
HAL Id: hal-00880945
https://hal.science/hal-00880945

Submitted on 7 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning with infinitely many features
Alain Rakotomamonjy, Rémi Flamary, Florian Yger

To cite this version:
Alain Rakotomamonjy, Rémi Flamary, Florian Yger. Learning with infinitely many features. Machine
Learning, 2013, 91 (1), pp.43-66. �hal-00880945�

https://hal.science/hal-00880945
https://hal.archives-ouvertes.fr

Noname manuscript No.

(will be inserted by the editor)

Learning with infinitely many features

A. Rakotomamonjy · R. Flamary and

F. Yger

the date of receipt and acceptance should be inserted later

Abstract We propose a principled framework for learning with infinitely many
features, situations that are usually induced by continuously parametrized feature
extraction methods. Such cases occur for instance when considering Gabor-based
features in computer vision problems or when dealing with Fourier features for
kernel approximations. We cast the problem as the one of finding a finite subset of
features that minimizes a regularized empirical risk. After having analyzed the op-
timality conditions of such a problem, we propose a simple algorithm which has the
flavour of a column-generation technique. We also show that using Fourier-based
features, it is possible to perform approximate infinite kernel learning. Our exper-
imental results on several datasets show the benefits of the proposed approach in
several situations including texture classification and large-scale kernelized prob-
lems (involving about 100 thousand examples). Keywords : infinite features, column

generation, Gabor features, kernels.

1 Introduction

While several recent works address the problem of automatic feature generation
[8], most of the time these features are still manually crafted based on specific
domain knowledge. For instance, in several machine vision applications, features

This work was supported in part by the IST Program of the European Community, under
the PASCAL2 Network of Excellence, IST-216886. This publication only reflects the authors
views. This work was partly supported by grants from the ASAP ANR-09-EMER-001, ANR
JCJC-12 Lemon and ANR Blanc-12 Greta.

A. Rakotomamonjy and F. Yger
LITIS, EA 4108
Université/INSA de Rouen
76801 Saint Etienne du Rouvray, France

R. Flamary
Laboratoire Lagrange, UMR CNRS 7293
Observatoire de la Cte d’Azur
Universit de Nice Sophia-Antipolis, France

2 A. Rakotomamonjy, R. Flamary and F. Yger

are extracted by appropriate preprocessing of images. One widely used feature ex-
traction method is the Gabor filter [34, 14]. Similarly, wavelet decompositions or
time-frequency representations are frequent feature extraction methods for signal
classification problems [24, 39, 27] . One major drawback of these feature gener-
ation methods is that they come along with several continuous parameters and
thus they can potentially produce infinitely many features. In most applications,
one deals with these large amount of features by selecting beforehand few pa-
rameter values of the feature extraction method and from these values, only few
features are generated. Our objective in this work is to propose a principled learn-
ing framework that is able to deal with infinitely many features, usually induced
by continuously parametrized feature extractors, without the need of deciding in
advance some set of values for all the parameters. Hence, by adapting the value
of these parameters to the classification task at hand, we aim at extracting better
discriminative features.

Another motivation for dealing with continuously parametrized features comes
from the recent development of random Fourier features for kernel approximation
[31]. This work of Rahimi et al. makes tractable large-scale kernel machines by
approximating kernel using explicit feature maps. These mappings are built by
first projecting data on a random direction and then by passing the resulting scalar
value to a sine function. Instead of randomly building these projection directions
before learning, owing to the framework we propose, we are able to learn these
directions so that they better suit the data.

In this paper, we introduce a principled framework and an algorithm for deal-
ing with such continuously parametrized features, in a supervised learning setting.
The framework we propose is generic as it can deal with several settings, including
single and multiple task learning, as well as with different convex and differentiable
loss functions. The key point of the algorithm is the use of sparsity-inducing regu-
larizers which allows us to select few features among the possibly infinite ones. The
choice of these regularizers is not limited to the classical ℓ1 norm but can also be
structured sparsity-inducing ones including the ℓ1−ℓ2 or the ℓ1−ℓ∞ mixed-norms.
After having reviewed related works in Section 2, we introduce in Section 3, the
problem of learning with continuously parametrized features that we cast as the
problem of finding a finite subset of features, minimizing a regularized empirical
risk. Owing to the optimality conditions of this problem, we propose, in Section 4
a simple algorithm for its resolution, which iteratively selects novel features among
all possible ones by means of randomization. In Section 5, we discuss about two
families of parametrized feature maps that are of practical interest : Gabor filter-
ing feature maps and explicit kernel feature maps. For this latter case, we uncover
simple relations that show how approximate infinite kernel learning can also be
achieved. Our experimental results in Section 6 shows, in several situations, the
benefit of learning the feature parameters compared to state of the art approaches.
Conclusion and perspectives are discussed in section 7. For a sake of reproducibil-
ity, the code used for producing the results in this paper will be made available
on the author’s webpage.

Learning with infinitely many features 3

2 Related works

The problem of jointly learning feature parameters and a classifier is a problem
that has already been addressed but essentially in the kernel learning framework
[23, 37, 38]. To our knowledge the first works investigating this issue are the ones
of Argyriou et al. [2, 4]. Indeed, in order to overcome the need of pre-defining bases
kernel in multiple kernel learning (MKL) problem, they propose to learn a con-
vex combination of continuously parametrized kernels. They solved the problem
through a greedy algorithm that they further refined by means of a DC algorithm
for selecting the novel kernel. In the same spirit, Gehler et al. [20, 21] introduced
the so-called Infinite Kernel Learning (IKL) framework which basically aims at
solving a MKL problem with an infinite number of base kernels. In practice, they
use this IKL framework for learning the parameters of a Gaussian kernel. Algo-
rithmically, the works of Argyriou et al. and Gehler et al. follow a similar trend
which consists in iteratively solving a learning problem with a fixed number of
already selected kernels and then in selecting a novel kernel. The algorithm we
propose for dealing with our learning problem also follows this column generation
approach. Independently to Gehler et al. [20], Ozogur-Akyuz et. al. [30] have also
investigated a theoretical framework for learning with infinitely many kernels.

Methods that alternate between a regularized empirical risk minimization and
a feature (or kernel) generation step have already attracted attention especially in
the boosting literature [25]. For instance, Demiriz et al. [17] has proposed a similar
algorithm for linear programming boosting with ℓ1 penalization. Very recently,
Shen et al. [35] also derived a resembling algorithm by carefully analyzing the dual
formulation related to boosting problems. However, most of them only consider
the binary classification case and the use of the ℓ1 penalty.

Still in the boosting framework, Chapelle et al. [12] have recently introduced
a boosted multi-task framework that bears resemblance to the one we propose
here. As a matter of fact, their work is a particular case of ours. Indeed, their
framework only considers the use of the ℓ1 penalty omitting thus some feature-
based relatedness between the tasks that can be handled by mixed-norms [29].
From an algorithmic point of view, they solved the boosted multi-task problem by
means of an elegant path-following algorithm. While they can also handle infinite
number of weak learners, they did not discuss the case of infinite number of features
which is somewhat more general and can have broader applicability.

Since the framework we present also deals with multi-task learning, it has
strong connections with other works of the literature. In particular, we can mention
those of Argyriou et al. [3, 1, 5] which address the problem of learning shared low-
dimensional representations in multi-task learning. Similarly to our approach, they
aim at learning some features that are jointly of interest for several tasks. In the
same trend, the work of Obozinski et al. [29] and Rakotomamonjy et al. [32] are
also contributions that are worth mentioning as they aim at feature selection in a
multi-task learning problem. Globally, we can consider our work as an extension
of ideas presented in the above ones to the case of infinite number of features.

A piece of work that addresses a problem similar to ours is the one of Ros-
set et al. [33] which generalizes the ℓ1 penalized regression problem to infinite
dimensional feature spaces by means of some probability measures. Algorithmi-
cally, they proposed a path-following method for computing a regularization path.
While their theoretical framework is very appealing, the resulting algorithm is

4 A. Rakotomamonjy, R. Flamary and F. Yger

not practical as the path-following algorithm applies only to some specific feature
maps. Furthermore, as stated by the authors themselves, the algorithm proves to
be rather numerically unstable.

