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A general solution of the magnetic field in the airgap of Conventional and Alternate Field-Excited Switched-Flux (FE-SF) machines
is proposed in this paper. The analytical model is based on subdomain method. It involves solution of governing field equations in
a doubly-slotted airgap using the variable separation method. The complete model is derived and described in a general manner so
that it can be easily extended to unconventional FE-SF topologies. By means of example, analytical predictions of airgap field are
extensively compared and validated using 2D FE results. FE simulations were performed on a 24-10 classical FE-SF structure and
also, on a novel 18-11 FE-SF machine with additional spacer teeth.

Index Terms—Exact analytical calculation, flux-switching, switched-flux, slotting effect, Poisson Laplace’s equation.

I. I NTRODUCTION

PRINCIPLE of flux-switching can be tracked back in
the 50’s and was originally validated on a single-phase

flux-switching alternator [1]. Over the last decade, there has
been an increasing interest in Flux-Switching, also named
Switched-Flux (SF) machines, particularly Permanent Magnet-
excited (PM-SF) polyphased topologies [2][3]. Since then,
suitability of SF-PM machines for various applications has
been confirmed by the considerable amount of work carried
out by researchers, particularly in United-kingdom[4][5][6],
China [7][8][9], France [10][11][12] and Japan [13].

Switched-flux machines have bipolar phase flux-linkage
waveform resulting in a sinusoidal-like back-electromotive
force (EMF), despite their doubly-slotted airgap. Moreover,
during the design stage, the back-EMF can be optimized
to reduce its harmonic content since it strongly depends on
stator and rotor relative slot opening. It worth mentioning
their rugged structure, with a passive rotor similar to thatof
Switched Reluctance machines, and suitable for high-speed
operation. In addition, all active parts (concentrated phase
windings and PM) are housed in the stator allowing brushless
operations with reduced maintenance and eased cooling. For
all these reasons, SF-PM appears to be eligible for many
industrial applications that are increasingly demanding for
electromagnetic devices combining high torque density, high
efficiency and robustness.

However, the constant field provided by magnets in PM-
SF structures was not in accordance with requirements of
variable speed applications, notably a good field-weakening
capability. Hence, Hybrid-Excited Switched-Flux (HE-SF)ma-
chines were proposed. Those topologies combine both PM
and an additional DC winding fluxes to achieve a good flux
control capability. The wealth of literature on HE-SF machines
can be sorted into two groups, i.e. series flux path [14][15]
or parallels flux path [16] HE-FS machines, depending on
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DC coils location and the flux control principle. It worth
mentioning the recent work [17], where a novel HE-FS topol-
ogy with excitation coils located in stator slots is presented.
Its innovative flux control principle is explained and further
validated with experiments. Authors showed, trough Finite
Element (FE) simulations, that this topology belongs to both
series and parallels flux path HE-SF machines, depending on
the rotor teeth number.

Recent published works have unlocked new avenues and
show interesting prospects for the future of HE-SF topologies,
especially for applications requiring extended constant power
operation range with improved efficiency [10][18]. Neverthe-
less, risks of supply-chain disruptions for some rare earthma-
terials in short-term led governments, industrial organizations
and researchers to rethink their approach.

The Field-Excited Switched-Flux (FE-SF) machine may be
a prime candidate to overcome those risks. So far, despite
a general agreement on their attractive low-cost topology,
FE-SF topology has been much less investigated than the
corresponding PM-SF machine. To the author’s knowledge,
just two topologies of FE-FS machines are mentioned in liter-
ature, while numerous new PM-excited topologies have been
developed, as highlighted in [4]. Classical FE-SF structures
with overlapping windings are investigated in [19][20], while
a modular rotor topology with non-overlapping windings is
presented in [21].

Generally, Finite Elements methods are preferred to assess
electromagnetic performances of FS machines. Indeed, their
complex structure with a doubly-slotted airgap, together with
high-flux focusing effect, mainly in PM-SF machines, may
require accounting for the non-linear behavior of magnetic
material. Despite their excellent accuracy, FE simulations are
severely limited by computational time requirements, and thus,
exploration of various designs is directly affected. To go be-
yond those limitations, some authors proposed models of PM-
FS and HE-FS topologies in a more analytical manner, using
Magnetic Equivalent Circuit (MEC) [22][23], Fourier analysis
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Fig. 1. Conventional and Alternate Field-Excited Switched-Flux machines: Classical FE-SF with single (a) or double-layers windings (b) and Unconventional
FE-SF machine with additional spacer teeth (c)

method [24], spatial discretization methods [25] and tooth
contour methods [26]. In reference [27], an analytical model
for classical FE-SF machines based on Magnetomotive Force-
Permeance theory was proposed. This analytical field model
can fairly predict the radial component of the flux-density in
the airgap to determine the main performances at no-load, as
flux-linkage or back-EMF. However, it neglects slots leakage,
mutual influence between slots and cannot predict tangential
component of magnetic field to assess the electromagnetic
torque trough the Maxwell stress tensor. Moreover, this model
was just bounded to classical FE-FS machines. Indeed, no
references in the literature addressing the issue of an exact
analytical model for both classical and alternate Field-Excited
Switched-Flux machines were found, while it is of first interest
to improve the analysis and the design of unconventional FE-
FS machines.

