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ABSTRACT AND KEY WORDS 

Purpose 

 

The mechanical behaviour of aortic stent-grafts (SGs) plays an important role in SG 

durability and thus the success of endovascular surgery. As this behaviour is still not very 

well understood, the aim of this study was to assess numerically the flexibility and the 

mechanical stresses undergone by stents and fabric of current manufactured SGs.  

 

Methods 

 

Eight marketed SG limbs (Aorfix
®

, Anaconda
®

, Endurant
®

, Excluder
®

, Talent
®

, Zenith 

Flex
®

, Zenith LP
®

, Zenith Spiral-Z
®

) were modelled using finite element analysis. A 

numerical benchmark combining bending up to 180° and pressurisation at 150 mmHg of the 

SGs was performed. SG flexibility was assessed by the calculation of the luminal reduction 

rate (LRmax). Maximal stresses in stents (σS
max

) and maximal strains in fabric (εLG and εCG) 

were also assessed. 

 

Results 

 

LRmax at 90° was less than 20% except for the Talent SG. LRmax at 180° was higher for 

Z-stented SGs (range 39 - 78%) than spiral or circular-stented SGs (range 14 - 26%). At 180°, 

σS
max

 was higher for Z-stented SGs (range 370 – 622 MPa) than spiral or circular-stented SGs 

(range 177 – 368 MPa). At 90° and 180°, strains in fabric were low and did not differ 

significantly between PET SGs (range 0.5 - 7%). ePTFE fabric of the Excluder SG underwent 

higher strains (range 11 - 18 %). 
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Conclusions 

 

Stent design strongly influences mechanical performances of aortic stent-grafts. Spiral 

and circular stents provide greater flexibility as well as lower stress values than Z-stents, and 

thus better durability.  

 

Key words  

 Aortic stent-graft 

 Finite element analysis 

 Aortic aneurysm 

 Mechanical behaviour. 
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INTRODUCTION 

 

Endovascular repair (EVAR) is a widely used technique to treat abdominal aortic 

aneurysms (AAAs). However, stent-graft (SG) durability remains the principal issue of 

EVAR.  Endoleaks
1,2

, stenosis or thrombosis of the SG
3,4

, SG components failure
5-7

 may 

require secondary interventions in up to 22% of cases at 5 years
8
. In tortuous AAAs, a lack of 

SG flexibility has been associated with the above-mentioned complications
9,10

. However, few 

objective data are available regarding flexibility and mechanical stresses/strains in 

components of current marketed SGs. 

Numerical modelling by Finite Element Analysis (FEA) can be used to compare 

different SGs by assessing and analyzing SG deformation but also stresses and strains 

undergone by the device components. Some studies have proven the feasibility of this 

approach by using homogeneous models (a single equivalent material used for both stent and 

graft) as a first approach
11-20

. These models were employed to investigate the interaction 

between SG and blood flow using Computational Fluid Dynamics (CFD) and Fluid Structure 

Interaction (FSI) techniques. Particularly, displacement forces acting on the SG and stresses 

within the AAA wall after SG placement were estimated. However, homogeneous SG models 

did not take into account the mechanical complexity of the device and therefore may yield to 

erroneous results. Stents and graft were not differentiated and, consequently, the interaction 

between the two materials was not taken into account. Therefore, these models were not 

suitable to compare SG flexibility and mechanical stresses in components. 

More recently, more realistic multi-material SG models were proposed
21-24

. To date, 

very few studies have used this approach. Kleinstreuer et al. (2008)
21

 were the first to propose 

such numerical models. In their work, a tubular diamond-shaped SG was subjected to a cyclic 
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pressure loading. Stresses in stent were assessed for two types of Nitinol and stresses in the 

graft were studied for PET and ePTFE. However, the stent-graft model did not reproduce 

specifically any marketed SG at that time. Furthermore, fabric modelling was simplified using 

isotropic materials. In 2012, deployment of a bifurcated Talent SG (Medtronic) within an 

aneurysm was simulated
24

. Geometrical numerical results were validated by the means of X-

ray microtomography of the SG deployed within a silicone aneurysm phantom. However, in 

this study, numerical results were exploited geometrically but not from the mechanical point 

of view. 