While the problem we investigate seems similar to those studied in other works
and in other contexts, the learning framework and algorithm we propose, con-
tribute to the state of the art by several aspects. Compared to the work of Rosset
et al., we propose a novel framework which leads to a simple, stable and tractable
algorithm. Furthermore, our framework can handle different convex and differen-
tiable loss functions as well as single and multiple task learning. Hence, it can deal
with regression and multi-class problems. It is not limited to the use of ℓ1 regular-
izer as the randomization approach can cope with more complex sparsity-inducing
regularizers. The algorithm we derive from this framework is very simple and can
deal with large-scale problems. Then, when considering kernel learning, our ap-
proach using mixed-norm sparsity-inducing regularizers and explicit feature maps
can be proved to be equivalent to an approximate infinite kernel learning. Com-
pared to the genuine IKL algorithm, our method is more efficient and is able to
deal with large-scale problems (e.g datasets with about 100 thousands of training
examples).

3 Learning features maps

We now introduce our model for learning with infinitely many features in a single
and multiple task supervised learning framework. We also provide the optimality
conditions of the resulting optimization problem and derive a simple alternating
optimization algorithm for solving this problem.

3.1 Framework

Suppose we are given T tasks to be learned from T different datasets (xi,1,yi,1)
n1

i=1,
· · · , (xi,T ,yi,T)

nT

i=1, where any xi,t ∈ X and yi,t ∈ Y and nt denotes the t-th dataset

size. In the sequel, we note y(t) the vector of components yi,t. For these tasks, we
have at our disposal an uncountable set of possible feature maps and we want
to use only few of these features in the decision functions of all the tasks, some
features being shared by all tasks, some other being specific to some given tasks.
This framework which seeks a compromise between specific and shared features
corresponds to the one proposed Evgeniou et al. [19] and recently named as dirty
model multi-task learning by Jalali et al. [22]. We denote by ϕ any finite set of d
feature maps ϕ = {φθm(·)}dm=1 with d ∈ N and θm being some parameters related
to the feature maps. Formally, we thus have ϕ ∈ F with

F =
{

{φθm(·)}dm=1 : d ∈ N, θm ∈ P ∀m
}

P being the parameter space. Similarly to Evgeniou et al. [19], we define the
decision function of each task, as

ft(x) =
d∑

j=1

(wj,t + w̃j)φθj (x) + bt

Learning with infinitely many features 5

where {bt} are bias parameters, {wi,t} and {w̃i} are respectively the components
of the weight vector wt specific to the task t and w̃ a weight vector shared by all
tasks. Note that in our model, the feature parameters {θj} are learnt from the data.

We also define Φ(t) ∈ R
n×d as the matrix with elements Φ

(t)
i,j = φj(xi,t) . Columns

of Φ(t) correspond to feature maps φj applied to the training examples of task t

and are denoted as Φ
(t)
j . Rows of Φ(t) are noted as Φ

(t)
i,· . We also suppose that all

Φ
(t)
j are normalized to unit-norm. Our objective is to find the best finite subset of

features that leads to the lowest regularized empirical risk. This translates to the
following optimization problem :

min
ϕ∈F

min
{wt}t,w̃,{bt}t

T∑

t=1

nt∑

i=1

Lt(yi,t,Φ
(t)
i,· (wt+ w̃)+ bt)+λsΩs(w̃)+λpΩp(w1, · · · ,wT)

(1)
where for any t, Lt(·, ·) is a convex and differentiable loss function that measures
the discrepancy between the true and predicted label of an example for task t, Ωs

and Ωp being some sparsity-inducing regularization terms on the weight vectors
w̃ and w1, · · · ,wt and λs, λp being some hyperparameters that balance between
the loss function and the regularization terms. Typical possible loss functions are
the square, the logistic or the squared-hinge loss functions. Note that for T = 1,
by setting λp = ∞, this optimization problem boils down to be the usual single
task learning problem. Since we want to select only few features among all possible
ones, we have chosen the regularization terms to be sparsity-inducing ones like a
ℓ1 or a mixed-norm regularizers, for instance, Ωs(w̃) =

∑d
j=1 |w̃j | or

Ωp(w1, · · · ,wT) =
d∑

j=1

(
T∑

t=1

|wj,t|
q)

)1/q

=
∑

j

‖Wj,·‖q

with W ∈ R
d×T defined as W = [w1 w2 · · · wT] and Wj,· being row j of W. Note

that if the j-th row of W is equal to zero, then the feature Φ
(t)
j is not involved in

the decision function of any task.

3.2 Optimality conditions

The key point of the algorithmic derivation comes from the optimality conditions
induced by the sparsity-inducing regularizers. Our derivation is applicable for sev-
eral forms of sparsity-inducing regularizers but for a sake of clarity, we will restrict
ourselves to Ωp as ℓ1 − ℓq mixed-norms (with 1 < q < ∞) either applied to group
of features for single task learning or to group of tasks for multiple task learning.
Furthermore, for the same reason, we assume that Ωs = ‖w̃‖1, and omitted the
bias terms {bt} in the decision functions.

For a fixed set of features ϕ, the inner optimization problem in Equation (1), de-
noted as the restricted master problem, boils down to be a simple sparse multi-task
learning problem. Sparsity is induced by the non-differentiable ℓ1 − ℓq regulariza-
tion term, and plays a central role in the derivation of the optimality conditions of
the full problem (1). We now provide some necessary and sufficient conditions for
a couple of feature matrix and weight vectors to be optimal first for the restricted

master problem then for the full problem.

6 A. Rakotomamonjy, R. Flamary and F. Yger

3.2.1 Restricted master and first-order optimality conditions

When we have a fixed number of features, we want to solve the so-called restricted

master problem

min
w1,··· ,wT ,w̃

T∑

t=1

nt∑

i=1

Lt(yi,t,Φ
(t)
i,· (wt + w̃))

︸ ︷︷ ︸

J

+λsΩs(w̃) + λpΩp(w1, · · · ,wT) (2)

We have supposed that the loss functions are convex and differentiable while the
sparsity-inducing regularizers are typically convex and non-differentiable. For sim-
plicity, we supposed that

Ωs(w̃) =
∑

j

|w̃j |

and

Ωp(w1, · · · ,wT) =
d∑

j=1

(
T∑

t=1

wq
j,t

)1/q

=
∑

i

‖Wj,·‖q

with W = [w1 w2 · · · wT]. Partial derivatives of J with respects to wj,m is

∂J

∂wj,m
=
∑

i

Φ
(m)
i,j

⊤
L′
m(yi,m,Φ

(m)
i,· (wm + w̃))

L′
m(·, ·) being the derivative of Lm with respects to its second parameter. Hence,

the t−th component of the gradient vector ∇Wj,·
J is (with a slight abuse of no-

tation)

[∇Wj,·
J]t = Φ

(t)
j

⊤
L′
t(y

(t),Φ(t)(wt + w̃))

Now we can state that a set of vectors w⋆
1, · · · ,w

⋆
T and w̃⋆ is optimal for our

objective function given in Equation (2) with the above regularizers if and only if
there exists some subgradients gj ∈ ∂‖W⋆

j,·‖q. so that

‖∇Wj,·
J‖q′ ≤ λp if W⋆

j,· = 0
∇Wj,·

J + λpgj = 0 if W⋆
j,· 6= 0

(3)

with q′ so that 1
q + 1

q′ = 1 and if and only if

|[∇w̃J]j | ≤ λs if w̃⋆
j = 0

[∇w̃J]j + λs sign (w̃j) = 0 if w̃⋆
j 6= 0

(4)

with [∇w̃J]j =
∑

t Φ
(t)
j

⊤
L′
t(y

(t),Φ(t)(wt + w̃)).

3.2.2 Optimality conditions of the full problem

Now, we are in position for deriving the optimality conditions of Problem (1).

