it shows a similar

level of sparsity as the proposed method (17 active features –

4% of the precomputed set – against 23 in the AS results

and 105 of the model with a smaller λ), but with results

lower than those obtained with a smaller λ (losses between

8% in ALL to 24% in Bands). As a first observation, we

can conclude that a strongly sparse ℓ1 model produces heavy

decreases in performance because relevant informations have

been discarded in the feature selection process.

Considering the proposed AS method, such decrease is not

observed. The results are close to the best for the ℓ1 case (only

the ALL ℓ1 model outperforms it) and are the best for the ℓ2
case. The performances are a κ of 0.922 per an average of 23

active features per class in the AS-Bands case and of 0.960

per 22 active features per class in the AS-PCA respectively. In

light of these results, we observe that the AS strategies keep

the level of sparsity of the ℓ1 model with a large λ, but with

the numerical performance of the ℓ1 model with small λ. This

is very interesting, since the model built on the subset of an

average of 22 features per class discovered by the AS-PCA is

always at least significantly comparable (and the most often

better) than the ones built with precomputed libraries going up

to 429 variables. The only exception is the ALL experiment

with the ℓ1 norm, which outperforms our method in the ℓ1
setting.

Finally, remind that the AS results are obtained without

bounding the search range of the parameters in Θ: this lets

the model explore several scale and, up to a sufficient number

of iterations, ensures the coverage of a multitude of them.

This avoids the risk of missing the relevant features, simply

because the prior knowledge about scales was wrong and the

good features weren’t present Θ: this risk is real, since, for

example, the performance of the ℓ1 model with small λ and

the MOR features drops from 97.64% to 92.06% if the range

of sizes of structuring element is restricted to [1 : 2 : 11],
instead of the [1 : 2 : 21] used for the experiments reported in

Tab. IV.

Features discovered. To further analyze the good perfor-
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TABLE V
RESULTS OF THE PROPOSED ACTIVE SET ALGORITHM USING ORIGINAL BANDS (AS-BANDS) OR THE 50 FIRST PCS (AS-PCA). RESULTS ARE COMPARED

TO ℓ1 AND ℓ2 SVMS USING THE ORIGINAL BANDS (BANDS , NO SPATIAL INFORMATION), THE TEN FIRST PCS (PCA, NO SPATIAL INFORMATION) AND

CONTEXTUAL FILTERS GENERATED FROM THE 3 FIRST PCS AND THE WHOLE SET OF POSSIBLE FEATURES IN TABLE III (THE ALL SET CONTAINS ALL

MORPHOLOGICAL, ATTRIBUTE AND TEXTURE FILTERS). THE NUMBER OF ACTIVE FEATURES REPORTED IS THE AVERAGE PER CLASS.

SVM Input features Active features Overall Accuracy Cohen’s Kappa Is AS better ?
λ type Feature set # per class µ σ µ σ µ σ AS-Bands AS-PCA

A
ct

iv
e

se
t

ℓ1
AS-Bands * 23 3 93.57 2.74 0.922 0.033 – No
AS-PCA * 22 2 96.72 1.98 0.960 0.024 Yes –

ℓ+
2

AS-Bands * 23 3 97.69 0.29 0.972 0.004 – No
AS-PCA * 22 2 99.29 0.22 0.991 0.003 Yes –

P
re

-g
en

er
at

ed
fi

lt
er

b
an

k
li

b
ra

ry

L
ar

g
e
λ

(s
p

ar
se

)

ℓ1

Bands 360 22 4 65.85 1.71 0.606 0.018 Yes Yes
PCA (10 PCs) 10 7 1 78.70 0.30 0.747 0.003 Yes Yes
MOR (from 3 PCs) 267 13 1 94.48 0.28 0.933 0.003 Same Yes
ATT (from 3 PCs) 123 10 3 79.33 0.64 0.754 0.007 Yes Yes
ALL (from 3 PCs) 429 17 5 93.84 1.07 0.925 0.013 Same Yes

ℓ◦
2

Bands 360 22 4 80.76 1.02 0.771 0.012 Yes Yes
PCA (10 PCs) 10 7 1 85.04 1.18 0.821 0.014 Yes Yes
MOR (from 3 PCs) 267 13 1 95.71 0.54 0.948 0.007 Yes Yes
ATT (from 3 PCs) 123 10 3 85.77 0.55 0.828 0.007 Yes Yes
ALL (from 3 PCs) 429 17 5 97.53 0.73 0.970 0.009 Same Yes