Regarding modeling techniques to account for the slotting
effect, two approaches are mainly reported in the literature.
Some authors propose to use a relative permeance function that
could modulate the airgap field calculated without slots. The
permeance function can be derived using conformal transfor-
mation and considering infinitely deep slot [28][29][30][31].
Others works derive a modulating function assuming ideal-
ized flux-lines under the slot[32][33][34][35]. It was as well
proposed an exact permeance function accounting for all the
slot dimensions in [36]. Another approach is named subdo-
main model. The main idea consists in solving directly the
governing field equations in different domains, and applying
boundary conditions on the interfaces between subdomains
[37][38][39][40][41][42]. In so doing, it is possible to derivate
an exact expression of the magnetic field.

The objective of this paper is to derive an analytical solution
of the magnetic field in classical and alternate Field-Excited
Switched-Flux machines based on subdomain method to pre-
dict both open circuit, armature reaction and on-load field.The
approach assumes that the magnetic material is linear. This
article has been organized in the following way. Firstly, the
classical and unconventional topologies are briefly introduced

to determine a simplified geometry to model. Then, exact
magnetic field solution in the doubly slotted airgap of FE-
SF machines is proposed. The analytical field expression in
each subdomain is derived by the variable separation method.
Afterwards, boundary and interface conditions are appliedto
set up a system of linear equations. In the fourth section,
extensive comparisons with flux-density distributions obtained
by FE simulations come to validate the analytical model.

II. CONVENTIONAL AND ALTERNATE FE-SFTOPOLOGIES

In this section, conventional and alternate Field-Excited
Switched-Flux machines are introduced. Contrary to PM-
excited topologies, FE-SF machines have received less atten-
tion in the research community. Classical FE-SF machines
with single or double-layer windings are presented in Fig.
1.(a) and (b). It should be noted that the rotor pole number
is not the same between these topologies. Indeed, in FE-
SF machines, the stator-rotor teeth combination is not fixed
and may create modification in windings configurations. An
unconventional FE-SF machine is depicted in Fig. 1.(c). It has
additional spacer teeth, highlighted in dark-grey color, linking
two flux-switching cells, and single layer windings. Also, this
topology has less DC excitation slots leading to reduced cost
and greater efficiency, because of reduced excitation Joule
losses. A similar PM-excited topology was reported in [43],
however, this field-excited topology has never been published
or studied to the author’s knowledge.

The main idea of this work is to derive an analytical
solution of the magnetic field in the doubly-slotted airgap of
FE-SF machines as general as possible, and flexible enough
for an eased extension to unconventional machines having
static DC excitation winding. Earlier in this paragraph, we
presented some conventional and alternate FE-SF machines,
but the foregoing model is not restricted to these structures.
For illustrative purposes, the airgap field of the topology
reported in [44] could be modeled according to the subsequent
analytical magnetic field solution.
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III. M AGNETIC FIELD SOLUTION IN THE

DOUBLY-SLOTTED A IRGAP OFFE-SF MACHINES

Considering the above mentioned topologies (Fig. 1), a
general geometrical model is proposed in Fig. 2. As can be
seen, the field domain is divided into 3 subdomains,viz. airgap
(domainI), rotor slots (domainsi) and stator slots (domainsj).
Stator and rotor slots opening areβsθs andβrθr respectively.
The angular position in the airgap is defined withν, and θ

corresponds to the rotor position.
In order to derive a general analytical framework for FE-SF

machines, a non overlapping winding configuration is studied,
i.e. with two different current densities sharing the same
stator slot. This will later enable to predict electromagnetic
performances of single- or double-layers configurations, and
then, determine field distributions of unconventional FE-SF
topologies just by modifying windings (DC excitation and
phase) location.

Rsi

Rse

Rre

Rri

Re

b qs s

qs

b qr r

qr

Double-layer
Winding Configuration

Fig. 2. Doubly-salient geometry of FS machine withNs = 12 andNr = 7
with its double-layer windings

Some assumptions are made in order to simplify the prob-
lem:

• Infinite permeability of rotor and stator core, hence, no-
magnetic saturation of iron regions is considered.

• Non-conductive stator or rotor laminated iron sheets (No
eddy currents)

• 2D problem (end effects are neglected) with a uniform
current density in coil’s conductor area and only one
component along thez-axis.

• Stator and rotor slots have radial sides.

According to the 2D problem assumption, the magnetic
vector potential ~A has only one component along thez-
direction and only depends onr andν coordinates.

The partial differential equations (PDE) that are governing
the magnetic field behavior in a continuous/isotropic region in
term of magnetic vector potential are Laplace’s equations for

rotor slots,

∆Ai = 0, in the ith rotor slot (Regioni) (1)

and airgap,

∆AI = 0, in the airgap (RegionI) (2)

and Poisson’s equation for stator slots,

∆Aj = −µ0Jj , in the j th rotor slot (Regionj) (3)

with Jq the stator slot current density andµ0 the vacuum
permeability.

A. General Solution of Laplace’s Equation in Airgap (Re-
gion I)

The Laplace’s equation (2) governing the field in the airgap
domain, can be rewritten in polar coordinates as

∂2AI

∂r2
+

1

r

∂AI

∂r
+

1

r2
∂2AI

∂ν2
= 0 for

{

r ∈ [Rre, Rsi]

ν ∈ [0, 2π]
(4)

with Rre the external radius of the rotor,Rsi the inter-
nal radius. Also, it should be noted that the whole airgap
is considered,i.e. over a 2π-mechanical angle. That will
allow us to account for non-periodic geometries,viz. with
gcd(Ns, Nr) = 1. Ns and Nr are respectively the number
of stator and rotor teeth.