Our group published recently a FEA study of the bending behaviour of Zenith Flex 

(Cook Medical) and Aorfix (Lombard Medical) iliac limbs with proper mechanical properties 

for SG components materials
22

. Spiral-stented limbs (Aorfix) were more flexible than the Z-

stented limbs (Zenith Flex). Moreover, stresses in stents and strain in fabric were lower for 

spiral-stented limbs. This approach was rigorously validated experimentally from qualitative 

and quantitative points of view by using X-ray microtomography
23

.  

The aim of this study was therefore to extend the analysis of flexibility and stresses to 

all currently marketed SG. 
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METHODS 

 

Stent-grafts 

Eight marketed SG limbs were modelled (see figure 1): 

 SGs with several Z-shaped stents: 

o Zenith Flex (Ze-SG) (Cook Medical Europe, Bjaeverskov, Denmark), 

o Talent (Ta-SG) (Medtronic, Minneapolis, USA), 

o Endurant (En-SG) (Medtronic), 

o Zenith Low Profile (Zlp-SG) (Cook Medical Europe). 

 SG with single spiral stent: 

o Aorfix (Ao-SG) (Lombard Medical, Didcot, United Kingdom). 

 SGs with single Z-spiral stent: 

o Excluder (Ex-SG) (Gore, Flagstaff, USA), 

o Zenith Spiral Z (Zs-SG) (Cook Medical Europe). 

 SGs with several circular stents: 

o Anaconda (An-SG) (Vascutek, Inchinnan, United Kingdom). 

 

 

SG iliac limbs were chosen because they are usually subjected to important 

deformations during and after their deployment within the iliac arteries. Dimensions of SG 

limbs and their components (stents and graft) were measured on samples obtained from 

manufacturer documentation. SG limb features have been reported in table 1. 

 

Stent-graft modelling 
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SG modelling has been presented in detail and validated experimentally in previous 

papers
22,23

. Thus, in the present paper, only essential details are recalled and some new 

features have been introduced. FEA software was Abaqus 6.8/Explicit
®
 (Simulia). 

 

Geometry and mesh 

Geometrical and computational features of fabric and stents are reported in table 2. In 

order to ensure consistent comparison between devices, graft lengths (LG) were slightly 

modified from the original samples and ranged between 88 mm and 108.1 mm. Cylindrical 

grafts were modelled and meshed with Abaqus 6.8.2. Geometries and meshes of idealized 3D-

stents were generated with Matlab R2011a (MathWorks). 

 

Stents 

Each stent centreline was approximated by parametric equations. A homemade Matlab 

routine generated discretization of stent centrelines through these equations. Then triangular 

mesh of each stent cross-section and global mesh of the 3D-stent using 6-node linear 

triangular prism elements were generated (figure 2).  

 
Fabric and sutures 

Cylindrical grafts were meshed with orthotropic elastic linear shell elements (thickness 

= 0.08 mm) through the Abaqus mesh algorithm. Excluder graft thickness was lower than 

other graft thicknesses and was equal to 0.04 mm. 

Sutures securing stents and graft together were not modelled in order to reduce 

computational complexity. Instead, a kinematic bonding between stent and graft outer 

surfaces was prescribed (“tie constraint” in Abaqus) so that both entities could not slide or 
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separate during simulations. Besides, self-penetration of SG components was also avoided 

through a self-contact algorithm. 

 

Material properties 

Stents 

The constitutive behaviour of the 316L stainless steel Ze-SG stents was characterized 

mechanically through a homemade tensile test. An elastoplastic model with isotropic strain 

hardening was considered. Corresponding properties of this model are listed in table 3. 

