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An upper bound for validity limits of asymptotic analytical
approaches based on normal form theory

Claude-Henri Lamarque · Cyril Touzé ·
Olivier Thomas

Abstract Perturbation methods are routinely used in
all fields of applied mathematics where analytical so-
lutions for nonlinear dynamical systems are searched.
Among them, normal form theory provides a reliable
method for systematically simplifying dynamical sys-
tems via nonlinear change of coordinates, and is also
used in a mechanical context to define Nonlinear Nor-
mal Modes (NNMs). The main recognized drawback
of perturbation methods is the absence of a criterion
establishing their range of validity in terms of am-
plitude. In this paper, we propose a method to ob-
tain upper bounds for amplitudes of changes of vari-
ables in normal form transformations. The criterion is
tested on simple mechanical systems with one and two
degrees-of-freedom, and for complex as well as real
normal form. Its behavior with increasing order in the
normal transform is established, and comparisons are
drawn between exact solutions and normal form com-
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putations for increasing levels of amplitudes. The re-
sults clearly establish that the criterion gives an upper
bound for validity limit of normal transforms.

Keywords Normal form theory · Upper bound of
validity limit · Perturbation methods · Nonlinear
Normal Modes

1 Introduction

Perturbation methods allow deriving analytical solu-
tions of nonlinear dynamical systems by assuming that
the solution will be a perturbation of the linear one that
can be analytically derived by ad-hoc hypotheses and
application of the Fredholm alternative. The very first
premises of analytical works involving a perturbative
scheme dates back to the eighteenth century. The main
developments have then been pushed forward from the
end of the nineteenth century and the pioneering works
of Poincaré, Lindstedt, Birkhoff and Lyapunov, among
others, for solving difficult problems in celestial me-
chanics like the three-body problem [1–3]. They are
now widely used in all fields of applied mathemat-
ics and have been very successful in providing a large
amount of predictive results. In a mechanical context,
they are used to derive approximate expressions for
free and forced responses of nonlinear (smooth) me-
chanical systems with various kinds of nonlinearities.
The books by Nayfeh et al., provide a nice and com-
plete picture of all the results that can be expected
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from such methods [4, 5]. Successive approximations,
generally ordered by a perturbative small parameter ε,
are found by analytical developments that get more
and more involved with the required perturbation or-
der, so that practically, calculations are limited to in-
clusion of first- or second-order of perturbation.

Normal form theory, which can be viewed as a per-
turbation method [6], lays down on the fundamental
theorems of Poincaré and Poincaré-Dulac [1, 7]. It is
a general and powerful method that allows simplifi-
cation of nonlinear terms of a dynamical system, by
distinguishing resonant and nonresonant terms, so that
eventually one is able to derive the “skeleton” of the
dynamical system containing only the important terms
for dynamical behaviors that are responsible for bi-
furcations and the nature of solutions, in the vicinity
of a special solution such as fixed points or periodic
orbits [8–10, 16, 17, 21–24]. In the mechanical con-
text, normal form can be used to derive several impor-
tant analytical results, as well as for showing equiva-
lences with other methods such as NNMs, or appear-
ance of small denominators in perturbative schemes,
hence making it a cornerstone of all perturbation tech-
niques [14, 15, 25, 26]. The computation technique for
deriving normal forms and coefficients of the associ-
ated nonlinear change of coordinates can be efficiently
automatized by using symbolic computational tool-
boxes, as shown, for example, in [18, 19]. Recently,
it has also been applied to the second-order vibra-
tion problem [20], in a manner sharing many common
points with the real normal form method developed in
[25, 26].

The recognized drawback of all the perturbation
methods that is also shared by normal form theory, is
the absence of a criterion establishing the range of va-
lidity of the approximate solutions, in terms of ampli-
tudes of the coordinates. Even though one expects the
radius of convergence of the approximate solution to
increase with the order of the development used for
the perturbation method employed, no validity limits
have ever been given, so that one is led to apply direct
numerical integration of the original dynamical system
in order to assess the validity range of the approximate
solution.

In this paper, an upper bound for the validity limit
of asymptotic expansions based on normal form the-
ory, is exhibited. The key relies in interpreting the ho-
mological equations that has to be solved in the nor-
mal form process in order to derive the coefficients
of the nonlinear change of coordinates, as an inver-

sion procedure that is generally not performed in clas-
sical calculations. The criterion is presented in Sect. 2,
after recalling the ground basis of normal form the-
ory. The method is then applied to a single degree-of-
freedom (dof) Duffing equation with cubic nonlinear-
ity in Sect. 3, where classical complex normal form
transformations are used. For the single dof Duffing
equation, normal forms up to a high order are com-
putable so that the convergence of the bound with
increasing order can be studied. A two dofs system
with real normal form procedure is then considered
in Sect. 4, where the case of adding linear viscous
damping terms in the mechanical system is also high-
lighted. Extensions of the criterion to N-dofs systems
and the comparison with NNMs is also discussed. Fi-
nally, conclusions are drawn in Sect. 5.

2 Classical normal form theory

In this section, we recall the basic normal form the-
ory for an autonomous finite dimensional nonlinear
dynamical system written as

ẋ = f (x) = L0x + g(x) (1)

where x is a n dimensional vector, x ∈ E , E = R
n or

C
n is the phase space, and ẋ = dx/dt , with t the time.

f : E −→ E is a n-dimensional vector field, L0 de-
notes ∂f (0) the Jacobian matrix of f at x = 0, and
g stands for the higher-order terms (at least order 2)
off .

We assume that f is given by a power series expan-
sion (a finite sum or an analytical function), and that
the origin of phase space is a fixed point (f (0) = 0).
This frame permits us to deal with usual cases where
L0 is a real matrix or a complex matrix (e.g., in diag-
onal form).

2.1 Normal form

The idea of the normal form theory is to simplify
as much as possible Eq. (1) by means of a nonlin-
ear change of coordinates. The principle is as follows:
Let us give an order k; let us determine polynomials
Φ and R of degree ≤ k (Φ,R : E −→ E ) such as
Φ(0) = R(0) = 0 and ∂Φ(0) = ∂R(0) = 0 and R is
as simple as possible (if possible 0), and so that the
change of variables:

x = u + Φ(u) (2)



transforms (1) into

u̇ = L0u + R(u) + o
(||u‖k

)
, (3)

where the number of terms in R is very small as com-
pared to g in (1). The n-dimensional vector u (u ∈ E )
denotes the new variable and the dynamical system (3)
is called the normal form of the original system (1).