The general solution of (4) can be found by separating the
variabler andν, so that the solution can be written as

AI (r, ν) =
∑

n≥1

[

A(I)
n

(

r

Rre

)−n

+B(I)
n

(

r

Rsi

)n
]

cos (nν)

+

[

C(I)
n

(

r

Rre

)−n

+D(I)
n

(

r

Rsi

)n
]

sin (nν) (5)

with An, Bn, Cn and Dn Fourier coefficients to be deter-
mined.

B. General Solution of Poisson’s Equation in Stator Slots
(Region j)

In each stator slots, we have to solve the Poisson’s equation,
defined by (3), to determine the vector-potential distribution.
According to the superposition law, the general solution is
the sum of the corresponding Laplace’s equation (withJj =
0) and a particular solutionAjp of its own. As previously,
assuming a polar coordinate system, equation (3) becomes,

∂2Aj

∂r2
+
1

r

∂Aj

∂r
+

1

r2
∂2Aj

∂ν2
= −µ0Jj for

{

r ∈ [Rsi, Rse]

ν ∈
[

θj , θj + βsjθs
]

(6)
We first consider the solution of the corresponding Laplace’s

equation. Fig. 3 presents the slotted stator geometry with the
associated boundary conditions. Since stator core is assumed
to be highly permeable, Neumann boundary conditions are
considered respectively on each tooth sides and at the bottom
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Fig. 3. Slotted stator geometry with associated boundary conditions

of the slot. Finally, thejth stator slot is associated with the
following boundary conditions,

∂Aj

(

r, ν = αj ±
βsj

θs

2

)

∂ν
= 0 for r ∈ [Rsi, Rse] (7)

and

∂Aj (r = Rse, ν)

∂r
= 0 for ν ∈

[

θj , θj + βsjθs
]

(8)

To satisfy boundary conditions (8) and assuming a solution
with separated variables, it is possible to express the vector-
potentialAj as,

Aj (r, ν) = A
(j)
0 +B

(j)
0 ln (r)

+
∑

q≥1

[

A(j)
q r

−q π
βsj

θs +B(j)
q r

q π
βsj

θs

]

cos

(

q
π

βsjθs
(ν − θj)

)

(9)

whereRse the radius of the slot bottom andA(j)
0 , B(j)

0 , A(j)
q

andB(j)
q coefficients to be determined.

We now have to determine a particular solution of (6). To
do so, we first consider the non-overlapping winding depicted
in Fig. 4. Since the current density is uniform over each coil,
the current density distributionJq is radius-independent, and
can be defined by a function by parts over[θj , θj + 2βsjθs]
intervals as shown in Fig. 4,

Jj(ν) =







Jph1 , ∀ν ∈
[

θj , θj +
βsj

θs

2

]

Jph2 , ∀ν ∈
[

θj +
βsj

θs

2 , θj + βsjθs

] (10)

Expanding (10) into Fourier series over[θj , θj +2βsjθs], it
yields to,

Rsi

Rse

Rce

r
Slot
j+1

Slot
j

Slot
j-1

Jph1

Jph2

J

qj-1

b qsj s

qj qj+1

qj qj+2b qsj s

Even extension

of J ( )j n

Fig. 4. Current density distribution in the non-overlapping double-layer stator
slot - Even extension of the current densityJj(ν) using the image method

Jj(ν) = Jj0 +
∑

q≥1

Jjq cos

(

q
π

βsjθs
(ν − θj)

)

for ν ∈
[

θj , θj + βsjθs
]

(11)

with the mean value,

Jj0 =
Jph1 + Jph2

2
(12)

and the following Fourier serie coefficients,

Jjq =
2

T

2βsj
θs+θj
∫

θj

Jj (ν) cos

(

q
π

βsjθs
ν

)

dν

=
2 (Jph1 − Jph2)

qπ
sin
(

q
π

2

)

(13)

Considering the form of the current density distribution (See
Eq. (11)), a particular solutionAjp can be found as,

Ajp(ν) = −µ0
Jj0

4
r2 −

∑

q≥1

µo

Jjq

4−
(

q π
βsj

θs

)2 r
2

cos

(

q
π

βsjθs
(ν − θj)

)

(14)

Therefore, the vector-potentialAj in the jth slot can be
expressed as,

Aj (r, ν) = A
(j)
0 +B

(j)
0 ln (r) − µ0

Jj0

4
r2

+
∑

q≥1






A(j)

q r
−q π

βsj
θs +B(j)

q r
q π

βsj
θs − µo

Jjq

4−
(

q π
βsj

θs

)2 r
2







cos

(

q
π

βsjθs
(ν − θj)

)

(15)
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Accordingly to the Neumann boundary condition at the slot
bottom, defined by (7), the number of unknown independent
coefficients can be reduced,

B
(j)
0 = µ0

Jj0

2
R2

se (16)

and

B(j)
q = A(j)

q R
−2q π

βsj
θs

se

+ 2µo

Jjq
(

4−
(

q π
βsj

θs

)2
)

(

q π
βsj

θs

)

R
−q π

βsj
θs

+2

se (17)

Finally, from (15), (16) and (17), the general solution of the
vector-potentialAj in the jth slot can be derived as

Aj (r, ν) = A
(j)
0 + µ0

Jj0

2

(

R2
se ln (r)−

r2

2

)

+
∑

q≥1

[

A(j)
q

[

(

r

Rsi

)−q π
βsj

θs

+ β1

(

r

Rse

)q π
βsj

θs

]

−µo

Jjq

4−
(

q π
βsj

θs

)2



r2 −
2R2

se
(

q π
βsj

θs

)

(

r

Rse

)q π
βsj

θs











cos

(

q
π

βsjθs
(ν − θj)

)

(18)

with

β1 =

(

Rsi

Rse

)q π
βsj

θs

(19)

A
(j)
0 andA(j)

q are coefficients to be determined later.