Learning with infinitely many features 7

Proposition 1: Suppose that 1 < q < ∞, and q′ is so that 1
q+

1
q′ = 1 and consider the

feature matrices {Φ(t)}t and the weight vectors {w⋆
t }t, w̃

⋆ optimizing the related
restricted master problem. These vectors and matrices are also optimal for the full
problem given in Equation (1) if and only if, ∀j = {1, · · · , d}, there exists a vector
gj subgradient of ∂‖Wj,·‖q so that

∇Wj,·
J(w̃⋆, {w⋆

t }) + λpgj = 0 for j so that ∃t, wj,t 6= 0 (5)

‖∇Wj,·
J(w̃⋆, {w⋆

t })‖q′ ≤ λp for j so that ∀t, wj,t = 0 (6)

‖h‖q′ ≤ λp for any φ 6∈ ϕ (7)

[∇w̃J]j + λssign(w̃
⋆
j) = 0 for j so that w̃j 6= 0 (8)

∣
∣
∣[∇w̃J]j

∣
∣
∣ ≤ λs for j so that w̃j = 0 (9)

∣
∣
∣
∣
∣

T∑

t=1

φ⊤L′
t(yi,t,Φ

(t)
i,· (w̃

⋆ +w
⋆
t))

∣
∣
∣
∣
∣
≤ λs for any φ 6∈ ϕ (10)

where J(w̃⋆, {w⋆
t }) =

∑T
t=1

∑nt

i=1 Lt(yi,t,Φ
(t)
i,· (w

⋆
t + w̃⋆)), the t−th component of

the gradient vector ∇Wj,·
J is (with a slight abuse of notation)

[∇Wj,·
J(w̃⋆, {w⋆

t })]t = Φ
(t)
j

⊤
L′
t(y

(t),Φ(t)(w⋆
t + w̃

⋆))

the j-th component of ∇w̃J being [∇w̃J]j =
∑

t Φ
(t)
j

⊤
L′
t(y

(t),Φ(t)(w⋆
t + w̃⋆)) and

the vector h ∈ R
T being the vector which t-th component is

ht = φ⊤L′
t(y

(t),Φ(t)(w⋆
t + w̃

⋆)).

Proof Let us first show that if {Φ(t)}t and the weight vectors {w⋆
t }t, w̃

⋆ are optimal
for the full problem then the above conditions hold. Note that in the following,
we only develop the arguments for the optimality conditions related to the vectors
{w⋆

t }t as those related to w̃ are similar. The first two inequalities directly come
from the optimality conditions of the restricted master problem. These conditions
are easily derived by writing that 0 belongs to the subdifferential of the non-
smooth objective function. In order to prove the third inequality, we rather show
that if there exists a φ for which this inequality (7) is not verified then {Φ(t)}t,
{w⋆

t }t and w̃⋆ are not optimal. Indeed, if such a φ exists, we can build Φ̂(t) =
[Φ(t) φ] and ŵt = [w⋆T

t 0]T for all t. According to the optimality conditions of
the restricted master problem associated to Φ̂(t), ŵt are not optimal. Hence, re-
optimizing this problem leads to a decrease of the objective value. Thus, {Φ(t)}t,
{w⋆

t }t and w̃⋆ were not optimal for the full problem since Φ̂(t) can induce a lower
objective value.

Let us now prove that conversely if these conditions hold then, {Φ(t)}t, {w
⋆
t }t

and w̃⋆ are optimal for problem (1). Again owing to the optimality conditions
of the restricted master problem, satisfying the inequalities 5, 6, 8 and 9 means
that {Φ(t)}t, {w

⋆
t }t are optimal for this restricted master problem. Thus, it suf-

fices to show that when adding any of the feature φ for which the third and sixth
inequalities hold into the active feature set, no decrease in objective value can
be obtained. This latter point naturally stands since building Φ̂(t) = [Φ(t) φ] and
re-optimizing the associated restricted master problem will lead to the optimal so-
lutions with {[w⋆T

t 0]T }t and [w̃⋆T 0]T which means that the objective value has
not decreased.

8 A. Rakotomamonjy, R. Flamary and F. Yger

Algorithm 1 Feature generation approach for solving problem (1).

1: set ε > 0
2: k ← 0
3: Set Φ(t) = [] for every task; % empty matrix
4: Set wt = 0, w̃ = 0, bt = 0 for every task
5: repeat

6: φ ← feature for which constraints ‖∇Wj,·
J(w̃, {wt}, {bt})‖q′ ≥ λp + ε or

|
∑T

t=1 φ
⊤L′

t(yi,t,Φ
(t)⋆

i,· (w̃ +wt) + bt)| > λs + ε

7: if φ = ∅ then
8: Break
9: end if

10: for every task t, Φ(t) ← [Φ(t) φ] ; % feature concatenation

11: {wt}, {bt}, w̃← result of the restricted master problem with feature matrix {Φ(t)}
12: if stopping criterion reached then

13: Break
14: end if

15: k ← k + 1
16: until maximal number of iterations k is reached

3.3 Feature generation algorithm

The optimality conditions of problem (1) suggest a strategy based on feature
generation for its resolution. Indeed, it seems reasonable to consider an iterative
approach where at each iteration, one solves the restricted master problem with the
current feature matrices {Φ(t)}, looks for a feature that violates either constraint
(7) or (10), updates the feature matrices with that feature and re-optimizes. Our
algorithm will be based on this iterative scheme which involves (i) a procedure
that solves the restricted master problem (ii) a procedure that returns a violating
constraint feature. Before delving into the implementation details of these two
steps, we provide more insights into this algorithm. We first show under which
hypotheses the proposed algorithm is able to solve problem given in Equation (1).

Proposition 2: Suppose that the restricted master problem is solved exactly, then
if we are also able to solve the problems

max
φ 6∈ϕ,‖φ‖=1

‖h‖q′ and max
φ 6∈ϕ,‖φ‖=1

∣
∣
∣
∣
∣

T∑

t=1

φ⊤L′
t(yi,t,Φ

(t)
i,· (w̃

⋆ +w
⋆
t))

∣
∣
∣
∣
∣

(11)

exactly then, our algorithm solves our learning problem with a pre-defined toler-
ance ε > 0 on the non-active feature constraints (7) or (10), which means that we
have

‖h‖q′ ≤ λp + ε and

∣
∣
∣
∣
∣

T∑

t=1

φ⊤L′
t(yi,t,Φ

(t)
i,· (w̃

⋆ +w
⋆
t))

∣
∣
∣
∣
∣
≤ λs + ε

h being the vector of components ht = φ⊤L′
t(y

(t),Φ(t)(w⋆
t+w̃⋆)). Furthermore that

ε-approximate solution provided by the algorithm involves a finite set of features.

Proof For proving this lemma, we just need to show that our algorithm decreases
the problem’s objective value at each iteration and thus, since the objective value
is lower bounded, in the limit the algorithm’s output will satisfy the problem’s

Learning with infinitely many features 9

optimality conditions. Consider a current iteration with active feature set {Φ(t)},
with d features, and optimal related weights {w⋆

t } and w̃⋆. Now, if we optimize
conditions (11) and get objective values respectively lower than λp + ε and λs + ε,
then {Φ(t)}t, {w

⋆
t }t and w̃⋆ are optimal for the full problem with a tolerance ε. If

one of the objective value of conditions (11) is greater than λp + ε or λs + ε, then
adding φ, the feature that maximizes violated constraints, to the active feature set
leads to a strict decrease in the objective function.

Remark that this proposition tells us that our algorithm provides us an approx-
imate solution and as the iterations go, under the assumption of proposition 2,
resulting {wt} and w̃ converge towards the solution of the problem. However, it
does not give us any guarantee about whether the solution can be attained with
a finite number of features. This problem is more intricate and we have left it
for future works. We can however highlight that in the context of infinite kernel
learning, under some mild assumptions on the kernels, it is possible to show that
the problem solution only involves a finite number of kernels. We thus conjecture
that similar conditions can be brought out for our learning problem (1).

The next proposition tells us that the proposed algorithm improves the objec-
tive value of problem (1) at each iteration as long as the feature φ added to the
active set violates constraints (7) or (10).