 

Other stents were made up of Nitinol (NiTi), whose superelastic and isotropic 

behaviour was modelled using the Abaqus subroutine originally proposed by Auricchio and 

Taylor (1997)
25

. The same mechanical properties were used for all Nitinol wires since the 

elastic limit of the Nitinol was never reached during our simulations (the strain remained 

small). Besides, the Nitinol model used in our simulation is not symmetrical in 

traction/compression (transformation in compression: 585 MPa). Material properties listed in 

table 4 were taken from Kleinstreuer et al. (2008)
21

. 

 

Fabric 

In this study, two types of fabric were considered and meshed with shell elements: 

(i) Ex-SG graft consisted of ePTFE fabric whose properties, listed in table 5, were taken from 

Catanese et al. (1999)
26

 and Kleinstreuer et al. (2008)
21

. This fabric was considered as 

isotropic elastic linear. It was assumed that the helical strip of the Excluder was made of the 

same ePTFE than the graft of this SG. 

(ii) The same polyester graft was used for all other SGs. The in-plane orthotropic elastic 

behaviour of this fabric was characterized in a previous study
22

. Bending rigidity of shell 
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elements used to mesh the PET fabric was adjusted according to a procedure detailed in this 

study. Parameters of this model are reported in table 6. This orthotropic model was 

implemented in the Abaqus software by using a “Lamina” material model. 

 

Stent-graft modelling specificities 

Compared to other SGs, the generation of Ta-SG, An-SG and Ex-SG models was 

particularly complex. This section presents the modelling details of these three SGs. 

 

Talent (Ta-SG) 

The metal structure of Ta-SG consists of five Z-stents as well as a longitudinal bar 

which increases longitudinal rigidity (or columnar strength) of the device in order to reduce 

the risk of SG migration. This bar has been modelled, meshed and added within the metal 

structure of the Ta-SG numerical model (see figure 3). 

 
Anaconda (An-SG) 

This SG has a characteristic “accordion” shape due to the way the stents are sewn onto 

the graft. Thus, modelling the crimped geometry of the fabric was particularly complex. The 

adopted approach to obtain this geometry can be divided in three steps (see figure 4): 

(i) Circular stents were prestressed: a sinusoidal longitudinal displacement was imposed 

to the stents centreline in order to give them a “crisp” shape (the amplitude and the 

number of periods of this sinusoidal displacement was measured on the stents of a 

stretched An-SG sample),  

(ii) Prestressed “crisp” stents were then fixed on the cylindrical textile with the above-

mentioned “tie constraint”, 
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(iii) The prestresses were then released, so that the stents came back almost entirely to their 

initial circular shape. Thus, deformation equilibrium between stents and graft was 

reached, resulting in the “accordion” shape of the textile. 

 

Furthermore, the following assumption was made concerning the stent wire. Each ring 

stent consists of a very thin Nitinol wire of 0.05 mm radius rolled several times in a 

concentric fashion. A single NiTi wire with equivalent radius of 0.15 mm was considered. 

This radius was calculated in order to obtain the same bending rigidity as the actual wire, 

while tensile properties were kept identical. 

 

Excluder (Ex-SG) 

For this device, the major difficulty laid in the particular fixation of the stent to the 

graft (as shown in figures 1 and 5): the stent is encapsulated between the graft and a thin 

polymeric strip. This type of fixation allows stent slight translation in the longitudinal 

direction. No equivalent algorithm was found in Abaqus to approximate this type of fixation. 

Consequently, the thin helical strip was modelled, preformed and applied against both stent 

and graft in order to encapsulate and allow the stent to translate longitudinally (see figure 5). 

A kinematic bonding (“tie constraint”) was applied between the graft outer surface and the 

strip inner surface in order to avoid motion between these two components. Neither bonding 

nor friction was considered between the stent and the textile and between the stent and the 

helical strip. 

 

Simulation of SG bending and intraluminal pressurisation 

Boundary conditions 
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To assess their mechanical performances, the above mentioned SG limbs were 

subjected to a severe bending followed by an intraluminal pressurisation (see figure 6). This 

type of boundary condition was chosen in order to mimick the in vivo deformations 

undergone by the SG in extremely tortuous AAA. The simulation consisted of three steps: (i) 

SG bending, (ii) adjustment of the distance between SG tips and (iii) intraluminal 

pressurisation. 