C. General Solution of Laplace’s Equation in Rotor Slots
(Region i)

The field behavior in theith rotor slot is governed by the
following Laplace’s equation,

∂2Ai

∂r2
+

1

r

∂Ai

∂r
+

1

r2
∂2Ai

∂ν2
= 0 pour

{

r ∈ [Rri, Rre]

ν ∈ [θi, θi + βriθr]
(20)

in polar coordinates.Rri is the radius of the rotor slot bottom.
In Fig. 5 an idealized rotor slot geometry is presented. As

previously, interfaces between air and an highly permeable
iron lead again to Neumann boundary conditions,

∂Ai

(

r, ν = αi ±
βri

θr

2

)

∂ν
= 0 for r ∈ [Rri, Rre] (21)

for each rotor tooth sides, and

∂Ai (r = Rri, ν)

∂r
= 0 for ν ∈ [θi, θi + βriθr] (22)

Rre

Rri

b qr r

qr

¶r
¶Ai

¶Ai

¶n

=0

=0

qi

ai

Fig. 5. Slotted rotor geometry with associated boundary conditions

for the rotor slot bottom, and whereθi = αi + θ with αi =

θr

(

1−
βri

2

)

. Considering the Neumann boundary condition
(21), it is possible to look into solution of the form,

Ai (r, ν) = A
(i)
0 +B

(i)
0 ln (r)

+
∑

k≥1

[

A
(i)
k r

−k π
βri

θr +B
(i)
k r

k π
βri

θr

]

cos

(

k
π

βriθr
(ν − θi)

)

(23)

The second boundary condition, defined by (22), helps us to
determine some unknown coefficients, so that, the general ex-
pression of vector-potentialAi in the ith slot can be expressed
as,

Ai (r, ν) = A
(i)
0 +

∑

k≥1

A
(i)
k

[

β2

(

r

Rri

)−k π
βri

θr

+

(

r

Rre

)k π
βri

θr

]

cos

(

k
π

βriθr
(ν − θi)

)

(24)

with

β2 =

(

Rre

Rri

)−k π
βri

θr

(25)

The constant termsA(i)
0 and A

(i)
k are coefficients to be

determined.

D. Boundary and Interface Conditions

Now that general expressions of vector-potential in each
subdomain have been derived, we need to apply boundary and
interface conditions to determine the unknown coefficientsAn,
Bn, Cn, Dn, A(i)

0 , A(i)
k , A(j)

0 andA(j)
q .

Basically, interface conditions between two subdomains in
term of vector-potential have to ensure,

• the continuity of vector-potential ;
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• the continuity of the normal derivative of vector-potential,
equivalent to the continuity of the tangential magnetic
field since both stator slots, airgap region and rotor slots
have the same magnetic permeabilityµr.

To this end, the boundary integral method is applied to this
problem and detailled in the following paragraphs.

1) Continuity of the Normal Derivative of Vector-potential
As specified beforehand, the normal derivative of the vector-

potential has to be continuous between each subdomain.
However, because of slotted stator and rotor, ensuring this
condition requires some analytical developments.

Function W (n)2

Function W (n)1

Airgap

Fig. 6. Shematic representation of airgap domain surrounded by stator
and rotor cores - Definition of functionsΩ1 (ν) and Ω2 (ν) to ensure the
continuity of the normal derivative of vector-potential between airgap domain
and respectively the rotor (blue dotted lines) and the stator (black solid lines)

A shematic representation of the airgap domain, surrounded
by stator or rotor teeth, is proposed Fig. 6. When the airgap
is facing a tooth - (stator or rotor), the infinite permeability
of core allows us to consider that the normal derivative of
vector-potential in the airgap is null. Elsewhere, the airgap
vector-potential normal derivative should equal either stator
or rotor slots normal derivative of vector-potential. Finally, it
can be written that,

∂AI (r, ν)

∂r

∣

∣

∣

∣

r=Rre

= Ω1 (ν)

=







∂Ai(r,ν)
∂r

∣

∣

∣

r=Rre

for ν ∈ [θi, θi + βriθr]

0 elsewhere
(26)

at the airgap internal radiusr = Rre, i.e. airgap-rotor interface,
and,

∂AI (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

= Ω2 (ν)

=







∂Aj(r,ν)
∂r

∣

∣

∣

r=Rsi

for ν ∈
[

θj , θj + βsjθs
]

0 elsewhere
(27)

at the airgap external radiusr = Rsi, i.e. airgap-stator
interface. It should be noted that two functions, respectively
Ω1 (ν) and Ω2 (ν), are introduced. They refer to Fourier
series expansions over the whole airgap,i.e. over [0, 2π], of
conditions (26) and (27).