Let us denote {λi}i=1,...,n the eigenvalues of L0.
The most simple case is given by Poincaré’s theo-
rem [1], which states that as long as no resonance ex-
ists between the eigenvalues of L0, then it is possible
to find Φ such that R is zero. Resonances in the spec-
trum for order k are defined by relationships of the
form:

∃s = 1, . . . , n;

λs =
n∑

i=1

miλi, mi ≥ 0,

n∑

i=1

mi = k ≥ 2. (4)

When resonances are present, Poincaré–Dulac’s theo-
rem states that all nonresonant terms can be cancelled
so that R is only composed of resonant monomial
terms [7]. For applications to mechanical conservative
vibratory systems, resonant terms are still present due
to the fact that the spectrum is composed of pairs of
complex conjugate eigenvalues, so that R is not re-
duced to the zero vector.

2.2 Homological equation

In the normal form transformation, the unknown is the
introduced function Φ . Poincaré’s theorem provides
a constructive method to compute Φ by increasing
orders of nonlinearity, through a so-called homolog-
ical equation. Let us write Taylor expansion of all the
terms: we note, for f , Φ , and R:

f (u) = L0u +
k∑

i=2

f (i)(u) + o
(‖u‖k

)
, (5)

Φ(u) =
k∑

i=2

Φ(i)(u), (6)

R(u) =
k∑

i=2

R(i)(u), (7)

where all the indexes i denote the total degree of the
corresponding polynomials, e.g., f (i) denotes a poly-
nomial of degree i in variables u = (u1, . . . , un)

T. Let

us replace in Eq. (1):

d

dt

(
u + Φ(u)

) = (I + ∂Φ)u̇ = f
(
u + Φ(u)

)
, (8)

where I denotes the identity operator. Then, since the
final result (Eq. (3)) gives u̇ = L0u+R(u), we obtain

(I + ∂Φ)
(
L0u + R(u)

) = f
(
u + Φ(u)

)
. (9)

This equality is expanded and ordered from degree 1
to degree k:

– at degree 1, we check L0u = L0u

– then for degree i, (2 ≤ i ≤ k), we obtain

L0Φ
(i)(u) − ∂Φ(i)(u)L0u = R(i)(u) − P (i)(u),

(10)

where P (i) is a polynomial of degree i in u, that
depends only on:1

– f (j),2 ≤ j ≤ i

– Φ(j),2 ≤ j ≤ i − 1
– R(j),2 ≤ j ≤ i − 1

We obtain a triangular system of equations for the
unknowns Φ(j) that can be written on a basis leading
to solving linear systems [8, 11]. The Fredholm alter-
native provides both the resonant terms R(j) (2 ≤ j ≤
k) and the normal transforms Φ(j) (2 ≤ j ≤ k). How-
ever, the latter one is not uniquely defined, as the typi-
cal structure of the problem (in case of diagonal oper-
ator L0) is as follows. For the solvable part of the sys-
tem (nonresonant terms), equations for Φ(j) appears
to be of the form:

a �= 0, aΦ = b ⇒ Φ = b/a, (11)

where Φ denotes one of the coefficients of the normal
transform Φ(j). This leads us finally, for each order j ,
to a unique solution for Φ(j). This is not the case for
the singular parts of the linear system (resonant terms),
where application of the Fredholm alternative lends us
with problems of the form:

0 · Φ = R − P, (12)

1Precisely, following Eq. (9), one obtains: P (i) = [f (i)(u +
Φ(u))](i) − [∂ΦR(u)](i) where [◦](i) denotes all the monomial
of degree i of ◦.



where R and P denote the coefficients of respectively
R(j) and P (j). In Eq. (12), the choice for Φ is not
unique. The most common choice retained in litera-
ture is to let Φ = 0, hence leading to the simplest ex-
pression of normal transform, as the resonant terms
staying in the normal form after nonlinear change of
coordinates are simply given by R = P . However, one
must keep in mind that any other choice can be made.

At the end of the process, for each order of nonlin-
earity k, one obtains the change of coordinates (2) and
the normal form (3) (the reduced equations). Normal
forms can then be used in bifurcation theory to clas-
sify the generic families of bifurcations in dynamical
systems [8, 11]. For mechanical vibratory systems, it
can also be used to define Nonlinear Normal Modes
(NNMs) and build reduced-order models [14, 25, 26].
However, one recognized drawback of the method is
that the validity limit of the change of variables is not
given. Hence, as u is getting large, one has to resort to
numerical verification to verify that the approximate
solution is still valid. In the next section, we propose
an upper bound for this validity limit.

2.3 Practical convergence

Normal form calculations are made in practice up
to a given finite degree k. So only R(2), . . . ,R(k),
Φ(2), . . . ,Φ(k) up to degree k are computed. Let us

note that in fact Eq. (8) has to be understood as:

u̇ = (
I + ∂Φ(u)

)−1
f

(
u + Φ(u)

)
, (13)

leading to u̇ = L0u + R(u). Even though Eq. (13)
is never written when one computes its normal trans-
form degree by degree (as in general one solves Eq.
(9) without thinking of inversing the left-hand side
term), the problem can be treated similarly by invert-
ing I + ∂Φ(u). This remark gives us the key to set the
upper bound for validity limit. For practical use of nor-
mal transform, we propose to set a boundary associ-
ated to the distance of u from 0 ∈ E , so that I +∂Φ(u)

becomes singular and (I + ∂Φ(u))−1f (u + Φ(u))

keeps also a singular point (it means the limit of the
term f (u + Φ(u)) when u tends to singular value of
(I + ∂Φ(u)) does not suppress the singularity).

Since in approximated problems we compute only
the terms Φ(2), . . . ,Φ(k) and since we organize non-
linearities according to increasing degrees in f (u +
Φ(u)), we propose in practice to look for u such
that:

Δ(u) = det
(
I + ∂Φ(2)(u) + · · · + ∂Φ(k)(u)

)

= 0 (14)

and such that

lim
v−→u,Δ(u)=0

∣∣∣∣
T [adj(I + ∂Φ(v))f (v + Φ(2)(v) + · · · + Φ(k)(v))]

Δ(v)

∣∣∣∣ = +∞, (15)

where adj(•) is the transpose of the cofactor matrix of
• and T [•] is the truncated Taylor expansion of • up
to order n(k − 1).

The remainder of the paper is devoted to assess-
ing the accuracy of the proposed criterion for validity
limit, for various, simple mechanical systems. We be-
gin with the Duffing equation, for which normal trans-
formations are computable up to a high order k (at
least for free oscillations). This will allow verification
of convergence of the proposed criterion with respect
to perturbation order. Note that throughout the paper,
cases of internal resonance between the eigenfrequen-
cies of the vibratory system are not taken into account,

so that the simplest normal transform as shown, for ex-
ample, in [14, 25, 26], is considered.

3 Duffing equation with complex normal
transform

Let us consider the following Duffing equation, a usual
second-order problem corresponding to a one degree-
of-freedom mechanical system:

ẅ1 + ω2
0w1 + cw3

1 = 0, (16)

where ω0 and c are real parameters and w1(t) is the
unknown time function.