Proposition 3: Supposing that the restricted master problem is solved exactly, then
at a given iteration k, adding to the the feature matrices {Φ(t)} any feature that
violates constraints (7) or (10) leads to a decrease in objective value of the full
problem (1).

Proof Suppose that at a given iteration, we have solved the minimization over w

for {Φ((t)}t and obtained the optimal weight vector {w⋆
t } and w⋆. Consider φ 6∈ ϕ

so that φ violates either its constraints (7) or (10) and define for the next iteration,

{Φ̂(t) = [Φ(t) φ]}, {w†
t = [w⋆

t 0]}t and w̃† = [w̃⋆ 0]. Note that these weight vectors

{w†
t} and w̃† are not optimal for {Φ̂(t)}. Indeed φ also violates these constraints 7

or 10 since for any task t, we have L′
t(y

(t),Φ(t)(w⋆
t +w̃⋆)) = L′

t(y
(t), Φ̂(t)(w†

t +ŵ
†
s))

thus re-optimizing over the w would lead to a decrease in the objective value.

Note that the hypothesis regarding the restricted master problem seems not
to be necessary for the proof. However, it plays a central role since it guarantees
that the optimality conditions given in Proposition 1 are satisfied and thus they
guarantee that {w⋆

t } and w̃⋆ are optimal for the current {Φ(t)}. In practice, de-
pending on how loose the optimality conditions of the restricted master problem
are, it may occur that the objective value of the full problem does not decrease.
In such situations, it is possible to re-optimize the restricted master problem with
tighter optimality conditions.

4 On the algorithmic implementation

After having presented the learning framework, the algorithm and analyzed its
properties, we discuss in this section the implementation of the restricted master

problem and explain how violating constraints can be found.

10 A. Rakotomamonjy, R. Flamary and F. Yger

4.1 ADMM algorithm for the restricted master problem

The restricted master problem can be considered as a classical multi-task learning
problem with sparsity-inducing regularizers. Several algorithms for solving such a
problem have been recently proposed in the literature, including proximal methods
[13] or path-following approach [29]. While a proximal method suits to our prob-
lem, we have chosen to consider another algorithm based on alternating direction
method of multipliers (ADMM) [11]. This choice is essentially motivated by two
reasons. First, ADMM approaches integrate some second-order information in the
alternate minimization approach, while taking advantage of the simple proximal
closed-form solutions resulting from the regularizers. In practice, ADMM proves to
be significantly faster than FISTA especially when the number of features is small,
which is a frequent situation for our restricted master problem. Secondly, ADMM
provably converges even for proximal operators which do not have a closed-form
solutions, which is the case for 1 < q < ∞ and q 6= 2.

In the sequel we detail the different steps of the ADMM algorithm used for
solving our restricted master problem. However, we first provide a brief review on
ADMM approach.

4.1.1 Generality

The ADMM approach [11, 18] is an algorithm that solves a general problem of the
form :

min
x,y

f(x) + g(y) (12)

st. Ax+By = c (13)

where the variable is (x,y) ∈ R
n1×n2 , f : Rn1 → R and g : Rn2 → R are given

convex functions, A ∈ R
m×n1 and B ∈ R

m×n2 and c ∈ R
m. ADMM is based on a

augmented Lagrangian approach where the Lagrangian is :

L(x,y, z) = f(x) + g(y) + z
T(Ax+By − c) +

ν

2
‖Ax+By − c‖2,

z ∈ R
m being the multiplier associated to the linear constraints and ν > 0 a

predefined parameter balancing the violation of the linear constraints. Augmented
Lagrangian method [28] suggests to iteratively minimize the Lagrangian function
with respects to x and y and then to update the Lagrangian multiplier z with a
dual ascent. Instead, ADMM proposes to take into account the special structure
of the problem and to minimize the Lagrangian serially with respects to x and y.
In practice, this leads to an algorithm which general scheme is of the form

x
(k+1) ∈ argmin

x
L(x,y(k), z(k)) (14)

y
(k+1) ∈ argmin

y
L(x(k+1),y, z(k)) (15)

z
(k+1) = z

(k) + ν(Ax+By − c) (16)

When B is the identity matrix, it has been proved [18] that under very mild
conditions, this algorithm converges to a solution of problem 12. A more general
convergence result, involving less restrictive conditions on B has been recently
provided in the work of Mota et al [26].

Learning with infinitely many features 11

4.1.2 Application of the ADMM to the restricted master problem

When the feature matrices are fixed, we look at the solution of the following
problem :

min
w1,··· ,wT ,w̃

T∑

t=1

nt∑

i=1

Lt(yi,t,Φ
(t)
i,· (wt + w̃)) + λsΩs(w̃) + λpΩp(w1, · · · ,wT) (17)

Before applying the above-described ADMM algorithm, we perform some variable
splitting in order to decouple the impact of the different losses and regularizers on
the variables to optimize.

Supposing that all loss functions Lt are a squared Hinge loss, then problem 17
is equivalent to

min{wt},{ut},{at},w̃,ũ,{bt}

∑T
t=1 Lt(at) + λsΩs(ũ) + λpΩp(u1, · · · ,uT)

st. at = 1−Yt(Φ
(t)(wt + w̃) + bt) ∀t

ũ = w̃

ũt = w̃t ∀t

(18)

with the overload notation Lt(a) = max(0,a)⊤max(0,a) with the max being
applied component-wise to the vector a and each at being a vector of R

nt and
Yt = diag(yt). Discussions about the use of other loss functions are reported in
the sequel.

Now, we can proceed with the augmented Lagrangian which writes :

L =
T∑

t=1

Lt(at) + λsΩs(ũ) + λpΩp(u1, · · · ,uT) (19)

+
∑

t

µ⊤
t (1−Yt(Φ

(t)(wt + w̃) + bt)− at)

+
∑

t

ξt
2
‖1−Yt(Φ

(t)(wt + w̃) + bt)− at‖
2

+
∑

t

ν⊤t (wt − ut) +
∑

t

ηt
2
‖wt − ut‖

2 + ν̃⊤(w̃ − ũ) +
η̃

2
‖w̃ − ũ‖2

where µt ∈ R
nt and νt ∈ R

d. Now that the Lagrangian has been formed, the
ADMM algorithm consists in optimizing this Lagrangian wrt to each primal vari-
able and then in updating the dual variables.

Optimizing at One of the advantage of the ADMM approach and the variable
splitting we choose is that the problem nicely decouples. Hence, optimizing the
Lagrangian wrt to at simply boils down to

min
at

Lt(at) + µT
t (zt − at) +

ξt
2
‖zt − at‖

2 (20)

with zt = 1−Yt(Φ
(t)
i,· (wt+w̃)+bt. After some simple “gather the terms” algebras,

this problem is actually equivalent to :

min
at

ξt
2
‖at − (zt +

1

ξt
µt)‖

2 + Lt(at) (21)

12 A. Rakotomamonjy, R. Flamary and F. Yger

Regularizer Ωp proxλΩV

Ωp(W) =
∑

t ‖wt‖1 sign(vt)(|vt| − λ)+
Ωp(W) =

∑

t ‖wt‖2 (1− λ
‖vt‖

)+vt

Ωp(W) =
∑d

j=1 ‖Wj,·‖1 sign(Wj,·)(|Wj,·| − λ)+

Ωp(W) =
∑d

j=1 ‖Wj,·‖2 (1− λ
‖Wj,·‖

)+Wj,·

Table 1 Example of regularizers and their proximal operators

which is the proximal operator of Lt applied to the vector zt +
1
ξt
µt. Hence, at

optimality we have

at = prox 1

ξt
Lt(·)

(zt +
1

ξt
µt) (22)

which can be simple to obtain if the loss function admits a closed-form proximal
operator.

Optimizing ut and ũ By proceeding in the same way, the solutions of the La-
grangian minimization with respects to ut and ũ, are:

ut = proxλp
ηt

Ωp
(wt +

1

ηt
νt) and ũ = proxλs

η̃
Ωs

(w̃+
1

η̃
ν̃) (23)

where we made the hypothesis that the proximal operator of Ωp decouples with
respect to the vectors {ut}t. Note that if the regularizer Ωp does not decouple
then the proximal operator would have involved matrix U as a variable duplicate
and W and νt would have been matrices. Table 1 presents some usual proximal
operators that are of interest for our works.