First of all, from (24), the normal derivative of vector-
potential in theith slot at the airgap-rotor interface (r = Rre)
is found to be,

∂Ai (r, ν)

∂r

∣

∣

∣

∣

r=Rre

=
∑

k≥1

A
(i)
k Λ1ki cos

(

k
π

βriθr
(ν − θi)

)

(28)

with

Λ1ki =

(

k
π

βriθr

)

[

1

Rre

−
β2

Rri

(

Rre

Rri

)−k π
βri

θr
−1
]

(29)

and from (18), the normal derivative of vector-potential inthe
jth slot at the airgap-stator interface (r = Rsi) is,

∂Aj (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

= β3 +
∑

q≥1

[

A(j)
q Λ1qj − Λ2qj

]

cos

(

q
π

βsjθs
(ν − θj)

)

(30)

with,

β3 = µ0
Jj0

2
Rsi

(

(

Rse

Rsi

)2

− 1

)

(31)

Λ1qj = q
π

βsjθs

[

−
1

Rsi

+
β1

Rse

(

Rsi

Rse

)q π
βsj

θs
−1
]

(32)

Λ2qj = 2µo

Jjq

4−
(

q π
βsj

θs

)2

(

Rsi −Rse

(

Rsi

Rse

)q π
βsj

θs
−1
)

(33)
Now that expressions of the normal derivative of vector-

potential in stator or rotor slots are derived (See Eqs. (28)and
(30)), functionsΩ1 (ν) andΩ2 (ν) can be extented into Fourier
series. Regarding the Fourier series expansion ofΩ1 (ν),

Ω1 (ν) =
∑

n≥1

Υ1n cos (nν) + Γ1n sin (nν) (34)

Fourier series coefficientsΥ1n and Γ1n can be determined
from (26) and (28) as follows,

Υ1n =
1

π

2π
∫

0

∂Ai (r, ν)

∂r

∣

∣

∣

∣

r=Rre

cos (nν) dν

=
1

π

Nr
∑

i=1

θi+βri
θr

∫

θi

∂Ai (r, ν)

∂r

∣

∣

∣

∣

r=Rre

cos (nν) dν

=
1

π

Nr
∑

i=1

∑

k≥1

A
(i)
k Λ1kαk,n,i (35)
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and,

Γ1n =
1

π

2π
∫

0

∂Ai (r, ν)

∂r

∣

∣

∣

∣

r=Rre

sin (nν) dν

=
1

π

Nr
∑

i=1

θi+βri
θr

∫

θi

∂Ai (r, ν)

∂r

∣

∣

∣

∣

r=Rre

sin (nν) dν

=
1

π

Nr
∑

i=1

∑

k≥1

A
(i)
k Λ1kσk,n,i (36)

with αk,n,i andσk,n,i defined respectively by (37) and (38).
As can be seen, in previous integrals (37) and (38), we ac-

counted for the case whenkπ = nβriθr. Another solution lies
in the development of those integrals in the form of a product
of trigonometric and sine cardinal functions. This development
could be meaningful during the numerical implementation,
avoiding any conditions on value of denominator.

After calculations, it is possible to write

αk,n,i =
βriθr

2

{

cos

(

n

(

θi +
βriθr

2

)

− k
π

2

)

sinc

(

k

2
−

nβri

Nr

)

+ cos

(

n

(

θi +
βriθr

2

)

+ k
π

2

)

sinc

(

k

2
+

nβri

Nr

)}

(39)

and

σk,n,i =
βriθr

2

{

sin

(

n

(

θi +
βriθr

2

)

− k
π

2

)

sinc

(

k

2
−

nβri

Nr

)

+sin

(

n

(

θi +
βriθr

2

)

+ k
π

2

)

sinc

(

k

2
+

nβri

Nr

)}

(40)

The same procedure is applied to determine Fourier series
coefficientsΥ2n andΓ2n of functionΩ2 (ν),

Ω2 (ν) =
∑

n≥1

Υ2n cos (nν) + Γ2n sin (nν) (41)

with

Υ2n =
1

π

2π
∫

0

∂Aj (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

cos (nν) dν

=
1

π

Ns
∑

j=1

θj+βsj
θs

∫

θj

∂Aj (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

cos (nν) dν

=
1

π

Ns
∑

j=1







β3αn,j +
∑

q≥1

A(i)
q Λ1qαq,n,j − Λ2qαq,n,j







(42)

and

Γ2n =
1

π

2π
∫

0

∂Aj (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

sin (nν) dν

=
1

π

Ns
∑

j=1

θj+βsj
θs

∫

θj

∂Aj (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

sin (nν) dν

=
1

π

Ns
∑

j=1







β3σn,j +
∑

q≥1

A(i)
q Λ1qσq,n,j − Λ2qσq,n,j







(43)

Integralsαq,n,j andσq,n,j can be derived as follows,

αq,n,j =
βsjθs

2

{

cos

(

n

(

θj +
βsjθs

2

)

− q
π

2

)

sinc

(

q

2
−

nβsj

Ns

)

+cos

(

n

(

θj +
βsjθs

2

)

+ q
π

2

)

sinc

(

q

2
+

nβsj

Ns

)}

(44)

and

σq,n,j =
βsjθs

2

{

sin

(

n

(

θj +
βsjθs

2

)

− q
π

2

)

sinc

(

q

2
−

nβsj

Ns

)

+sin

(

n

(

θj +
βsjθs

2

)

+ q
π

2

)

sinc

(

q

2
+

nβsj

Ns

)}

(45)

The normal derivative of vector-potential in the airgap
region can be expressed at its internal radius (r = Rre) as
follows,

∂AI (r, ν)

∂r

∣

∣

∣

∣

r=Rre

=
∑

n≥1

n

[

−
A

(I)
n

Rre

+
B

(I)
n

Rsi

(

Rre

Rsi

)n−1
]

cos (nν)