3.1 Normal form calculation with simplest form of
normal transform

Let us give normal form calculations up to order 3. Let
us first transform (16) in diagonal form, by introducing
the linear change of variables

ẇ1 = λ1x1 + λ2x2, w1 = x1 + x2, (17)

where λ1 = λ2 = −iω0 are the eigenvalues of the lin-
ear part of (16) rewritten in a first-order form and
i2 = −1. Equation (16) is then transformed into

ẋ1 = λ1x1 + ic

2ω0
(x1 + x2)

3,

ẋ2 = λ2x2 − ic

2ω0
(x1 + x2)

3,

(18)

which are two complex conjugate differential equa-
tions on the unknowns x1 and x2 and which define
vector field f and matrix L0 = diag(λ1, λ2).

Normal form up to order 3 is then calculated for
this two-dimensional differential system of order 1 by

setting

x1 = u1 + Φ1(u1, u2), x2 = u2 + Φ2(u1, u2),

(19)

where

Φ1(u1, u2) = −1

8

cu2
3

ω0
2

− 3

4

cu1u2
2

ω0
2

+ 1

4

cu1
3

ω0
2

,

Φ2 conjugate of Φ1.

(20)

Normal form up to order 3 is then

u̇1 = −iω0u1 − 3ic

2ω0
u2

1u2,

u̇2 = iω0u2 + 3ic

2ω0
u2

2u1,

(21)

where two resonant terms have to be kept.
Following the procedure exposed in Sect. 2.3, the

determinant of I + ∂Φ(u), with u = (u1 u2)
T and

Φ = (Φ1 Φ2)
T, is equal to

Δ(u) = − (6cu2
2 + 3cu1u2 + 6cu1

2 − 8ω0
2)(6cu2

2 + 3cu1u2 + 6cu1
2 + 8ω0

2)

64ω0
4

(22)

Since u1 and u2 are complex conjugate, we define P

and Q to be two real variables so that u1 = P + iQ.
By rewriting both factors of the numerator of Δ(u) as
functions of P and Q, one can show that the matrix
I + ∂Φ(u) is singular (Δ(u) = 0) if

15cP 2 − 9cQ2 − 8ω2
0 = 0 or

15cP 2 − 9cQ2 + 8ω2
0 = 0,

(23)

which defines two curves in the (P,Q) plane, shown
on Fig. 1(a).

Similar calculations have been done with the help
of symbolic computations for higher order normal
forms and simplest choice of the normal transform (the
component of the normal transform according to each
resonant term in homological equation is cancelled as
in Eq. (12)). Details for normal transforms and normal
forms are omitted here for sake of brevity (except de-
gree 11 which is given in Appendix A for illustrating

the increasing complexity with respect to the selected
order k). We simply provide in the plane (P,Q) the
corresponding results to show that there is a limit ball
centered on u = 0 so that I + ∂Φ(u) is not singular.

The maximal convergence radius (i.e., the maximal
modulus |u1| = |u2| of u1 and u2 before the circle
centered on P = Q = 0 meets the curve of singular-
ities) corresponding to the successive orders k of nor-
mal form calculations are given in Table 1. From this
result, it is reasonable to claim that upper bound of
convergence radius tends to 1/2. This corresponds to a
limit value which sounds reasonable for a perturbation
approach. Going back to the original variable w1 in
Eq. (16), since w1 = u1 +u2 = 2P , it is meaningful to
demand |w1| ≤ 1. Note that when c < 0, two saddles
appears with values (w1, ẇ1) = (±1/

√−c,0). Hence,
when c ∈ [−1,−∞[, the upper bound may be smaller
due to the existence of limit cycles that are limited in
phase space by the presence of these two fixed points.



Fig. 1 Singularity curves
in the plane (P,Q), where
the normal coordinate
u1 = P + iQ, for ω0 = 1,
c = 1 and the normal form
calculation up to order:
3 (a), 5 (b), 7 (c), 11 (d),
17 (e), 25 (f). A circle of
radius 0.5 is shown by the
dotted line

We also checked that the polynomial corresponding
to Δ(u) does not divide the first component of the term
corresponding to

T
[
adj

(
I + ∂Φ(v)

)
f

(
v + Φ(2)(v) + · · · + Φ(k)(v)

)]
,

(up to coherent order: 4 here) to verify Eq. (15). For a
normal form at order 3, the ratio associated with (15),
up to the normal form calculations of order 3, is

32iu1(2ω0
2 + 3cu1u2)ω0

3

(6cu2
2 + 3cu1u2 + 6cu1

2 − 8ω0
2)(6cu2

2 + 3cu1u2 + 6cu1
2 + 8ω0

2)
(24)



Table 1 Maximal convergence radius (i.e., maximal modulus
of u1 and u2 (|u1| = |u2|)) as a function of order k of normal
form calculation

Normal form order k Maximal modulus of u1

3 0.7303

5 0.7688

7 0.5898

11 0.5473

17 0.5442

25 0.5171

27 0.4981

The above equation can be rewritten in term of P

and Q, so that zeros of its denominator verify Eqs. (23)
and its numerator corresponds to

32iω0
3(P + iQ)

(
2ω0

2 + 3c
(
P 2 + Q2)).

The limit of this numerator, when the first or the sec-
ond of Eqs. (23) is verified, is different from 0, so that
the singularities of I + ∂Φ(u) cannot be compensated
by eventual singularities of f (u + Φ(u)).

3.2 Normal form calculation with another normal
transform: a simple example

We recall in Sect. 2.2 that the normal transform is not
unique. The choice of 0 as the vector of the kernel in
the Fredholm alternative (i.e., Φ = 0 in Eq. (12)) cor-
responds to the simplest normal transform. Since an-
other choice can be made (Φ �= 0 in Eq. (12)), is it
possible to suppress the singular points of I + ∂Φ(u)

via this different choice?
The general case seems to be an open question even

if intuitively we may think that the choice of such
a nonzero term will not modify the geometry of the
problem and so singular points will persist. To illus-
trate the question, let us consider normal transform for
the simple one degree-of-freedom system of Sect. 3.1.
As we will see, with calculations up to order 3, it is
impossible to suppress the singular points.

The most general expression of normal transform
up to order 3 for (18) corresponds to

Φ∗
1 (u1, u2) = Φ1(u1, u2) + βu2

1u2,

Φ∗
2 conjugate of Φ∗

1 ,
(25)

where Φ1(u1, u2) is given by Eq. (20), β is a given
complex coefficient, and u1 and u2 are conjugate. The
normal form up to order 3 is not modified and is given
by (21).