(i) As previously reported
22,23

, each SG tip was considered a rigid body controlled by a 

reference point (RP1 and RP2) (see figure 6). Opposite rotations were applied onto RP1 and 

RP2 about the x-axis, until an angle α of 90° and 180° was reached. The other two rotations 

were locked in order to maintain the SG in the yz-plane. Rigid body motions were prevented 

by locking the translations along the x and y axes. In order to avoid spurious tension in the 

longitudinal direction, the translation along the z-axis was left free. 

(ii) Once SG bending was completed, distance between RP1 and RP2 was adjusted to 

reach 70 mm for α = 90° and 35 mm for α = 180°, by applying opposite translations along the 

z-axis. These boundary conditions allowed SGs to be compared in identical loading conditions 

(figure 6). 

(iii) Finally, each SG was subjected to a pressure of 150 mmHg applied on the inner 

surface of the graft. During the entire simulation, fabric porosity was not taken into account. 

 

Numerical specificities 

As this type of simulation involved complex geometric, material and, especially, 

contact nonlinearities, an explicit scheme was preferred. The ratio between global kinetic and 

strain energies was kept to a maximum of 5 - 10% in order to remain in a quasi-static case
27,28

. 

 

Assessment criteria of SG mechanical performances 
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In this study, mechanical performances of SGs included both flexibility and the 

mechanical response of each component to the loading conditions. Assessment of these 

performances was based on the following criteria which were previously described
22

.  

 

Luminal reduction rate (LR) 

Flexibility was evaluated by the calculation of LR. LR of SG cross-section was defined 

as the reduction of SG cross-sectional area between initial (S0 = π RG² corresponding to α = 

0°, with RG the initial graft radius, see table 2) and deformed state (S corresponding to α = 90° 

or α = 180°): 

 

 
(%))1(100

0S

S
LR   (1) 

 

This criterion characterized the variation of SG cross-sectional area. The maximal LR 

(LRmax) was defined as the highest value obtained among the 100 cross-sections observed for 

a given value of α. LRmax was then plotted for each SG at α = 90° and α = 180°. A clinically 

relevant threshold value of LRmax was defined at 60 %, according to our surgical team 

experience. 

 

Stresses in stent (σS
max

) 

Maximal Von Mises stress (σS
max

) in the deformed stents was derived from Abaqus 

numerical results. This criterion took into account tension/compression, bending as well as 

torsion of the stents. σS
max

 was also calculated for intraluminal pressure of 75 mmHg which 

corresponded to the diastolic pressure. Therefore it was possible to calculate ∆σS which 

corresponded to the variation of σS
max

 between 75 and 150 mmHg. 
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Strains in fabric (εLG and εCG) 

Longitudinal membrane strain (εLG) and circumferential membrane strain (εCG) were 

calculated by averaging out values of membrane strains for inner and outer surfaces of the 

shell elements. For that purpose, a local coordinate system ( CL ee , ) was defined along the 

yarn directions in order to ensure that output values corresponded to εLG and εCG. 

 

The three above mentioned criteria were calculated for α = 90° and α = 180°. Matlab 

R2011a was used to post-process the results obtained from Abaqus. Results were classified 

according to stent shape. 
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RESULTS 

 

SG global deformation 

Figure 7 represents SG deformed geometries for corresponding values of α (90° and 

180°). No major SG kink was observed for α = 90°, except for the Ta-SG. For α = 180°, there 

were some significant differences between devices. Ze, Ta, and En-SGs displayed major kinks 

in their central area where the stents collapsed and dragged down the fabric with them. On the 

contrary, deformation of other devices was homogeneous along their entire length. Because of 

its “accordion” shape, An-SG unfolded and subsequently got longer when intraluminal 

pressure was applied. 

 

 

Maximal luminal reduction rate (LRmax) 

Figure 8A shows LRmax plotted for each device at α = 90° and α = 180°.  

At α = 90°, all SGs except Ta-SG had LRmax equal or less than 20%.  