S
m

al
l
λ

ℓ1

Bands 360 200 11 89.15 0.53 0.869 0.006 Yes Yes
PCA (10 PCs) 10 9 1 89.03 0.61 0.868 0.007 Yes Yes
MOR (from 3 PCs) 267 76 9 97.64 0.90 0.971 0.011 No Same
ATT (from 3 PCs) 123 48 11 90.87 0.81 0.889 0.010 Yes Yes
ALL (from 3 PCs) 429 105 13 98.69 0.63 0.984 0.008 No No

ℓ◦
2

Bands 360 200 11 93.43 0.45 0.920 0.005 Yes Yes
PCA (10 PCs) 10 9 1 87.17 0.70 0.846 0.008 Yes Yes
MOR (from 3 PCs) 267 76 9 98.19 0.52 0.978 0.006 Same Yes
ATT (from 3 PCs) 123 48 11 92.39 0.67 0.907 0.008 Yes Yes
ALL (from 3 PCs) 429 105 13 98.88 0.42 0.986 0.005 No Same

ℓ2

Bands 360 360 0 94.23 0.54 0.930 0.006 Yes Yes
PCA (10 PCs) 10 10 0 87.24 0.72 0.846 0.008 Yes Yes
MOR (from 3 PCs) 267 267 0 98.18 0.58 0.978 0.007 Same Yes
ATT (from 3 PCs) 123 123 0 92.99 0.52 0.914 0.006 Yes Yes
ALL (from 3 PCs) 429 429 0 99.13 0.24 0.989 0.003 No Same

+ = on features selected by the active set algorithm only
◦ = on features selected by the ℓ1 SVM only

mances of the AS-Bands and AS-PCA schemes, we detail

some of the results by analyzing the retained active features.

Recall that, as in the previous case study, no information about

the feature is provided to the AS method beforehand: the

features are discovered iteratively by the algorithm itself.

In each experiment, the retained features correspond to a

specific filter (family, type and parameters) computed on a

selected spectral band or on one of the first 50 PCs. In Fig. 7,

the sampling frequency of a specific variable to be filtered

(from either the original channels or the PCs) is illustrated

for the average of the five runs reported in the numerical
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Fig. 7. Variables selected for filtering in one run of the (a) AS-Bands and
(b) AS-PCA experiments, respectively, for the Indian Pines dataset. The plots
report the average of the bands selected by five runs of the algorithm with
different initializations.

assessment. The single runs results are relatively consistent

between each other, thus showing that, even if the selection of

the bands to be filtered is random, the algorithm tends to select

the same (or adjacent, thus highly correlated) channels. Two

main observation can be made. When starting from the original

image, feature composing the final set are not redundant one

to each other. This is especially interesting, since we aim at

compact models with few features. In Fig. 7(a), it appears

that the retained group of bands are concentrated around

specific wavelengths far one from each other. Class-specific

histograms are reported in the second column of Fig. 8. The

wavelengths selected are directly related with the class to

be discriminated. Observing the plot in Fig. 7(b) and by

following the aforementioned considerations, we can state that

the first components of the PCA, corresponding to a high

empirical variance, are not the only ones contributing to the

discrimination. On the contrary, many features corresponding

to higher frequencies (lower variance) are retained, suggesting

that very useful information is still present in the small-

eigenvalue spectrum part of the PCA components, as observed

in previous literature [?], [?].

These interesting statements are further detailed in Fig. 8

and Fig. 9. In the former, examples of features retained

for three different OAA subproblems are detailed. The class

‘Hay’ corresponds to large patches of dense vegetation. This

specific class is outlined in red in the RGB image, as well
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as to the retained filtered variables. By looking at the plot

illustrating the frequency of selection of the bands along

the 5 experiments, a preference on the spectral wavelength

useful to discriminate this class did not appear. The filters

applied to these spectral bands are in the form of smoothing

operations, such as the opening by reconstruction (together

take more than the 66% of the squared cumulative weights).

Also, top-hat morphological operations are used (24.53% of

the weights), particularly useful to reduce ambiguity with

the other densely vegetated class, such as the ‘Woodlands’,

which is detailed in the second row of the figure. This time,

a series of top-hat morphological operations with different

structuring elements and texture indicators (entropy) contribute

in the squared cumulative weight scoring for the 72.15%.