Now, determinant of I + ∂Φ(u) is found to be

Δ(u) = 1 + 2(β + β)u1u2 + 3

8

(
β − 3

2

)
u4

1

+ 3

8

(
β − 3

2

)
u4

2 + 3

(
ββ − 27

64

)
u2

1u
2
2

+ 3

2
βu3

1u2 + 3

2
βu1u

3
2 − 9

16
u3

2u1

− 9

16
u3

1u2. (26)

Introducing u1 = P + iQ, u2 = P − iQ, β = r + it

and P = sQ with P , Q, r , s, and t real numbers, one
has to study the behavior of the following polynomial
in Q2 versus coefficients (r, s, t):

1 + [
4r + 4rs2]Q2 +

[
3s4t2 + 6s2t2 − 9

4
r + 3t2

+ 3r2 + 15

4
s4r + 9st + · · · + 3s3t − 9

2
rs2 − 81

64

+ 135

32
s2 − 225

64
s4 + 6s2r2 + 3s4r2

]
Q4. (27)

Indeed, one has to examine if it is possible to chose r, t

so that this polynomial has no roots for any given s.
Cumbersome analytical calculations proves that this is
impossible (see Appendix B).

Another question is associated with the choice of a
nonzero β: Is it possible to increase the radius of con-
vergence? In other words, could we increase the value
of |u1| = |u2| where a singular point of I + ∂Φ(u)

occurs? Obtaining an answer to this question is diffi-
cult through an analytical method. However, numeri-
cal investigations show that in the present case of an
order 3 normal form, it is impossible to increase the
radius.

4 A two-dofs system with real normal form

In this section, the upper bound is derived on a two
dofs system displaying quadratic and cubic nonlinear-
ity. Computations are realized through a real formu-
lation, up to third order, of the normal transforma-
tion. The validity limit provided by the proposed cri-



terion of Sect. 2.3 is compared to dynamical data ob-
tained by comparing exact solutions with third-order
asymptotics. The effect of the damping is also stud-
ied. Finally, a comparison is drawn with nonlinear nor-
mal modes (NNMs) calculations based on the center
manifold technique, and a simplified criterion is dis-
cussed.

4.1 Real normal form

Real normal form computations have been derived for
mechanical systems, where the linear part is of the
oscillator-type, and thus contains a second-derivative
with respect to time. The idea of using a real transfor-
mation is that, even though the system is reduced to its
first-order form during the computations, second-order
formulations are recovered at the end of the process
so that one has always oscillator equations at hand.
The general transformation has been derived for un-
damped vibratory systems in [25] and for damped sys-
tems in [26]. The main steps are here briefly recalled
for the sake of completeness.

The starting point is an assembly of N nonlinear
oscillators displaying quadratic and cubic nonlinear-
ity. It is assumed that the linear part has been made
diagonal by use of the eigenmodes of the system, so
that the dynamics reads, ∀p = 1, . . . ,N :

Ẍp + ω2
pXp +

+∞∑

i=1

+∞∑

j≥i

g
p
ijXiXj

+
+∞∑

i=1

+∞∑

j≥i

+∞∑

k≥j

h
p
ijkXiXjXk = 0. (28)

A first-order formulation of (28) is used by introducing
the velocities Yp = Ẋp as complementary variables so
as to fit the general framework explained in Sect. 2,
Eq. (1). Hence, the vector of generalized coordinates
writes x = (X1 Y1 · · · XN YN)T and the matrix L0 is
2N × 2N and composed of N diagonal blocks of the
form:
(

0 1
−ω2

p 0

)
. (29)

The nonlinear coordinate change is of the gen-
eral form given by (2): x = u + Φ(u), where u is a
vector of newly introduced variables, and reads: u =

(R1 S1 · · · RN SN)T. Pairs of coordinates (Rp,Sp)

are respectively homogeneous to a displacement and
a velocity; they represent the motions in a curved
grid spanned by the invariant manifolds and are some-
times called normal coordinates [25, 26]. The non-
linear transformation Φ(u) is computed by successive
elimination of non-resonant terms. Calculations are re-
alized up to order three in [25, 26] so that polyno-
mial asymptotic expansions are obtained in the form,
∀p = 1, . . . ,N :

Xp = Rp + Pp(Ri, Si), (30a)

Yp = Sp + Qp(Ri, Si), (30b)

where Φ(u) = (P1 Q1 · · · PN QN)T and Pp , Qp are
third-order polynomials. More explicitly, for the un-
damped case, the normal transform writes:

Xp = Rp +
N∑

i=1

N∑

j≥i

(
a

p
ijRiRj + b

p
ij SiSj

)

+
N∑

i=1

N∑

j≥i

N∑

k≥j

r
p
ijkRiRjRk

+
N∑

i=1

N∑

j=1

N∑

k≥j

u
p
ijkRiSjSk, (31a)

Yp = Sp +
N∑

i=1

N∑

j=1

γ
p
ij RiSj +

N∑

i=1

N∑

j≥i

N∑

k≥j

μ
p
ijkSiSjSk

+
N∑

i=1

N∑

j=1

N∑

k≥j

ν
p
ijkSiRjRk, (31b)

where the coefficients (a
p
ij , b

p
ij , γ

p
ij , r

p
ijk, u

p
ijk,μ

p
ijk,

ν
p
ijk) have analytic expressions [25] that are tuned

so as to cancel all nonresonant terms, as explained
in Sect. 2.2.2 After application of the nonlinear co-
ordinate change (31a), (31b), the dynamics are ex-
pressed with the normal variables (Rp,Sp) and are
substantially simplified. Moreover, it opens the doors
to reduced-order modeling since in the normal dy-
namics, all invariant-breaking terms have been can-
celled; see, e.g., [25–28]. In the case where no in-
ternal resonance exists between the eigenfrequencies

2The notations Rp and Pp , kept from the formalism of [25, 26],
must not be confused with the polynomials R and P of Sect. 2.2.



{ωp}p=1,...,N of the system (28), the normal dynam-
ics can be reduced to a single master coordinate, say
(Rp,Sp), by simply cancelling all the others normal
coordinates: ∀k �= p, Rk = Sk = 0. Substitution in
(31a), (31b) allows to recover the geometry of the pth
NNM in phase space (up to order three):

∀k �= p : Xk = ak
ppR2

p + bk
ppS2

p + rk
pppR3

p

+ uk
pppRpS2

p, (32a)

Yk = γ k
ppRpSp + μk

pppS3
p + νk

pppSpR2
p,

(32b)

and the dynamics on the manifold is governed by:

R̈p + ω2
pRp + (

A
p
ppp + h

p
ppp

)
R3

p + B
p
pppRpṘp

2 = 0,

(33)

where the introduced A
p
ppp and B

p
ppp terms are by-

products of the normal form transform; their general
expressions read:

A
p
ijk =

N∑

l≥i

g
p
ila

l
jk +

∑

l≤i

g
p
lia

l
jk, (34a)

B
p
ijk =

N∑

l≥i

g
p
ilb

l
jk +

∑

l≤i

g
p
lib

l
jk. (34b)

All these results will now be applied to a two-dofs
mechanical system. Invariant manifolds and normal
dynamics up to order three as expressed in Eqs. (32a),
(32b) and (33) will allow assessment of the accuracy
of the third-order asymptotic expansion, respectively,
on the geometry of the manifolds in phase space,
and on the backbone curve of the reduced dynam-
ics.