At α = 180°, two groups of SGs could be identified. The first group included Z-stented 

SGs (Ta, En, Ze and Zlp-SGs). LRmax of these SGs was high, reaching peak values between 70 

and 80% (Ta, En, Ze-SGs). For Zlp-SG, LRmax peak value remained lower than 40%. The 

second group included the other devices which had either spiral stents (Ao, Ex and Zs-SGs) or 

separated circular stents (An-SG). LRmax values in this group were low (less than 25%). 

Because these values suggested possible phase transformations for some SGs, a finer 

analysis in terms of principal stresses was also performed. This analysis revealed that minimal 

principal stresses -negative values, hence in compression- could drop below -400 MPa for Ta 

and En, with respective values close to -500 and -600 MPa. However, the maximal principal 

stresses -hence in traction- never exceeded 390 MPa for any SG. 
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Stresses in the stents (σS
max

) 

Calculated values of σS
max

 are presented in figure 8B for each SG at α = 90° and α = 

180°. 

At α = 90°, σS
max

 was less than 300 MPa for all SGs except Ta and Ex-SGs. The 

highest σS
max

 were recorded for Ta-SG, with a peak value of 560 MPa.  

At α = 180°, two groups of SGs could be identified. The first group included Z-stented 

SGs (Ta, En, Ze and Zlp-SGs) except Ex-SG which had a Z-spiral stent. In this group, σS
max

 

values were greater than 300 MPa. The second group included spiral and circular-stented SGs 

(Ao, An and Zs-SGs). In this group, σS
max

 values were lower than 300 MPa. 

For all SGs, highest σS
max

 were located at the level of stent apex. 

∆σS at 90° and 180° ranged from 0 (Ta-SG) to 31 MPa (Ao-SG). This corresponds to 

very small strain magnitude ∆εS ranged from 0 to 0.08%. 

 

Strains in the fabric (εLG
max

 and εCG
max

) 

Figure 8C (8D, respectively) represents εLG
max

 (εCG
max

, respectively) plotted for each 

device at α = 90° and α = 180°. 

For SGs with PET fabric, εLG
max

 was higher than εCG
max

 for the same angulation. For 

all SGs except Ex-SG, εLG
max

 and εCG
max

 were low (εLG
max

 < 7 % and εCG
max

 < 2 %) at 90° and 

180°. For Ex-SG, εLG
max

 and εCG
max

 were up to 18 % for α = 180° (the fabric of this SG was 

ePTFE). 

Maximum strains were mainly located at the inner curvature of the SG, particularly 

between stents or between stent patterns for SGs with a single stent. In these areas, stents 

dragged the fabric down with them and sometimes overlapped causing important local fabric 

stretches. For Ex-SG, the maximum strain in the fabric was located at the interface between 

the graft and the helical strip. 
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DISCUSSION 

 

The present study was a comparison of the mechanical performances of eight currently 

marketed SGs. The results confirmed that the stent geometry strongly influences SG 

flexibility and mechanical stresses in stents.  

 

Flexibility (LRmax) 

At 90°, no significant difference was observed in the LRmax value between the different 

devices except for Ta-SG. LRmax value (20%) remained well below the clinical threshold of 

60% commonly associated with limb thrombosis or symptomatic kinks. Therefore, these 

results confirm that most current SGs could be used safely in iliac angulations up to 90°. 

At 180°, circular, spiral or Z-spiral stents provided better flexibility than Z-stents. 

Interestingly, optimization of Z-stents such as with Zlp-SG (decreased number of Z-periods 

and shorter stents) was associated with lower LRmax values. For this particular SG, better stent 

interlocking was observed during bending which resulted in a lower luminal reduction.  

 

Stresses in stents / Fatigue 

At 90°, stresses in stents were higher for Ta-SG. It was possible to identify from the 

model that the highest stress was localized in the longitudinal bar even for low angulations. 