+ n

[

−
C

(I)
n

Rre

+
D

(I)
n

Rsi

(

Rre

Rsi

)n−1
]

sin (nν) (46)

ans at its external radius (r = Rsi),

∂AI (r, ν)

∂r

∣

∣

∣

∣

r=Rsi

=
∑

n≥1

n

[

−
A

(I)
n

Rre

(

Rsi

Rre

)−n−1

+
B

(I)
n

Rsi

]

cos (nν)

+ n

[

−
C

(I)
n

Rre

(

Rsi

Rre

)−n−1

+
D

(I)
n

Rsi

]

sin (nν) (47)

According to boundary conditions (26) and (27), and from
(34), (41), (46) and (47), we can set up the following equa-
tions,
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1

π

Nr
∑

i=1

∑

k≥1

A
(i)
k Λ1kαk,n,i = n

[

−
A

(I)
n

Rre

+
B

(I)
n

Rsi

(

Rre

Rsi

)n−1
]

(48)

1

π

Ns
∑

j=1







β3αn,j +
∑

q≥1

A(i)
q Λ1qαq,n,j − Λ2qαq,n,j







= n

[

−
A

(I)
n

Rre

(

Rsi

Rre

)−n−1

+
B

(I)
n

Rsi

]

(49)

1

π

Nr
∑

i=1

∑

k≥1

A
(i)
k Λ1kσk,n,i = n

[

−
C

(I)
n

Rre

+
D

(I)
n

Rsi

(

Rre

Rsi

)n−1
]

(50)

1

π

Ns
∑

j=1







β3σn,j +
∑

q≥1

A(i)
q Λ1qσq,n,j − Λ2qσq,n,j







= n

[

−
C

(I)
n

Rre

(

Rsi

Rre

)−n−1

+
D

(I)
n

Rsi

]

(51)

2) Continuity of Vector-potential
The second condition that has to be ensured is the continuity

of vector-potential between two domains (Fig. 7). For the
internal radius of the airgap (r = Rre), it means that the
vector-potential of the airgap over each rotor slot equals the
vector-potential of the rotor slots,

Ai (r, ν)|r=Rre
= AI (r, ν)|r=Rre

for ν ∈ [θi, θi + βriθr]
(52)

Similarly, at the airgap external radius (r = Rsi), the vector-
potential of the airgap over each stator slot has to equal the
vector-potential of the corresponding stator slot,

Aj (r, ν)|r=Rsi
= AI (r, ν)|r=Rsi

for ν ∈
[

θj , θj + βsjθs
]

(53)
However, expressions of vector-potential in each region do

not have the same spacial frequency. This means that vector-
potential of airgap over each stator and rotor slots has to
be extended into Fourier series to satisfy the vector-potential
continuity condition.

Herefater, we first consider condition (52). The airgap
vector-potential expression (5) is expended into Fourier series

Continuity of A
between

rotor slots and
airgap

Airgap

Continuity of A
between

stator slots and
airgap

Fig. 7. Shematic representation of airgap domain surrounded by stator
and rotor cores - Continuity of vector-potential between airgap domain and
respectively the rotor (blue dotted lines) and the stator (black solid lines)

over theith rotor slot opening atr = Rre. It gives for the
mean value,

A
(i)
0 =

1

βriθr

θi+βri
θr

∫

θi

AI (r = Rre, ν) dν

=
1

βriθr

∑

n≥1

{[

A(I)
n +B(I)

n

(

Rre

Rsi

)n]

αn,i

+

[

C(I)
n +D(I)

n

(

Rre

Rsi

)n]

σn,i

}

(54)

with

αn,i =

θi+βri
θr

∫

θi

cos (nν) dν

=
sin (n (θi + βriθr))− sin (nθi)

n
(55)

and

αk,n,i =

θi+βri
θr

∫

θi

cos

(

k
π

βriθr
(ν − θi)

)

cos (nν) dν =











n(βri
θr)

2
(sin(nθi)−sin(n(θi+βri

θr))(−1)k)
(kπ)2−(nβri

θr)
2 for kπ 6= nβriθr

βri
θr cos(nθi)

2 −
sin(nθi)−sin(nθi+2nβri

θr)
4n for kπ = nβriθr

(37)

σk,n,i =

θi+βri
θr

∫

θi

cos

(

k
π

βriθr
(ν − θi)

)

sin (nν) dν =











−n(βri
θr)

2(cos(nθi)−cos(n(θi+βri
θr))(−1)k)

(kπ)2−(nβri
θr)

2 for kπ 6= nβriθr

βri
θr sin(nθi)

2 +
cos(nθi)−cos(nθi+2nβri

θr)
4n for kπ = nβriθr

(38)
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(a) (b)

Fig. 8. Distribution of equipotential lines of magnetic vector-potential in air-gap and rotor/stator slot regions with the analytical model (a) and 2D FE
simulation (b). Classical 24-10 FE-SF topology at no-load -NIexc = 1200A.tr - βs = 0.5 - βr = 0.7 - N = 150 - K = Q = 20

σn,i =

θi+βri
θr

∫

θi

sin (nν) dν

=
cos (nθi)− cos (n (θi + βriθr))

n
(56)

and for thekth harmonic, we can write that

A
(i)
k

[

β2

(

Rre

Rri

)−k π
βri

θr

+ 1

]

=
2

βriθr

θi+βri
θr

∫

θi

AI (r = Rre, ν) cos

(

k
π

βriθr
(ν − θi)