4.2 Example study

Let us consider the mechanical system sketched in
Fig. 2 and composed of a mass connected to two non-
linear springs. The equations of motion reads:

Ẍ1 + ω2
1X1 + ω2

1

2

(
3X2

1 + X2
2

) + ω2
2X1X2

+ ω2
1 + ω2

2

2
X1

(
X2

1 + X2
2

) = 0 (35a)

Fig. 2 Sketch of the two-dofs system considered. Mass m is
connected to two nonlinear springs

Ẍ2 + ω2
2X2 + ω2

2

2

(
3X2

2 + X2
1

) + ω2
1X1X2

+ ω2
1 + ω2

2

2
X2

(
X2

1 + X2
2

) = 0 (35b)

where X1 = x1/l0, X2 = x2/l0 are dimensionless dis-
placements of the mass in the horizontal and ver-
tical directions (l0 is the common free length of
the springs). The nonlinear constitutive law of the
springs is chosen analogous to a geometrically non-
linear Green–Lagrange strain-displacement law. It de-
pends on stiffness constants k1 and k2 and is defined
in [25]. The two eigenfrequencies ω1 = √

k1/m and
ω2 = √

k2/m fully parameterize the nonlinear prob-
lem.

Regions of hardening/softening behavior of this
system, as functions of (ω1,ω2), have already been
studied in [25]. Here, three cases are selected for com-
putations:

– Case 1, for (ω1,ω2) = (
√

1.7,
√

6).
– Case 2, for (ω1,ω2) = (

√
3,1).

– Case 3, for (ω1,ω2) = (
√

0.5,
√

6).

A global picture of the dynamics for case 1 is
shown in Fig. 3. Frequency-amplitude relationships
(so-called backbone curves) are reported for modes 1
and 2. A reference solution is found by numerical con-
tinuation of periodic orbits from the full system (35a),
(35b), and realized with the software MANLAB
[29]. MANLAB uses an asymptotic numerical method
for continuation of amplitudes of the Fourier co-
efficients of the solution derived from a harmonic
balance method [30] and the stability of the peri-
odic orbits is computed with a modified Hill algo-



Fig. 3 Backbone curves and NNMs for the two-dofs system
considered, case 1: (ω1,ω2) = (

√
1.7,

√
6). (a)–(b) backbone

curves for modes 1 and 2. Comparison between the exact solu-
tion, computed by numerical continuation on the original system
(black, thick line) and the third-order approximation provided

by Normal Form (blue, thin line). Unstable solutions are repre-
sented by dots. (c) First NNM in space (X1, Y1,X2). Compar-
ison of exact solution (periodic orbits, red) and third-order ap-
proximation (light blue). (d) idem for the second NNM in space
(X2, Y2,X1)

rithm [31]. The reference solution is compared to
the backbone curve obtained numerically by contin-
uation of periodic orbits on the reduced system, ex-
pressed by Eq. (33). Amplitude-frequency relation-
ships are given for the maximum amplitude of the
periodic orbits, i.e., the maximum value of X1 for
mode 1, and of X2 for mode 2. The geometry of the
two NNMs is also shown. Once again, the exact solu-
tion (periodic orbits) is compared to the third-order
approximation given by Eqs. (32a), (32b). The ge-
ometry of the exact manifolds shows that they fold
for a given amplitude: 0.247 for mode 1, and 0.43
for mode 2. This folding corresponds exactly to the
point on the backbone curve where an horizontal
tangency is found for mode 1, and for mode 2 the
point where the amplitude suddenly decreases. For
mode 2, one can observe on the amplitude-frequency
relationship that until that folding point, the third-
order approximation gives a quantitatively excel-
lent approximation. However, mode 2 loses stabil-
ity very quickly for an amplitude: max(X2) = 0.06,
whereas the asymptotic solution predicts stable solu-
tions. For mode 1, one can observe that from an am-
plitude of 0.1, the third-order approximation departs
from the exact solution. Then it misses the folding
point and is thus completely unreliable for amplitudes
over 0.25.

Cases 2 and 3 of the same system are inspected
in Fig. 4. Case 2 shows a phenomenology compara-
ble to case 1, by inverting the roles of mode 1 and
mode 2. The shapes of the invariant manifolds are

very similar: Fig. 4(c) representing the second NNM
of case 2 resembles mode 1 of case 1, and the same is
true for the subsequent mode. The backbone curves
also show comparable behavior, with a sharp fold-
ing for mode 1 and a vertical tangency for mode 2.
The real normal form approximation gives an excel-
lent result for mode 1 except for the stability that
is not correctly predicted, whereas for mode 2, the
third-order approximation departs from the exact so-
lution from an amplitude of 0.2, and then misses com-
pletely the folding point for max(X2) = 0.26. Case 3
shows a different behavior. In particular, the backbone
curve for mode 1 shows a variation in its softening
behavior that is enhanced for small amplitudes. Then
a folding of the manifold at max(X1) = 0.4 is ob-
served. The geometry of the first NNM is represented
in Fig. 4(f), showing that the third-order approxima-
tion fails to catch its complex shape, resulting in an
approximated backbone curve that departs from the
exact solution at the point where the softening behav-
ior decreases, i.e., for max(X1) = 0.27. On the other
hand, the approximation for mode 2 is reliable until
max(X2) = 0.3.