Furthermore, it was possible to demonstrate that pressurisation was responsible for the 

particular V-shape observed with this SG at 90° (figure 7). The high stress undergone by Ex-

SG (σS
max

 = 375 MPa) at 90° may be explained by the observed local wrinkling of both graft 

and strip which caused the stent to jam at the level of the angulation. 
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At 180°, the highest stresses were observed with Z-stents. Lower stresses of spiral and 

circular stents were associated with minimal stent deformation even for the highest 

angulation. 

NiTi stents remained in their linear elastic domain during simulation, since σS
max

 never 

reached the stress required to induce the forward martensitic transformation (σL
S
 = 390 MPa). 

For Ta-SG and En-SG, higher σS
max

 values are obtained due to compression stresses as was 

shown with the principal stress analysis. Traction stresses remain below the forward 

martensitic transformation. Figure 8B suggests that stresses in 316L stainless steel Z-stents of 

the Ze-SG (σS
max

 = 740 MPa) remain well below the yield stress of this alloy (σe = 1550 MPa) 

and therefore plasticity was never reached during simulation. 

Stress (∆σS) and (∆εS) strain variations within the stents between diastolic (75 mmHg) 

and systolic (150 mmHg) pressures were small for all SGs. Accounting for the calculated 

maximal Von Mises stresses σS
max

, such very small mechanical oscillations around σS
max

 

should not be detrimental to the fatigue life of the stents
29

. These data are consistent with the 

fact that stent fracture occur rarely in clinical practice with the SGs considered in this study. 

 

Strains in fabric 

 At 90° and 180°, strains in fabric were well below ultimate strains of graft materials 

(around 20% for PET and 40% for ePTFE, see tables 5 and 6). This is consistent with the fact 

that fabric tear rarely occur with the devices considered in this study. 

FEA models allowed to assess areas of maximal strain in the fabric. Particularly, Z-

stents were associated with the highest strains in the fabric compared to circular and spiral 

stents.  
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The ePTFE fabric of Ex-SG was much more deformed than the PET textile of other 

SGs. Strains undergone by this material were higher since its Young’s modulus was much 

lower (55.2 MPa) than those of the PET fabric (EL = 225 MPa and EC = 1000 MPa).  

 

Limitations 

Several limitations of this study may be mentioned.  

Friction between stents and fabric caused by micro motion of stents despite sutures 

was not considered. This phenomenon may cause localized fabric wear and tear as previously 

reported
5
. 

Sutures were not modelled but approximated by a bonding algorithm between stents 

and graft in order not to increase computational time dramatically. 

Isotropic linear elastic constitutive law of ePTFE fabric was taken from the single 

numerical study which used this material
21

. However, isotropy is maybe not representative of 

the actual mechanical behaviour of this material. Preferential orientations of ePTFE 

microstructure were observed in the study of Catanese et al. (1999)
26

. Because no fabric 

sample was available to us, it was impossible to perform proper characterization of ePTFE 

mechanical behaviour. 

Blood flow and corresponding shear were not considered as FSI simulations would 

have been much more complex to implement. For the same reason, interaction between SG 

and arteries were not computed. 

 

Perspectives 

This report is the first step of a global study on the mechanical behaviour of aortic 

SGs. Further computations are underway and aim to model bifurcated SGs. SG deployment in 

aortic numerical models is also being developed. The next step would consist in simulating 
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SG deployment within patient-specific AAAs
24

. Moreover, a future study could focus on 

optimizing the suture system by using our simulations in a multi-scale analysis. 

Another application of this technology could be the optimization of SG design. 

Mechanical performances of newly designed SGs could be tested numerically without the 

need for prototypes and bench-tests.  
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CONCLUSION 

 

This study confirmed that stent design strongly influences mechanical performances of 

aortic stent-grafts. Spiral and circular stents provide greater flexibility and lower stress values 

than Z-stents.  
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TABLES 

 

 

Table 1  Manufacturing features of considered SG limbs 

 

 Stent 

material 
Stent shape 

Graft 

material 

Attachment of 

stents to graft 

Aorfix Nitinol Spiral Polyester Sutures 

Anaconda Nitinol Circular Polyester Sutures 

Endurant Nitinol Z Polyester Sutures 

Excluder Nitinol 
Combination 

spiral/Z 
ePTFE 

Stent encapsulation 
(*)