This time, the systems take advantage of the texture that

characterize the forest. The last example for the AS-Bands is

related to the ‘Houses / Buildings’ class. The highest feature

weight has been assigned to a closing by reconstruction top-

hat morphological filter, clearly emphasizing the locally dark

behaviour of the buildings. However, note that this feature

did not only discriminate houses, but also other small objects

characterized by similar structure / contrast. For this reason,

two other features are kept, in particular to discriminate

between houses and other similar structures. Note how, for

the three classes, different spectral ranges are selected for the

bands to be filtered.

Figure 9 illustrates the retained features in the AS-PCA

experiments. The first example provides insights for the dis-

crimination of the ‘Grass/Pasture’ class. Interestingly, the 13th

principal component has been selected 5 times and the second

PC 4 times. Observing in detail the features, the outlined class

is clearly discriminated from similar regions, in particular by

the moving average feature, computed on the 21st principal

component taking the 25.65% of the squared cumulative

SVM weights. It is worth emphasizing that many principal

components higher than the 21st are the base information for

the retained filters, suggesting again that higher frequencies /

low variance components still carry discriminative information

for the classification problem, rather than just noise, as it is

usually admitted in remote sensing literature. By analyzing the

next example, the ‘Woodlands’ class, it appears that features

discriminating well this class are computed from the lower

frequencies of the PCA. 3rd, are selected 4 times.

The last example is related to the discrimination of the class

‘Road’. This ground cover is spatially well structured, a fact

that is reflected in the choice of the attribute area features

computed over low frequency components. It results that the

first two features, that sum to 96.69% for the squared weight

contribution, easily discriminate the roads by assigning to

them very low values. The remaining features, less important,

filter out additional ambiguities related to this specific OAA

problem.

Summing up, we observed that the AS feature learning

scheme is able to discover spatial and contextual variables that

optimize the classification problem. From both the accuracy

and the visual points of view, these features appear consistent

with both VHR and HS classification problems.

Is this better than random selection? In these last exper-

iments, we would like to compare the proposed AS scheme

to a random inclusion of spatial filters. This would prove that

the active set criterion of Eq. (5) is valid and, while providing

a decrease of the SVM cost by definition, in our case, it also

helps in improving the SVM global classification performance.

To do so, we compared the active set feature selection-

based approach with a random ‘sampling’ of the spatial filter,

in which a randomly selected feature φθj is added at each

iteration to the active set ϕ, without checking whether it

violates its optimality conditions. The ℓ1 SVM is retrained

after each iteration. This type of validation is standard when

considering active learning methods [49], [50], which sample

the most informative samples (contrarily to features here)

among a large amount of unlabeled pixels.

In Fig. 10 this process is illustrated in terms of estimated κ
statistic. The plot shows clearly that the AS-PCA constantly

increases the classification accuracy by encoding a margin

maximization strategy, while the random strategy is stable until

the point, where a feature destroying the structure of a main

class is added to the model. At this point, the classification

accuracy drops. This is illustrated by classification maps

generated from two points on each curve. Maps at points •1

and •2 show a clear increase in the map quality, while in this

example •3 and •4 show a degradation in the map coherence.

This process can be seen as an active learning of the optimal

feature space for classification, and the violating constraint as

the contribution to the error reduction if the feature is included

in the current active set.

V. CONCLUSIONS

We proposed an active set algorithm to discover the con-

textual features that are important to solve a remote sensing

image classification task. The algorithm screens randomly

generated filterbanks, without any prior knowledge on the filter

parameters (which are specific to the filter type, image contents

and they are potentially continuous and thus related to an

infinity of possible features). Based on a sparse ℓ1 linear SVM,

the algorithm evaluates if a feature would lead to a decrease

in the SVM decision function if added to the current feature

set.

Experiments on VHR multi- and hyperspectral images con-

firmed the interest of the method, which is capable of retriev-

ing for each class the most discriminant features in a large

search space (possibly infinite for continuous parametrized

filter types). Visual inspection of the retained features allows

one to appreciate the class separability of the top ranked

features.

Based on this subset, an ℓ2 SVM can also be trained,

leading to additional boosts in classification performance. In

both cases (ℓ1 and ℓ2 SVMs), the models trained on the

features discovered reach comparable or better performance

as SVM trained with predefined filterbanks defined by user

prior knowledge. Moreover, the progression of the accuracy is

almost monotonic, in contrast to inclusion of some randomly

generated features, where a non-discriminative feature can lead

to degradation of performances.

Future research will consider weighting of the bands (or pro-

jections) to be filtered, in order to let the algorithm gradually
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Fig. 10. Top: comparison between the thirty first iterations of one run of
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classification maps obtained at points [1, 2, 3, 4] on the respective curves.

ignore regions of the input space that lead to uninteresting

spatial features not contributing to the model improvement.