Optimizing wt and bt This minimization problem can be written as:

minwt,bt µT
t (1−Yt(Φ

(t)(wt + w̃) + bt)− at)+
ξt
2 ‖1−Yt(Φ

(t)(wt + w̃) + bt)− at‖
2 + νTt (wt − ut) +

ηt

2 ‖wt − ut‖
2

(24)
For the subsequent derivations, we drop the task-related subscript t. First-order
optimality conditions with respects to wt and bt are :

−ΦTYTµ+ ν − ξΦTYT1+ ξΦTΦ(w+ w̃) + ξbΦT1+ ξΦTYTat − ηu+ ηw = 0
−µTYT1− ξ1TYT(1− a) + ξ1TΦw+ ξ1T1b = 0

(25)
which can be satisfied by solving the following set of linear equations

[
ξΦTΦ+ ηI ξΦT1

ξ1TΦ ξ1T1

] [
w

b

]

=

[
ΦTYTµ− ν + ξΦTYT(1− a) + ηu− ξΦTΦw̃

µTYT1+ ξ1TYT(1− a)

]

(26)
We can remark that these linear equations have to be solved several times

during the process of the ADMM iterations. However, only the second member
changes through a and u along these ADMM iterations. Hence, one can compute
the inverse of the left-hand side only a single time so that subsequent system
resolutions only reduce to one matrix multiplication.

Learning with infinitely many features 13

Loss function Lt(at) at

square loss aT
t at at = Yt −Φ(t)(wt + w̃)− bt

square hinge loss (at)T+(at)+ at = 1−Yt(Φ(t)(wt + w̃)− bt)

hinge loss 1T (at)+ at = 1−Yt(Φ(t)(wt + w̃)− bt)

Loss function Lt(at) prox 1

ξ
Lt

z

square loss aT
t at

1
1+2/ξ

z

square hinge loss (at)T+(at)+

{ 1
1+2/ξ

z if z ≥ 0

z otherwise

hinge loss 1T (at)+







z− 1
ξ
1 if z ≥ 1

ξ
1

z if z ≤ 0
0 otherwise

Table 2 Loss functions Lt(·), corresponding form of at and proximal operator of the losses.
Note that the Hinge loss does not apply to our framework since it is not differentiable.

Optimizing w̃ Minimizing the Lagrangian with respect to w̃ is achieved in a similar
way as above. Indeed, the minimization problem is

minw̃
∑

t µ
T
t (1−Yt(Φ

(t)(wt + w̃) + bt)− at)+
∑

t
ξt
2 ‖1−Yt(Φ

(t)(wt + w̃) + bt)− at‖
2 + ν̃T (w̃ − ũ) + η̃

2‖w̃ − ũ‖2
(27)

Deriving the objective function and equating the derivative to 0 leads to the fol-
lowing equation

[
∑

t

ξtΦ
(t)T

Φ
(t) + η̃I

]

w̃ =
∑

t

(

Φ
(t)T

Y
T
t µt + ξtΦ

(t)T
Y

T
t (1− at)

)

−
∑

t

ξtΦ
(t)T

Φ
(t)

wt −
∑

t

ξtΦ
(t)T

1bt − ν̃ + η̃ũ

(28)

which is a simple linear system to solve.

What if we change the loss function? The above derivations focus on squared Hinge
loss and binary classification problem. A change in the loss function would impact
two things in Equation (18) : the form of Lt(·) and the equality constraints giving
the relation between at, wt, w̃ and bt. The former would impact the resolution
of {at} in the proximal operator defined in Equation 22. This means that for loss
functions which proximal operators are simple, the algorithm follows the same flow
except that the closed-form proximal computation changes. For some other loss
functions, typically the square loss, the equality constraints defining at take the
following form :

at = Yt − (Φ(t)(wt + w̃) + bt) ∀t

Consequently, the linear systems given in Equations (27) and (28) involving wt, w̃,
bt also take slightly different forms that we have not clearly specified but that can
be easily derived from simple algebras. Table 2 recaps some typical loss functions
Lt(·), the form of the related at and the resulting proximal operators.

14 A. Rakotomamonjy, R. Flamary and F. Yger

Algorithm 2 ADMM for our restricted master problem

1: Set {ξt}, {ηt} and η̃ to positive values
2: Initialize variables {wt}, w̃, {ut}, ũ, {bt}, {at}.
3: Initialize Lagrangian multipliers {µt}, {νt}, ν̃.
4: repeat

5: % Updating primal variables
6: update {wt} and bt by solving the T linear systems defined by Equation (26)
7: update w̃ by solving the linear system defined by Equation (28)
8: update {at} using the proximal operators defined in Equation (22).
9: update {ut} and ũ using the proximal operators defined in Equation (23).
10: % Updating Lagrangian multipliers
11: µt ← µt + ξt(zt − at) ∀t
12: νt ← νt + ηt(wt − ut) ∀t
13: ν̃ ← ν̃ + η̃(w̃ − ũ) ∀t
14: until stopping criterion is met

4.1.3 Discussions on complexity

All the steps needed for solving the restricted master problem with d features are
summarized in Algorithm 2. We can note that the algorithm is rather simple and
involves essentially two computationally heavy steps : the two linear systems that
have to be solved at each iteration. In a ADMM approach, it is difficult to evaluate
the number of iterations needed before convergence as this number depends on
the choice of ξt and {ηt}. From experience, we can state that about few hundred
iterations are typically needed before convergence, for the values of ξt and {ηt}

used in the experiments.

Now, let us have a closer look at the computational complexity needed for
each iteration. We first remark that for the linear equations (26) and (28), the
involved matrices do not change over the iterations and thus their inverses can be
pre-computed at the cost of O(d3). Once this is done, solving the systems at each
iteration consists only in a matrix-vector multiplication which takes O(d2). The
other steps make use of proximal operators. If we consider proximal operators that
are simple enough as those considered in Tables 1 and 2, we can suppose that each
component-wise operation in these operator can be computed in O(1). Accordingly,
updating {at}, {ut} respectively takes O(

∑

t nt) and O(dT + d). Hence, the major
computational burden of this ADMM algorithm for solving our restricted master

problem is the matrix inversion needed for the linear systems. Note however, that
by construction, as we add one feature at a time in the global Algorithm (1), d
typically remains small. We can also highlight that this algorithm is linear in the
number of examples and this allows us to tackle large-scale problems.

4.2 Finding a violating constraint

For finding the feature which violates the most its constraints, we need to solve the
two optimization problems given in Equation (11). For some specific cases, these
problems can be simple and may have a closed-form solutions. This is the case for
the first problem when q = 2 and a square loss function is considered. However, in
a general situations, these problems may be non-convex and difficult to optimize
notably because of the mixed-norm structure and the non-linearities induced by

Learning with infinitely many features 15

the feature maps. Fortunately, Proposition 3 suggests us that any feature that
violates one of the two constraints in (11) can be integrated to the active feature
set {Φ(t)} and re-optimizing the restricted master problem using these novel feature
matrices would lead to a decrease in objective value. Hence, instead of optimizing
problems (11), it suffices to find an approximate maximum of these problems which
can be simply done by randomizing over a small number of feature parameters.
For this purpose, our strategy consists in sampling kr random feature parameters
and then in looking for the best feature, according to Equations (11), among
those kr features. This conceptually simple heuristic allows us to avoid a difficult
optimization problem and besides it is rather cheap. Indeed, it can be easily shown
that the computational cost of evaluating kr features according to Equations (11)
is about O(krnT) where n =

∑

t nt.

5 Some useful feature maps and discussions

In this section, we will describe some examples of feature maps that are continu-
ously parametrized and that are of practical interest.