)

dν

=
2

βriθr

∑

n≥1

{[

A(I)
n +B(I)

n

(

Rre

Rsi

)n]

αk,n,i

+

[

C(I)
n +D(I)

n

(

Rre

Rsi

)n]

σk,n,i

}

(57)

From (18) and (5), it is possible to derive the Fourier series
expression of the airgap vector-potential over thejth stator
slot opoening atr = Rsi,

A
(j)
0 + µ0

Jj0

2

(

R2
se ln (Rsi)−

R2
si

2

)

=
1

βsjθs

θj+βsj
θs

∫

θj

AI (r = Rsi, ν) dν

=
1

βsjθs

∑

n≥1

{[

A(I)
n

(

Rsi

Rre

)−n

+B(I)
n

]

αn,j

+

[

C(I)
n

(

Rsi

Rre

)−n

+D(I)
n

]

σn,j

}

(58)

with

αn,j =

θj+βsj
θs

∫

θj

cos (nν) dν

=
sin
(

n
(

θj + βsjθs
))

− sin (nθj)

n
(59)

and

σn,j =

θj+βsj
θs

∫

θj

sin (nν) dν

=
cos (nθj)− cos

(

n
(

θj + βsjθs
))

n
(60)

for the mean value, and

[

A(j)
q

[

1 + β1

(

Rsi

Rse

)q π
βsj

θs

]

−µo

Jjq

4−
(

q π
βsj

θs

)2



R2
si −

2R2
se

(

q π
βsj

θs

)

(

Rsi

Rse

)q π
βsj

θs










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=
2

βsjθs

θj+βsj
θs

∫

θj

AI (r = Rsi, ν) cos

(

q
π

βsjθs
(ν − θj)

)

dν

=
2

βsjθs







∑

n≥1

[

A(I)
n

(

Rsi

Rre

)−n

+B(I)
n

]

αq,n,j

+

[

C(I)
n

(

Rsi

Rre

)−n

+D(I)
n

]

σq,n,j

}

(61)

for the qth harmonic term.

Finally, equations (48), (49), (50), (51), (54), (57), (58)and
(61) can be rewritten into matrix and vector form to get a
numerical solution of the unknown coefficientsAn, Bn, Cn,
Dn, A(i)

0 , A(i)
k , A(j)

0 andA
(j)
q . It should be noted that mean

values of vector-potential in rotor slotsA(i)
0 and stator slots

A
(j)
0 are not primarily needed to solve the linear system.

They could be evaluated afterwards using airgap harmonic
coefficients obtained numerically.

(a)

(b)

(c)

Fig. 9. Evaluation of vector-potentialA(I)(r = Re, ν) (a), radial flux
densityBr(r = Re, ν) (b) and tangential magnetic fieldHν(r = Re, ν) (c)
along the mean airgap with the analytical model and 2D FE simulation for a
classical 24-10 FE-SF topology at no-load -NIexc = 1200A.tr - βs = 0.5
- βr = 0.7 - N = 150 - K = Q = 20

(a)

(b)

(c)

Fig. 10. Evaluation of vector-potentialA(I)(r = Re, ν) (a), radial flux
densityBr(r = Re, ν) (b) and tangential magnetic fieldHν(r = Re, ν) (c)
along the mean airgap with the analytical model and 2D FE simulation for a
classical 24-10 FE-SF topology with double layer configuration - Only phase
a is powered withNIa = 500A.tr - βs = 0.5 - βr = 0.7 - N = 150 -
K = Q = 20

IV. A IRGAP FIELD CALCULATIONS AND FINITE

ELEMENTS COMPARISONS

The foregoing analytical model for conventional and alter-
nate Field-Excited Swithed-Flux topologies is used to deter-
mine both no-load, armature reaction and on-load magnetic
field distribution at the mean airgap radius. The main machines
dimensions are reminded in Table I. Analytical airgap field
predictions are extensively compared to 2D FE calcultations.
As for the analytical model, a highly permeable linear material
(µr = 5000) is considered in the 2D FE simulations. Also, in
2D FE simulations, we considered structures having straight
teeth.

The vector-potential in the middle of the airgap can be
directly evaluated from (5) as follows,

The radial component of flux density and tangential com-
ponent of magnetic field at the mean radius of airgap domain
can be derived from

−→
B = rot

(−→
A
)

,






B
(I)
r (r, ν) = 1

r

∂A(I)(r,ν)
∂ν

H
(I)
ν (r, ν) = − 1

µ0

∂A(I)(r,ν)
∂r

(62)
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Description Symbol Numerical value

Common parameters
Outer radius of stator Rse 146.6mm

Inner radius of stator Rsi 126.6mm

Mean airgap radius Re 124.1mm

Outer radius of rotor Rre 121.6mm

Inner radius of rotor Rri 91.6mm

Active length La 45mm

DC winding MMF NIexc 1000A.tr

Peak phase MMF NIphase 500A.tr

Number of phase q 3
Classical FE-SF machine

Number of stator tooth Ns 24
Number of rotor tooth Nr 10

Alternate FE-SF machine with spacer tooth

Number of stator teeth Ns 18
Number of rotor teeth Nr 11

TABLE I
MAIN PARAMETERS OFCLASSICAL AND ALTERNATE FE-SFTOPOLOGIES

Finally, it yields to

B(I)
r (Re, ν) =

∑

n≥1

n

[

C
(I)
n

Re

(

Re

Rre

)−n

+
D

(I)
n

Re

(

Re

Rsi

)n
]

cos (nν)

−n

[

A
(I)
n

Re

(

Re

Rre

)−n

+
B

(I)
n

Re

(

Re

Rsi

)n
]

sin (nν) (63)

for the radial component of flux densityB(I)
r (Re, ν), and

H(I)
ν (Re, ν) =

1

µ0

∑

n≥1

n

[

A
(I)
n

Rre

(

Re

Rre

)−n−1

−
B

(I)
n

Rsi

(

Re

Rsi

)n−1
]

cos (nν)

+n

[

C
(I)
n

Rre

(

Re

Rre

)−n−1

−
D

(I)
n

Rsi

(

Re

Rsi

)n−1
]

sin (nν) (64)

for the tangential component of magnetic fieldH(I)
ν (Re, ν).