4.3 Validity limits

The criterion proposed in Sect. 2 is now applied to the
two-dofs system. The matrix V = I + ∂Φ(u) depends
on the four normal variables (R1, S1,R2, S2). Follow-
ing the notations introduced in Sect. 4.1, we can write
explicitly:



Fig. 4 Backbone curves and NNMs for the two-dofs system
considered, (a–c) case 2, (ω1,ω2) = (

√
3,1), (d–f) case 3,

(ω1,ω2) = (
√

0.5,
√

6). (a, b) backbone curves for mode 1
and 2, case 2. Comparison between the exact solution, com-
puted by numerical continuation on the original system (black,

thick line) and the third-order approximation provided by Nor-
mal Form (blue, thin line). Unstable solutions are represented by
dots. (c) second NNM plotted in (X2, Y2,X1). (d–e) backbone
curves for modes 1 and 2, case 3. (f) geometry of the first NNM,
case 3

V (R1, S1,R2, S2) =

⎡

⎢
⎢
⎣

1 + ∂P1/∂R1 ∂P1/∂S1 ∂P1/∂R2 ∂P1/∂S2

∂Q1/∂R1 1 + ∂Q1/∂S1 ∂Q1/∂R2 ∂Q1/∂S2

∂P2/∂R1 ∂P2/∂S1 1 + ∂P2/∂R2 ∂P2/∂S2

∂Q2/∂R1 ∂Q2/∂S1 ∂Q2/∂R2 1 + ∂Q2/∂S2

⎤

⎥⎥
⎦ . (36)

The determinant of V is computed on a four-dimen-
sional grid, which can give rise to important compu-
tational times for fine grids. In order to represent the
solution, two coordinates ρ1 and ρ2 are introduced as:

ρ1 =
√

R2
1 + S2

1

ω2
1

, (37)

ρ2 =
√

R2
2 + S2

2

ω2
2

. (38)

They can be viewed as amplitudes of the periodic or-
bits and are easily related to the amplitudes of motions
used for parameterizing the backbone curves. More-
over, they allow representation of Δ = det(V ) in a



Fig. 5 Validity limit criterion for the two-dofs example, case 1.
(a) Three-dimensional view of det(V ) as function of (ρ1, ρ2).
Positive values of det(V ) are plotted with orange points while
negative values with black points. (b) Upper view of det(V ) as

function of (ρ1, ρ2), positive points in orange, negative in black.
A circle of radius ρ = 0.13 is superimposed. (c) det(V ) as func-
tion of (r1, r2), in order to recover original coordinates. A circle
of radius r = 0.37 is superimposed

two-dimensional space. Finally, the nonlinear change
of coordinates (31a), (31b) is applied to each point of
the grid to recover the original displacements and ve-
locities. The value of Δ is also represented on a two-
dimensional grid by using the reduced coordinates:

r1 =
√

X2
1 + Y 2

1

ω2
1

, (39)

r2 =
√

X2
2 + Y 2

2

ω2
2

. (40)

Figure 5 shows the obtained results for case 1. First,
a three-dimensional view of the values of det(V ) is
represented in Fig. 5(a). One can observe the very
complex shape of the surface in the plane (ρ1, ρ2),
which is so irregular that it tends to occupy a volume
rather than a surface, making representation quite dif-
ficult. The following features are worth mentioning:
when ρ1 and ρ2 tend to zero, det(V ) tends to 1, in the
line of its definition. For ρ2 = 0 and increasing values
of ρ1, one can observe that det(V ) tends to larger and
larger positive values. On the other hand, for ρ1 = 0
and increasing values of ρ2, the values of det(V ) de-
creases and then becomes negative. In the remainder
of the plane (ρ1, ρ2), det(V ) takes very irregular val-
ues so that numerous cancellation points are obtained.

A top view of the plot is shown in Fig. 5(b) so as to
better visualize the cancellation points of det(V ). The
upper bound for validity limits of the third-order real
normal form is defined by the largest ball for which
det(V ) does not cancel. Defining the vector ρ as an

element of the plane (ρ1, ρ2), one can see on Fig. 5(b)
that the largest subset without cancellation is given by
the circle of radius ρ = Rlim = 0.13. Finally, Fig. 5(c)
shows the values of det(V ) after the nonlinear change
of coordinates has been applied, so as to get a better
quantitative comparison with the global dynamics ex-
hibited in the previous section. The nonlinear change
of coordinates severely distorts the initial regular grid
defined for (R1, S1,R2, S2). In the original dynami-
cal variables (X1, Y1,X2, Y2), the largest subset for
which det(V ) does not cancel is given by the ball of
radius r = 0.37. Compared with the quantitative de-
scription of the dynamics and its third-order approxi-
mation given in Sect. 4.2, one can see that the upper
bound given by the proposed criterion gives a coher-
ent value. As observed in that case, the asymptotic so-
lution for mode 1 departs form the exact solution for
an amplitude of 0.1, while for mode 2 a good estimate
was found until 0.43, but the stability was not correctly
predicted. Hence, limiting the validity of the normal
form solution to an amplitude of 0.37 is fully coherent
with that analysis.

The criterion for validity limits is tested on cases 2
and 3 in Fig. 6. For case 2, the upper bound is found to
be for an amplitude (in original coordinates) of 0.26.
This result is completely in the line of the dynamical
solutions inspected in Sect. 4.2, where mode 2 was
shown to fold for that amplitude, so that the asymp-
totic solution is completely unreliable for larger am-
plitudes. Finally, for case 3, the validity limit given by
the criterion is a ball of the radius r = 0.37, which ap-
pears to be an upper bound as the asymptotic backbone



Fig. 6 Validity limit
criterion for the two-dofs
example, (a) case 2,
(b) case 3. Upper view of
det(V ) as function of
(r1, r2), positive points in
orange, negative in black.
A circle of radius r = 0.26
is superimposed for case 2
in (a); r = 0.37 for case 3
in (b)

curves for mode 1 and mode 2 depart from the cor-
rect solution for amplitudes around 0.3. Once again,
the criterion gives a very coherent value for obtaining
a validity limit for normal form transformations.

4.4 Effect of damping

The effect of adding a linear viscous damping term to
the equations of motion on the validity limit is now
studied. For that purpose, Eqs. (35a), (35b) are modi-
fied by adding a term of the form 2ξiωiẊi , i = 1,2, on
each equation. The nonlinear change of coordinates,
Eqs. (31a), (31b), is modified following a procedure
that is fully explained in [26]. The presence of the
damping slightly modifies the coefficients of the nor-
mal form, and may also have an influence on the type
of nonlinearity; see [26] for a full discussion including
examples.

The criterion for the upper bound is computed as in
Sect. 4.3, with the modified coefficients now depend-
ing on damping. Results are shown in Fig. 7, for three
increasing values of the damping, where we have se-
lected the same damping ratio for the two oscillators:
for i=1,2, ξi = 10−3, ξi = 10−2, and ξi = 10−1. One
can observe that:

– for case 1, the validity limit increases. For ξi = 10−3

and ξi = 10−2, we have ρlim = 0.135, and for ξi =
10−1, ρlim = 0.21.

– for case 2, the validity limit very slightly increases
from ρlim = 0.34 to ρlim = 0.37.

– for case 2, the validity limit decreases from 0.41 to
0.38.

As already mentioned in [26], the effect of the
damping on the normal form coefficients is slight as
long as small damping ratios are taken into account.