5.1 Gabor features

Because they provide a simple and good model of the cortical simple cell receptive
fields of vision system [34], Gabor filters are frequently used in computer vision
and pattern recognition problems as a feature extractor, especially for texture
recognition problems [9, 15]. Typically, a Gabor filter is of the form

F (z, y) = exp

(

−
z20
2σ2

z
−

y20
2σ2

y

)

cos(2πf0z0)

with z0 = z cos θ + y sin θ and y0 = −z sin θ + y cos θ, and σz, σy, f0 and θ being
some parameters that control the Gabor filter scale, frequency and orientation.
For producing features from an image, one first computes the convolution of the
image with a set of these Gabor filters (with varying parameters), then obtains
the features as the collection of the filtering response on all image points or on
pre-specified landmarks of the image, or even as the average or the maximum
of the filter responses over the image or part of the image. In most applications
dealing with Gabor filters, in order to keep the feature extraction step tractable;
these filter parameters are restricted to few values : for instance typically, 4 or 8
orientations θ are considered. Such an approach would naturally lead to a lack of
optimality in the Gabor filter response as soon as the image characteristic does
not fit to the filter banks. Hence, being able to learn with all possible Gabor filters
should overcome this issue and should result in improved performances of Gabor
feature based recognition systems.

5.2 Explicit kernel feature maps

Recent works have proposed methods for approximating well-known and frequently
used kernels such as the intersection kernel [36] or the Gaussian kernel [31]. For in-
stance, Rahimi et al. have shown that under some mild conditions, a shift-invariant

16 A. Rakotomamonjy, R. Flamary and F. Yger

kernel like the Gaussian one can be arbitrarily well approximated by a kernel of
the form

K̂(x,x′) =
1

D

D∑

j=1

zvj (x)
T
zvj (x

′)

with {zvj (·)}
D
j=1 being some Fourier feature maps of the form

zv(x) = [cos(vT
x) sin(vT

x)]

where v is a direction vector that has been sampled from the Fourier transform of
that shift-invariant kernel, and D being the number of involved feature maps.

Instead of pre-defining some vectors {vj} before learning as suggested in [31],
we propose to apply our framework for selecting better random directions {vj}. In
practice, we sample kR number of vectors v according to the probability distribu-
tion related to the target kernel (e.g the Gaussian kernel), compute the features
zv from these vectors and select among them the one that violates the most its
constraints. Note that since zv is itself composed of two related features, these two
features should form a group of features in the mixed-norm regularization term of
our optimization problem.

Low-rank kernel approximation interpretation: Because, we are using a
sparsity-inducing norm in our learning framework, we actually select a subset of
feature maps. For large values of the regularization parameters λp and λs, only few
features {zvj}j will be kept in the final decision functions. Hence, if the number
of selected features is lower than the number of training examples, then, we can
interpret the resulting kernel approximation as a low-rank kernel approximation,
since the Gram matrix of entries:

[K̂(xn,xm)]n,m =
1

Nz

Nz∑

j=1

zvj (xn)
T
zvj (xm) ∀n,m

will be of rank Nz, Nz being the number of features kept by our algorithm.
This low-rank kernel approximation is of interest in several ways : it makes

large-scale kernel machines tractable and the resulting model becomes cheap to
evaluate since only few features are in play. Our experimental results will support
these statements.

Approximate infinite kernel learning: the work of Rahimi et al. [31] also
shows that approximating different families of shift-invariant kernels can be eas-
ily done by only changing the probability distribution from which the vectors v

are sampled. Hence, it becomes possible to perform approximate multiple kernel
learning. Indeed, since according to Rahimi et al., a shift-invariant kernel can be
approximated by

1

D

D∑

j=1

zvj (x)
T
zvj (x

′)

it is easy to show (owing to linearity of the Fourier transform) that a convex

combination of pre-defined shift-invariant kernels
∑M

m=1 dmkm(x,x′) can be ap-
proximated by

∑

m

D∑

j=1

dm
D

z
m
vj
(x)T zmvj

(x′)

Learning with infinitely many features 17

with zmvj
(·) being the explicit feature map of direction vj related to kernel km(·, ·).

Furthermore, the uniform convergence property of the Fourier features presented
by Rahimi et al. still applies to this sum of kernels.

According to these simple findings, it becomes easy to perform approximate
infinite kernel learning. Indeed, in practice, we can do this approximation by ran-
domly selecting a Gaussian kernel bandwidth, and by randomly generating groups
of features zv(·) related to that kernel. Then, among the groups of features that
have been generated, we keep the one that maximizes the constraint violations
(7) or (10) and re-optimize the restricted master problem. This procedure is then
re-iterated until a stopping criterion is met.

Formally, for this approximate IKL, in a single task learning case, an ℓ1 − ℓ∞
mixed-norm penalty has to be considered in order for the features from same group
to have the same weighting coefficients. In practice, the choice of the mixed norm
has few impacts.

5.3 One pass mini-batch feature selection interpretation

When dealing with continuously parametrized features, instead of using our infinite
set of features framework, it would have been possible to generate a huge but finite
number of features and then perform a classical ℓ1-like feature selection. From this
point of view of very high-dimensional feature selection, we can understand our
algorithm as a method performing one-pass mini-batch feature selection; mini-
batch because we process a chunk of features at a time and select the one that
maximizes constraint violation and one-pass because, due to the randomization
and the continuous parametrization of the features, with high probability, a given
feature will be visited only a single time during the randomization, although a very
similar feature can be randomly drawn. As in the work of Bordes et al. [10] which
also considers one-pass optimization, our experiments show that when using an
infinite or a very large number of features, a one-pass feature selection optimization
approach does not induce any loss of performance while being computationally
more efficient.

6 Numerical experiments

We have conducted some experiments which emphasize the effectiveness of our
method, denoted asGrFL for Group Feature Learning, in two contexts : large-scale
kernel approximation and automated parameter selection. We show that compared
to baseline method such as classical ℓ1 feature selection with pre-defined features,
denoted as fixed feat or compared to competing algorithms such as IKL and low-
rank kernel approximations, our approach is able to provide decision functions
with equivalent or significantly better accuracy and for similar performance, i)
that use less features and thus are cheaper to evaluate and ii) that need less time
for training. Note that for all the following experiments, kernel and regularization
parameters of all methods have been set by cross-validation and we have set ξt =
max(10/nt, 0.1) and ηt = max(10, d).

18 A. Rakotomamonjy, R. Flamary and F. Yger

FISTA ADMM
dataset λ Time Obj. Val Time Obj. Val
mfeat 5 785.47 ± 68.3 208.0 ± 1.60 207.37 ± 24.00 205.9 ± 1.51
mfeat 1 1238.85 ± 107.9 54.30 ± 0.50 1378.9 ± 169.5 52.23 ± 0.5
wines 5 0.33 ± 0.06 43.99 ± 0.6 0.09 ± 0.0 43.98 ± 0.6
wines 0.1 13.08 ± 2.3 2.14 ± 0.0 0.50 ± 0.0 2.14 ± 0.0

Table 3 Comparing the running time and objective values achieved by ADMM and FISTA
for two UCI datasets and different regularization parameter values.

10
−2

10
−1

10
0

10
1

10
2

0

50

100

150

200

250

300

Computational time (s)

O
b

je
c
ti
v
e

 v
a

lu
e

Proximal

ADMM

10
−1

10
0

10
1

10
2

10
3

0

2000

4000

6000

8000

10000

Computational time (s)

O
b
je

c
ti
v
e
 v

a
lu

e

Proximal

ADMM

Fig. 1 Examples of objective value evolution wrt to time for the proximal algorithm FISTA
and the ADMM approach. (left) Wines dataset. (right) multi feat dataset.

6.1 Efficiency comparison on the restricted master problem

Our first experiment aims at evaluating the efficiency of our ADMM algorithm
for solving the restricted master compared to an algorithm like FISTA [7] which is
based on gradient descent and proximal operator.