Such a weighting must be handled with care, since it may

lead to trapping in local minima and consequent ignorance

of relevant subspaces that contain discriminative features.

Semi-supervised extensions will also be topics of interest, to

enforce even more the desirable properties of the algorithm in

extremely small sample scenarios.
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[8] J.-B. Féret and G. Asner, “Semi-supervised methods to identify
individual crowns of lowland tropical canopy species using imaging
spectroscopy and LiDAR,” Remote Sens., vol. 4, pp. 2457–2476, 2012.

[9] M.A. Cho, R. Mathieu, G.P. Asner, L. Naidoo, J. van Aardt, A. Ramoelo,
P. Debba, K. Wessels, R. Main, I.P.J. Smith, and B. Erasmus, “Mapping
tree species composition in sourth african savannas using an integrated
airborne spectral and lidar system,” Remote Sens. of Environ., vol. 125,
pp. 214–226, 2012.

[10] A. Plaza, J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone,
G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri,
M. Marconcini, J.C. Tilton, and G. Trianni, “Recent advances in
techniques for hyperspectral image processing,” Remote Sens. Environ.,
vol. 113, no. Supplement 1, pp. S110–S122, 2009.

[11] J. Verrelst, M. E. Schaepmann, B. Koetz, and M. Kneubühler, “Angular
sensitivity analysis of vegetation indices derived from CHRIS/PROBA
data,” Remote Sens. Enviro., vol. 112, pp. 2341–2353, 2008.

[12] S. Stagakis, N. Markos, O. Skyoti, and A. Kirparissis, “Monitoring
canopy biophysical and biochemical parameters in ecosystem scale using
satellite hyperspectral imagery: an application on a Phlomis fructicosa
Mediterranean ecosystem using multisangular CHRIS/PROBA observa-
tions,” Remote Sens. Enviro., vol. 114, pp. 977–994, 2010.

[13] M. Jehle, A. Hueni, A. Damm, P. D’Odorico, J. Weyermann, M. Kneu-
biihler, D. Schlapfer, M.E. Schaepman, and K. Meuleman, “Apex -
current status, performance and validation concept,” in Sensors, 2010

IEEE, nov. 2010, pp. 533 –537.

[14] H. Saari, V. V. Aallos, C. Holmlund, J. Mäkynen, B. Delauré, K. Nack-
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survey of active learning algorithms for supervised remote sensing image
classification,” IEEE J. Sel. Topics Signal Proc., vol. 5, no. 3, pp. 606–
617, 2011.

[50] M. M. Crawford, D. Tuia, and L. H. Hyang, “Active learning: Any value
for classification of remotely sensed data?,” Proceedings of the IEEE,
vol. 101, no. 3, pp. 593–608, 2013.



13

C
la

ss
9

H
ay

0 100 200 300

1

2

3

4

Band index

N
um

be
r 

of
 ti

m
es

 s
el

ec
te

d

Φθi(x)

Band 107 93 84 108

θi Opening by Opening by Closing top hat Opening by

rec., diamond, rec., diamond, disk, 21 pix. rec. top hat,

17 pix. 17 pix. diamond, 17 pix.
w2

i∑
j
w2

j

33.05 % 33.63% 8.77% 15.76 %

C
la

ss
1

3
W

o
o

d
la

n
d

s

0 100 200 300

1

2

3

4

Band index

N
um

be
r 

of
 ti

m
es

 s
el

ec
te

d

Φθi(x)

Band 77 79 183 167 156

θi Opening top Closing top Entropy Opening top Entropy

hat, disk, hat, disk, 7 pix. hat, square, 13 pix.

11 pix. 3 pix 17 pix.
w2

i∑
j
w2

j

16.73 % 23.24% 7.87% 19.13% 5.18%

C
la

ss
1

6
H

o
u

se
s

/
B

u
il

d
in

g
s

0 100 200 300

1

2

3

4

Band index

N
um

be
r 

of
 ti

m
es

 s
el

ec
te

d

Φθi(x)

Band 146 167 176

θi Closing by rec. top hat Closing by rec. Attribute diagonal

line 19 pix., 46◦ square, 7 pix. 70 pix.
w2

i∑
j
w2

j

89.73 % 2.35 % 2.08 %

Fig. 8. Examples of selected features for three classes of the Indian Pines data and one run of the AS-Bands experiment.
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