However, one must keep in mind that these slight mod-
ifications have a quantitative effect on NNM-based
reduced-order models for the forced response of con-
tinuous structures or on the type of nonlinearity. In
the case of predicting a limit value for those analyti-
cal asymptotic developments, the main conclusion is
that only slight changes are observed by taking dis-
sipation into account, so that the order of magnitude
given by the conservative case is maintained. The fact
that the upper bound increases or decreases with the
damping seems to be problem-dependent and does not
lend itself to a simple physical interpretation.

4.5 Normal forms and nonlinear normal modes

To conclude this analysis, a more thorough compar-
ison of real normal form with NNMs computation
using the center manifold technique [11–13], as pro-
posed by Shaw and Pierre [32, 33], is here given. For
the sake of clarity, the original dynamical equations (1)
are restricted to a two dofs problem, so that X =
(X1 Y1 X2 Y2)

T = (X1 X2)
T, where X1 = (X1 Y1)

T

(resp. X2 = (X2 Y2)
T) is the vector of coordinates—

displacement and velocity—related to mode 1 (resp.
mode 2). Nonlinear normal modes (NNMs) are exhib-
ited using the technique of the center manifold theo-
rem by separating the problem into:

Ẋ1 = A1X1 + g1(X1,X2), (41a)

Ẋ2 = A2X2 + g2(X1,X2). (41b)

For computing the first NNM, one wants to elimi-
nate properly the second coordinate from (41a) with-
out simply cancelling X2. This is realized by postulat-
ing a functional relationship:

X2 = ψ1(X1) (42)



Fig. 7 Effect of the damping on the criterion for validity
limit. Upper view of det(V ) as a function of (ρ1, ρ2), positive
points in orange, negative in black. A circle is superimposed
to mark the ball of maximum radius without cancellation of

det(V ). Columns: increasing values of the damping: ξ = 10−3,
10−2 and 10−1. Raws: case 1: (ω1,ω2) = (

√
1.7,

√
6), case 2:

(ω1,ω2) = (
√

3,1), and case 3: (ω1,ω2) = (
√

0.5,
√

6)

Taking the derivative (42) with respect to time, and
eliminating time using the relationships provided by
(41a), (41b) allows exhibiting the equation governing
the geometry of the first invariant manifold (the first
NNM) in phase space. Solving this equation gives the
unknown ψ1, and thus the first NNM.

The relationship between NNMs and normal form
theory can be formally exhibited as follows. Equation
(2) can be split into two parts as:

X1 = U1 + Φ1(U1,U2), (43a)

X2 = U2 + Φ2(U1,U2). (43b)

In this formalism, restraining motions to the first NNM
is simply obtained by cancelling the normal variable
related to the second NNM: U2 = 0 [25]. Hence, the

equivalent formulation of the functional relationship
used to define the first NNM; Eq. (42) is given by:

X1 = U1 + Φ1(U1,0), (44a)

X2 = Φ2(U1,0). (44b)

One can observe that for recovering ψ1, local inver-
sion of (44a) has to be computed before inserting
in (44b).

Now, one wants to recover, if possible, the upper
bound exhibited in the previous sections on normal
form when performing NNM computations, as one
would be interested, e.g., when performing numeri-
cal simulations and asymptotic reduced-order models
(ROMs), in the validity limit of its asymptotic expan-
sion used to compute a NNM-based ROM. Taking the



derivative of (42) with respect to time yields

Ẋ2 = ∂ψ1

∂X1
Ẋ1. (45)

Taking also the derivative of Eqs. (43a), (43b) with
respect to time allows eliminating Ẋ1 and Ẋ2 from
Eq. (45), leading to

U̇2 + ∂Φ2

∂U1
U̇1 + ∂Φ2

∂U2
U̇2

= ∂ψ1

∂X1

[
U̇1 + ∂Φ1

∂U1
U̇1 + ∂Φ1

∂U2
U̇2

]
. (46)

Now restriction to the first NNM is obtained by can-
celling normal variables of the second NNM: U2 = 0
and U̇2 = 0. Eliminating U̇1, the previous equation re-
duces to

∂Φ2

∂U1
= ∂ψ1

∂X1

[
I 2 + ∂Φ1

∂U1

]
, (47)

where I 2 is the 2 × 2 identity matrix. Hence, for ob-
taining an expression of ψ1 (NNM) as function of Φ1

and Φ2 (normal form expression), one has to invert
the previous relationship, which is possible if and only
if I 2 + ∂Φ1

∂U1
does not show any cancellation. This ex-

pression is exactly the same as our criterion used for
giving an upper bound, except that it is restricted to a
two-dimensional problem whereas the original criteria
was fully four-dimensional with all cross-derivatives
involved. The expression I 2 + ∂Φ1

∂U1
corresponds to the

2 × 2 upper left block of V expressed in Eq. (36). The
same reasoning using the second NNM would have led
us to consider I 2 + ∂Φ2

∂U2
that corresponds to the 2 × 2

lower right block of V . Hence, using the NNMs only
for testing the upper bound will lead to erroneous re-
sult, as a very restrictive criterion will be computed
instead of the global one. This calculation points out
the fact that the nonlinear change of coordinates for
reducing the problem has to be computed on a ball
of the complete phase space around the origin, hence
involving all variables. Projecting first the dynamical
equations onto two-dimensional invariant manifolds
has to be done with care when one wants to recover
global quantities involving the complete phase space.
The restriction underlined here is somehow equivalent
to the restriction one has to face when building out a
complete change of coordinates, from the initial modal
ones, to the coordinates describing the invariant man-
ifolds. Shaw and Pierre proposed in [33] to gather all

functional relationships of the form (42) in order to
define this change of coordinates. Unfortunately, this
idea relies on linear concepts, and thus gives an incor-
rect formulation, as underlined in [25, 34]. The correct
formulation is given by the normal form which explic-
itly computes all nonlinear terms, as shown in [25].
The same process is here underlined, as using a sim-
plified criterion for the upper bound for the validity
limit of asymptotic expansion leads to use a restrictive
criterion conducting to erroneous results.

A less restrictive point of view is to consider the
full 4 × 4 criterion expressed by V in (36), and to set
R2 = S2 = 0 (resp. R1 = S1 = 0) for considering the
first (resp. the second) NNM. By doing so, V depends
only on two variables, which renders the computations
much more efficient. In particular, this method could
be an alternative if one wants to get an upper bound for
a N -dofs problem with N large as, e.g., in [28] where
ROMs are derived for shell vibrations problems with
routinely N = 20. In that case, computing the full cri-
terion will lead to define a 40-dimensional grid, which
will be impossible in a reasonable computation time.
Hence, a simplified criterion, consisting in restraining
to each NNM, and thus relying on 20 two-dimensional
problems to compute, could be used to get an upper
bound to assess the validity limit.

Let us denote V1 = det[V (R1, S1,0,0)] and V2 =
det[V (0,0,R2, S2)]. They are represented as contour
plots in Fig. 8 for case 1, (ω1,ω2) = (

√
1.7,

√
6).