For this purpose, we have considered two UCI multiclass problems (Wines and
multiple features) that we handle through our multi-task framework by defining
each binary one-against-all problem as a task. The algorithm runs on the original
features which numbers are respectively 13 and 649. As we only want to evaluate
the training time of these algorithms we have used 95% of the datasets as train-
ing examples. We have used an ℓ1 − ℓ1 regularizer for Ωp(·) and considered the
same stopping criterion for both algorithms, which is based on approximated KKT
conditions or a maximal number of iterations (3000). Running time and objective
value achieved by both algorithms after convergence are reported in Table 3. They
clearly show that for similar objective values, ADMM yields faster convergence.
Note that for the multi feat problem, when λ = 1, FISTA stops because of the
maximal number of iterations and thus has a lower running time, but provides sig-
nificantly worse objective values. Figure 1 gives an example of how the objective
value varies across time for the two considered datasets.

6.2 Gabor filter based texture classification

In this other experiment, we provide empirical evidences that substantial per-
formance gain can be achieved by automatically learning the feature parameters
compared to the use of fixed pre-defined ones jointly with an embedded feature
selection method. Results of an approach considering the restricted master prob-

Learning with infinitely many features 19

0 500 1000 1500 2000 2500
70

75

80

85

90

Number of Gabor features for fixed

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

GrFL

fixed feat

selected feat.

0 500 1000 1500 2000 2500
10

1

10
2

10
3

10
4

10
5

Number of Gabor features for fixed

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

GrFL

fixed feat

selected feat.

0 2000 4000 6000 8000 10000
70

75

80

85

Number of training examples

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

GrFL

fixed feat

selected feat.

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

10
5

Number of training examples

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

GrFL

fixed feat

selected feat.

Fig. 2 Classification performance on three Brodatz textures classification in a multiclass
one-against-all context using squared Hinge loss context. Performances of our algorithm, a
fixed feature and a selected feature approach are reported. Top plots respectively show the
accuracy and the running time vs the number of pre-computed Gabor features with 1000
training examples per class. Bottom plots depict the same measures but with varying number
of training examples per class. For these plots, the fixed feat algorithm considers only kS = 81
features.

lem with a random subset of size ksel of the features visited by our algorithm,
denoted as selected feat, have also been reported for a sake of evaluating the com-
putational gain of using “one-pass” feature selection. For this latter approach, in
order to have results in a reasonable amount of time we have fixed ksel to 3000
features. The regularization parameters of all algorithms have been selected among
λ = [1, 2, 5, 10].

This texture recognition problem consists in classifying 16 × 16 patches ex-
tracted from three Brodatz textures D2, D29 and D92. For each texture, we have
extracted varying number (from 100 to 10000) of overlapping patches from the
left side of the image for training and 5000 patches from the right side for testing.
The multiclass problem is handled in the same way as for the previous experiment.
Regarding the feature generation, we have proceeded as follows. For a given Gabor
function, a feature is obtained by computing the inner product of all translated
version of the Gabor function located at some pre-defined positions with the image
patch and then by summing the absolute value of the responses over the positions.
When Gabor parameters are pre-defined in advance, we generate a number kS of
features that depends on the number of samples used for each parameter θ, f0 , σz
and σy . For our group feature learning case, the number kR of sampled features
used for checking constraint violations is fixed to kR = min(kS , 500).

Results are summarized in Figure 2 where we can note the drastic gain in
performance achieved by our algorithm. We also note that as the number of pre-
defined parameters used for the Gabor feature increases, the performance gap

20 A. Rakotomamonjy, R. Flamary and F. Yger

1000 2000 3000 4000 5000 6000 7000
82

83

84

85

86

87

88

Number of training examples

A
c
c
u
ra

c
y
 (

%
)

GrFL
IKL

1000 2000 3000 4000 5000 6000 7000
10

0

10
1

10
2

10
3

10
4

Number of training examples

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

GrFL

IKL

1000 2000 3000 4000
88

90

92

94

96

98

100

Number of training examples

A
c
c
u

ra
c
y
 (

%
)

GrFL

IKL

1000 2000 3000 4000
10

1

10
2

10
3

10
4

Number of training examples

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

GrFL

IKL

Fig. 3 Performance accuracy and computational time vs number of training examples for
(left) Adult. (right) spamdata.

between the two approaches decreases but is still manifest. Compared to the em-
bedded feature selection approach selected feat, our GrFL method does not provide
any gain in performance but its running time is reduced by an order of magnitude
(although we already limited the number of features in the selected feat approach).

6.3 Medium-scale and large-scale datasets

We have compared the IKL algorithm of Gehler et al. [21] and our approximate
IKL on two medium-scale binary classification datasets Adult(reduced to randomly
selected 10000 examples) and spamdata. We do not expect our approximated kernel
to perform better than IKL but rather to be more efficient and to be cheaper

to evaluate. For our approximate IKL, we have randomly sampled 20 values of
Gaussian bandwidth in the interval [5, 100] and for each of these values, we have
randomly sampled 59 directions v. Among all these features, the one violating the
most its constraints is included in the active feature set. Note that since zv(x)
is composed of two features, these latter are jointly regularized in our model by
means of a ℓ1 − ℓ2 mixed-norm for Ωp(w).

Figure 3 depicts the performance comparisons of the two approaches. These
plots show that while our GrFL algorithm induces some slight loss of performances
in small-scale situations, in other situations, substantial gain in computational
time may be obtained. Furthermore, as shown in Figure 4, the number of features
selected by our algorithm is by an order or magnitude lower than the number of
support vectors selected by IKL.

Learning with infinitely many features 21

1000 2000 3000 4000 5000 6000 7000
10

1

10
2

10
3

10
4

Number of training examples

N
u

m
b

e
r

o
f

fe
a

tu
re

s

GrFL

IKL

1000 2000 3000 4000
10

1

10
2

10
3

10
4

Number of training examples

N
u

m
b

e
r

o
f

fe
a

tu
re

s

GrFL

IKL

Fig. 4 Comparison of the number of features kept for the final decision functions of our
algorithm and IKL for dataset (left) Adult. (right) spamdata.

Adult IJCNN1
feat GrFL GrFL-M CSI GrFL GrFL-M CSI
10 83.82 83.77 83.38 92.06 91.96 91.03
50 84.76 84.86 84.58 97.05 96.97 92.19
100 84.98 85.00 84.84 97.97 98.02 93.29
500 85.24 85.30 85.04 – – –

Adult IJCNN1
ratio GrFL GrFL-M CSI GrFL GrFL-M CSI
0.1 84.23 84.34 84.54 96.27 96.67 93.38
0.3 84.78 84.87 84.72 97.40 97.77 93.23
0.5 84.91 84.95 84.74 97.75 97.96 93.32
0.7 84.98 85.00 84.84 97.97 98.02 93.29

Table 4 Accuracy in % on two large scale problems. Comparing single (GrFL) and multiple
kernel (GrFL-M) feature approximation to low-rank decomposition. The left table gives algo-
rithms performance for a given number of features while the right table shows performances
for increasing number of training examples and 100 features. Performances in bold are sig-
nificantly better than those of CSI according to a Wilcoxon signed rank test with p = 0.05.

Our last experiment shows that our algorithm can handle large scale kernel-
ized problems and that it is competitive compared to other large-scale kernel
machines like the low-rank decomposition method of Bach [6]. For this purpose,
we have considered the Adult and IJCNN1 datasets which respectively have 48842
and 141691 examples and 14 and 22 features. For these two datasets, we have
compared the performance of our algorithm using both single Gaussian kernel
approximation (GrFL) and multiple Gaussian kernel approximation (GrFL-M)
sampling strategies and the low-rank decomposition method of Bach et al. de-
noted as (CSI). For all methods, the considered Gaussian kernel bandwidth is
chosen among σ2 = {2.5, 5, 10, 15}, and the regularization parameters for GrFL

and GrFL-M have been selected among the values [10, 50, 100, 500] while for CSI,
we chose from [10−7, 10−6, · · · , 10−3]. Note that for our methods, we have sampled
at each constraint violation checking, 50 features zv for each possible bandwidth
value which means that for GrFL and GrFL-M, we evaluated respectively 50 and
200 features.

Table 4 reports the average performance over 10 different splits of the data.
At first, we are interested in accuracy performance for a given budget of features
(from 10 to 500) using 70% of the examples for training and the rest for testing.