 

Talent Nitinol 
Z + additional 

side bar 
Polyester Sutures 

Zenith Flex 

316L 

Stainless 

Steel 

Z Polyester Sutures 

Zenith Spiral-

Z 
Nitinol 

Combination 

spiral/Z 
Polyester Sutures 

Zenith LP Nitinol Z Polyester Sutures 

(*)
 Stent encapsulated between the graft and a thin polymeric strip 
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Table 2  Geometrical and computational features of SG limbs 

 

 
Ao-SG An-SG En-SG Ex-SG Ta-SG Ze-SG Zs-SG Zlp-SG 

Total number of 

elements 
71928 74033 89892 242192 71560 65460 56912 63820 

         

Graft         

Radius RG (mm) 7.867 7.842 7.792 7.862 7.742 7.852 7.792 7.822 

Length LG (mm) 88.0 92.9 91.5 94.9 108.1 99.4 90.7 92.9 

         

Stents         

Stent height HS 

(mm) 
LG 0.40 8.3 5.5/13.5 14.6 11.7 7.5 8.6 

Number of stents NS 1 18 9 1 
6 + side 

bar 
6 1 8 

Wire radius RS (mm) 0.125 0.15 0.20 0.13 0.25 0.14 0.20 0.17 
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Table 3  Material properties of 316L stainless steel 
 

Parameters Values 

Young’s modulus E (MPa) 210000 

Poisson’s ratio ν 0.3 

Yield stress σe (MPa) 1550 

Ultimate tensile strength σR (MPa) > 2300 
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Table 4  Material properties of Nitinol (Kleinstreuer et al., 2008) 

 

Parameters Values 

Austenite elasticity EA(MPa) 40000 

Austenite Poisson’s ratio νA 0.46 

Martensite elasticity EM (MPa) 18554 

Martensite Poisson’s ratio νM 0.46 

Transformation strain ε
L 

0.04 

Start of transformation loading σL
S
 (MPa) 390 

End of transformation loading σL
E
 (MPa) 425 

Ultimate tensile strength σR (MPa) 827 – 1172 
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Table 5  Material properties of ePTFE (Catanese et al., 1999; Kleinstreuer et al., 

2008) 

 

Parameters Values 

E (MPa) 55.2 

ν 0.46 

Ultimate strain εR 0.2 - 0.477 
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Table 6  Material properties of PET 

 

Parameters Values 

Eθ=0° = EL (MPa) 225 ± 10% 

Eθ=90° = EC (MPa) 1000 ± 10% 

νLC 0.2 

G (MPa) 3.6 

εR
L
 0.23 

εR
C
  0.18 

DL (10
-4

 N.mm) 4.0 

DC (10
-4

 N.mm) 18 
EL: longitudinal Young’s modulus. EC: circumferential Young’s modulus. νLC: Poisson’s ratio. G: shear modulus. εR

L: 

longitudinal ultimate strain. εR
C: circumferential ultimate strain. DL: longitudinal bending stiffness. DC: circumferential 

bending stiffness. 
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LEGENDS 

 

 

Figure 1 - Marketed stent-graft limbs and corresponding numerical models. 

 

Figure 2 - Generation of stent mesh. 

 

Figure 3 - Numerical modelling of the metal structure of the Ta-SG. 

 

Figure 4 - Outline of the different steps necessary for the implementation of the An-SG 

numerical model. 

 

Figure 5 - Numerical model of the Ex-SG: Encapsulation of the stent between the graft and 

the thin helical strip. 

 

Figure 6 - Schematic view of SG in corresponding boundary conditions: angulation of 90° 

(left hand side) and 180° (right hand side) 

 

Figure 7 - Deformed SGs for α = 90° and α = 180° 

 

Figure 8 - Quantitative assessment of SGs mechanical performances for α = 90° and α = 

180°: (A) LRmax, (B) σS
max

, (C) εLG
max

, (D) εCG
max

. 

 

 

 

 