V 1 shows positive values in the vicinity of the ori-
gin and a cancellation line crossing the R1-axis for
R1 = −0.57. If used as a criterion for the validity limit,
we would have obtained a largely overstimated value,
as the complete criterion shown in Fig. 5(b) predicts a
ball of radius ρ = 0.13. On the other hand, V2 shows a
zero-crossing value for small amplitudes, highlighted
in Fig. 8(b). Hence, the upper bound can be assessed
and is found numerically for ρ1 = 0.13, which is ex-
actly the value found by the 4-dimensional criterium.
This is logical since the reduced criterion can be in-
ferred from the results presented in Fig. 5(b) by se-
lecting only the line ρ2 = 0 (resp. ρ1 = 0) for V1 (resp.
V2). And for case 1, the first cancellation point exhib-
ited by Fig. 5 was found near the line ρ1 = 0.

The same result is found for case 2, where the can-
cellation point is found near the axis ρ2 = 0, as it can
be seen on Fig. 7 (note that the figure for the conser-
vative case and the damped one with a damping ratio
of 10−3 are coincident, so that the results for the con-
servative case can be inferred from those with small



Fig. 8 Contour plots of (a) V1 = detV (R1, S1,0,0), and (b) V2 = detV (0,0,R2, S2), for case 1

damping). Hence, computing V2 for case 2 does not
predict a correct validity limit. On the other hand, V1

gives a validity limit of ρ2 = 0.34, exactly the value
given by the complete criterium.

Finally, case 3 shows a cancellation point being
neither on ρ2 = 0 axis, nor on ρ1 = 0 (see Fig. 7).
Hence, using the reduced criteria with V1 and V2 in
case 3 leads to overestimate the upper bound. Numer-
ical results show that the upper bound is found for V1

with a value ρ1 = 0.68, whereas the value given by
V2 is much larger. That has to be compared to the ra-
dius given by the full criterion: ρ = 0.42. To conclude,
these reduced criteria can be utilized in order to speed
up the computations, as two-dimensional curves have
to be computed instead of a 2N dimensional problem
in the general case. But one has to keep in mind that
generally an overestimate will be given.

5 Conclusion

A criterion for assessing the validity limit of analyti-
cal approximate solutions obtained by means of a nor-
mal form transformation has been presented. It relies
on the interpretation of the homological equations as
an inversion procedure, hence allowing derivation of a
nonvanishing quantity that has to be checked for the
amplitudes of the normal coordinates. The criterion
has to be checked order by order, in the line of normal
form transforms that are successively computed by in-
creasing orders of nonlinearity. The criterion has been
tested on the Duffing equation together with a complex
formulation of the normal form. For that case, com-
putations of normal forms up to order 27 have been

realized, showing that the validity criterion converges
to the value of 1, which is meaningful for a perturba-
tive asymptotic solution where it is generally required
that nonlinear terms sort according to increasing or-
ders, which is realized as long as the variables are
less than 1. As the radius of the validity limit given
by the criterion converge in a decreasing manner, it
can be used for first orders, but gives in that case an
upper bound for the validity limit. The criterion has
then been tested on a two dofs system with real nor-
mal form transformations up to order 3. Dynamical
solutions have been computed numerically for assess-
ing the range of validity of the third-order normal form
transform on the backbone curves of the system. Com-
parison with the upper bound provided by the crite-
rion shows very good agreement. However, computa-
tion times can become rapidly prohibitive as they scale
with the dimension of the phase space. Hence, reduced
criterion and comparison with reduced-order models
based on NNMs computations have been proposed. Fi-
nally, the case of adding linear viscous damping terms
in the mechanical system has been considered, show-
ing that its influence on the criterion for the valid-
ity limit is reduced to cases where damping is very
large.

Appendix A: Normal form of free Duffing
equation up to degree 11

We give the normal form for the Duffing equation up
to degree 11 for illustrating the complexity of the cal-
culations operated in Sect. 3.1. Note that calculations



up to order 27 have been realized with the help of a
symbolic calculator, however, results are not provided
as they would cover the pages. The normal form of
Eq. (16), up to degree 11, reads

u̇ = −iω1u1 + − 147
16 ic3u1

4u2
3

ω1
5

+
31035
1024 ic4u1

5u2
4

ω1
7

−
887193

8192 ic5u1
6u2

5

ω1
9

+
51
16 ic2u1

3u2
2

ω1
3

− 3/2icu1
2u2

ω1
, (48)

the second equation being the complex conjugate of
this one. The corresponding normal transform Φ1(u)

is given by

Φ1(u) = −887193
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with Φ2 conjugate of Φ1.

Appendix B: Polynomials of Sect. 3.2

Equation (27) corresponds to polynomial of degree at
most 2 in Q2.

If the degree is 1, this is because:

3s4t2 + 6s2t2 − 9/4r + 3t2 + 3r2 + 15

4
s4r + 9st

+ 3s3t − 9/2rs2 − 81

64
+ 135

32
s2 − 225

64
s4

+ 6s2r2 + 3s4r2 = 0. (50)

But this is impossible for any s since for s = 0, s = 1,
s = −1, we obtain

− 81

64
− 9/4r + 3t2 + 3r2 = 0,

12t2 − 3r + 12r2 + 12t − 9

16
= 0,

and

12t2 − 3r + 12r2 − 12t − 9

16
= 0.

These equations have no common solutions. So, we
can consider the general case with degree 2. We ex-
amine the condition so that the polynomial of variable
Q2 (Eq. (27)) has no real solutions for any s. So we
demand that the discriminant that is equal to

(
8s2 + 4s4 + 4

)
r2 + (

9 + 18s2 − 15s4)r + 225

16
s4

− 12s3t − 12t2 − 12s4t2 − 24s2t2 + 81

16



− 36st − 135

8
s2 + 225

16
s4 − 12s3t − 12t2

− 12s4t2 − 24s2t2 + 81

16
− 36st − 135

8
s2 (51)

should be < 0 for any s. This discriminant is a polyno-
mial of degree 2 in r that should have a constant sign.
Let us examine the discriminant of this later polyno-
mial in r . It is equal to

− 4
(
8s2 + 4s4 + 4

)(−24s2 − 12 − 12s4)t2

− 4
(
8s2 + 4s4 + 4

)(−36s − 12s3)t

+ (
9 + 18s2 − 15s4)2 − 4

(
8s2 + 4s4 + 4

)

×
(

225

16
s4 + 81

16
− 135

8
s2

)
(52)

It is clear that either the polynomial changes the sign
or it is a constant sign but positive. As a conclusion, it
is impossible to suppress the occurrence of singulari-
ties in the normal transform calculation up to order 3
by the choice of a nonzero arbitrary β .
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