22 A. Rakotomamonjy, R. Flamary and F. Yger

Then, we have fixed the maximal number of features at 100 and have made varied
the ratio number of training examples vs number of examples. We can see that
for most situations, our approach using the multiple kernel sampling strategy
performs significantly better than other methods. For the IJCNN1 dataset, for
both sampling strategies, we get better performances of about 4% better than
CSI. Regarding running time, building the models GrFL and GrFL-M with at
most 50 features using 70% of the examples for training take about 330 and 410
seconds for the Adult dataset and 1300 and 1400 seconds for the IJCNN1 dataset
using a (non-optimized) Matlab code on a single core Xeon machine with 24 Gbytes
of memory. With just a slight computational overhead, we are thus able to mix
features derived from different kernels and achieve better performances.

7 Conclusions

We proposed in this paper, a novel framework and a novel algorithm for learning
with infinitely many features, which has been made possible by using sparsity-
inducing regularizers. We have analyzed the optimality conditions of such regular-
ized problems with infinite number of features. From these analyzes, we derived
a simple algorithm which iteratively selects feature parameters. The algorithm,
built around an alternating direction methods of multipliers approach, is generic
enough to handle different loss functions and different types of regularizers, as well
as single or multiple task learning paradigm.

We also discussed two useful situations where features are indeed infinitely
many : continuously parametrized Gabor features and randomized kernel ap-
proximations. We reported experimental results showing the benefits that can
be achieved by learning the feature parameters using our framework instead of
pre-fixing them in advance.

For future works, we plan to provide a theoretical analysis of this learning
framework. In particular, taking inspirations from related works [16, 40], we are
interested in studying its generalization performance. In addition, we plan to better
analyze the learning problem by providing conditions on the families of features
for having a solution with finite number of features and to deploy our algorithm
on real-world applications dealing in particular to computer vision problems.

References

1. A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning.
Machine Learning, 73(3):243–272, 2008.

2. A. Argyriou, R. Hauser, C. Micchelli, and M. Pontil. A dc-programming
algorithm for kernel selection. In In Proc. International Conference in Machine

Learning, 2006.
3. A. Argyriou, A. Maurer, and M. Pontil. An algorithm for transfer learning

in a heterogeneous environment. In Proceedings of the European Conference on

Machine Learning, 2008.
4. A. Argyriou, C. Micchelli, and M. Pontil. Learning convex combinations of

continuously parameterized basic kernels. In Proceedings of COLT’2005, pages
338–352, 2005.

Learning with infinitely many features 23

5. A. Argyriou, C. Micchelli, and M. Pontil. When is there a representer theo-
rem? vector versus matrix regularizers. Journal of Machine Learning Research,
10:2507–2529, 2009.

6. F. Bach and M. Jordan. Predictive low-rank decomposition for kernel methods.
In Proceedings of the 22nd International Conference on Machine Learning, 2005.

7. A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2:183–202, 2009.

8. Y. Bengio. Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1–127, 2009.
9. F. Bianconi and A. Fernandez. Evaluation of the effects of gabor filter param-

eters on texture classification. Pattern Recognition, 40(12):3325–3335, 2007.
10. A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with

online and active learning. Journal of Machine Learning Research, 6:1579–1619,
2005.

11. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and trends in machine learning, 3:1–122, 2011.

12. O. Chapelle, P. S. and. S. Vadrevu, K. Weinberger, Y. Zhang, and B. Tseng.
Boosted multi-task learning. Machine Learning, 85(1-2):149–173, 2011.

13. X. Chen, W. Pan, J. Kwok, and J. Carbonell. Accelerated gradient method
for multi-task sparse learning problem. In Proceedings of the International Con-

ference on Data Mining, 2009.
14. W.-P. Choi, S.-H. Tse, K.-W. Wong, and K.-M. Lam. Simplified gabor wavelets

for human face recognition. Pattern Recognition, 41(3):1186–1199, 2008.
15. D. Clausi and M. Jernigan. Designing gabor filters for optimal texture sepa-

rability. Pattern Recognition, 33(11):1835–1849, 2000.
16. C. Cortes, M. Mohri, and A. Rostamizadeh. Generalization bounds for learning

kernels. In Proceedings of the 27th Annual International Conference on Machine

Learning, 2010.
17. A. Demiriz, K. Bennett, and J. Shawe-Taylor. Linear programming boosting

via column generation. Machine Learning, 46:225–254, 2002.
18. J. Eckstein and D. Bertsekas. On the douglas-rachford splitting method and

the proximal point algorithm for maximal monotone operators. Mathematical

Programming, 5:293–318, 1992.
19. T. Evgeniou and M. Pontil. Regularized multi-task learning. In Proceedings of

the tenth Conference on Knowledge Discovery and Data mining, 2004.
20. P. Gehler and S. Nowozin. Infinite kernel learning. In NIPS workshop on

Automatic Selection of Kernel Parameters, 2008.
21. P. Gehler and S. Nowozin. Let the kernel figure it out: Principled learning

of pre-processing for kernel classifiers. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2009.
22. A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multitask

learning. In Advances in Neural Information Processing Systems (NIPS), 2010.
23. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. Jordan. Learn-

ing the kernel matrix with semi-definite programming. Journal of Machine

Learning Research, 5:27–72, 2004.
24. H. Lee, Y. Largman, P. Pham, and A. Ng. Unsupervised feature learning for

audio classification using convolutional deep belief networks. In Advances in

Neural Information and Processing Systems, 2009.

24 A. Rakotomamonjy, R. Flamary and F. Yger

25. L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gra-
dient descent in function space. In in Neural information processing systems,
1999.

26. J. Mota, J. Xavier, P. Aguiar, and M. P uschel. A proof of convergence for the
alternating direction method of multipliers applied to polyhedral-constrained
functions. Technical report, ArXiv:1112.2295, 2011.

27. J. Neumann, C. Schnorr, and G. Steidl. Efficient wavelet adaptation for hybrid
wavelet-large margin classifiers. Pattern Recognition, 38(11):1815–1830, 2005.

28. J. Nocedal and S. Wright. Numerical optimization. Springer, 2000.
29. G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection and joint

subspace selection for multiple classification problems. Statistics and Comput-

ing, 20:231–252, 2010.
30. S. Ozogur-Akyuz and G. Weber. Learning with infinitely many kernels via

semi-infinite programming. In In Proceedings of Euro mini conference on ”Con-

tinuous Optimization and Knowledge Based Technologies”, pages 342–348, 2008.
31. A. Rahimi and B. Recht. Random features for large-scale kernel machines. In

Advances in Neural Information Processing Systems (NIPS), pages 1177–1184,
2007.

32. A. Rakotomamonjy, R. Flamary, G. Gasso, and S. Canu. ℓp − ℓq penalty for
sparse linear and sparse multiple kernel multi-task learning,. IEEE Trans. on

Neural Networks, to appear, 2011.
33. S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ1 regularization in infinite

dimensional feature spaces. In Proceedings of Computational Learning Theory,
pages 544–558, 2007.

34. T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Object recogni-
tion with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(3):411–426, 2007.
35. C. Shen and H. Li. On the dual formulation of boosting algorithms. IEEE

Trans on Pattern Analysis and Machine Intelligence, 32(12):2216–2231, 2010.
36. A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature

maps. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR), 2010.
37. J. Wang, H. Lu, K. Plataniotis, and J. Lu. Gaussian kernel optimization for

pattern recognition. Pattern Recognition, 42(7):1237–1247, 2009.
38. D.-Y. Yeung, H. Chang, and G. Dai. Learning the kernel matrix by maximizing

a kfd-based class separability criterion. Pattern Recognition, 40(7):2021–2028,
2007.

39. F. Yger and A. Rakotomamonjy. Wavelet kernel learning. Pattern Recognition,
5, 2011.

40. Y. Ying and C. Campbell. Generalization bounds for learning the kernel. In
Proceed- ings of 22nd Annual Conference on Learning Theory (COLT), 2009.

	Introduction
	Related works
	Learning features maps
	On the algorithmic implementation
	Some useful feature maps and discussions
	Numerical experiments
	Conclusions