A. Classical FE-SF machine

We first investigate classical FE-SF machine with 24 stator
slots, 10 rotor teeth and a double-layer winding configuration.
The vector-potential in the whole airgap, including rotor and
stator slots is analytically calculated according to (5), (24) and
(18) and equipotential lines of vector-potential are depicted in
Fig. 8.

As can be seen, boundary conditions between each region
are respected. In Fig. 8.b, equipotential lines ofA obtained
with a 2D Finite Element Software are proposed, including
the ferromagnetic parts. Regarding the distribution ofA in the
airgap domain, it is shown that the analytical model gives us
an excellent evaluation ofA. We compared in Figs. 9, 10 and
11, distributions of vector-potentialA, radial flux densityBr

and circumferential magnetic fieldHν in the airgap (r = Re)
at no-load (only DC excitation windings powered), armature

reaction and on-load conditions respectively. Analyticalpre-
dictions are in close agreement with those computed by 2D
FE.

In addition, the airgap field, either radial or circumferential,
presents a high harmonic content. Nevertheless, the analytical
model still exhibits high accuracy. This gives meaning to the
use of Fourier harmonic modeling technique for the analysis
of FE-SF machines.

(a)

(b)

(c)

Fig. 11. Evaluation of vector-potentialA(I)(r = Re, ν) (a), radial flux
densityBr(r = Re, ν) (b) and tangential magnetic fieldHν(r = Re, ν)
(c) along the mean airgap with the analytical model and 2D FE simulation
for a classical 24-10 FE-SF topology with double layer configuration - On-
load with sinusoidal feeding currents -NIphase = 500A.tr - βs = 0.5 -
βr = 0.7 - N = 150 - K = Q = 20

B. Unconventional FE-SF machine with spacer teeth

It is of paramount interest of that the foregoing analytical
solution of magnetic field allows exploration of unconventional
Field-Excited Switched-Flux machines. Indeed, those struc-
tures usually require modifications of phase coil connections.
To do so, we used a connecting matrixC (size 4 × 2Ns)
defining coils distributions in the stator slots. For illustrative
purpose, the connecting coil matrix of the 24-10 FE-SF ma-
chine with double-layer windings is given by (65). Regarding
the unconventional 18-11 FE-SF machine with spacer teeth
and single-layer winding, the matrixC can be defined as (66).
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In Fig. 12, the equipotential line distribution of vector-
potential A at no-load for the 18-11 FE-SF, analytically-
predicted or FE-calculated, are proposed. Obviously, the ana-
lytical model can fairly predictA in the whole airgap domain.
We compare once again distributions of vector-potentialA,
radial flux densityBr and circumferential magnetic fieldHν in
the airgap (r = Re) obtained with FE simulations and with the
model for different load conditions (See Figs. 13, 14 and 15).
Each comparison exhibits good agreement. Also, it should be
noted that the airgap field distribution are2π-periodic because
of the odd number of teeth.

(a)

(b)

(c)

Fig. 13. Evaluation of vector-potentialA(I)(r = Re, ν) (a), radial flux
densityBr(r = Re, ν) (b) and tangential magnetic fieldHν(r = Re, ν)
(c) along the mean airgap with the analytical model and 2D FE simulation
for an unconventional 18-11 FE-SF topology with spacer teeth at no-load -
NIexc = 1200A.tr - βs = 0.5 - βr = 0.7 - N = 150 - K = Q = 20

V. CONCLUSION

An improved analytical model to describe the magnetic field
in the doubly-slotted airgap of Field-Excited Flux-Switching is
proposed in this paper. The whole airgap domain is divided in
three types of regions, i.e. stator slots, airgap and rotor slots.
General expressions of vector-potential are derived for each
subdomain by the variable separation method, and the field

(a)

(b)

(c)

Fig. 14. Evaluation of vector-potentialA(I)(r = Re, ν) (a), radial flux
densityBr(r = Re, ν) (b) and tangential magnetic fieldHν(r = Re, ν)
(c) along the mean airgap with the analytical model and 2D FE simulation
for an unconventional 18-11 FE-SF topology with spacer teeth - Only phase
a is powered withNIa = 500A.tr - βs = 0.5 - βr = 0.7 - N = 150 -
K = Q = 20

solution is then obtained by applying the boundary integral
method.

In addition, the model is derived in a general manner so that
it can be extended rapidly to unconventional FE-SF structures.
Indeed, it allows a fast exploration of unconventional struc-
tures with different winding configuration or stator-rotorteeth
combination. By means of example, an unconventional FE-SF
machine with spacer teeth is presented.

Analytical predictions of airgap field for both conventional
and alternate FE-SF topologies are extensively compared to
2D FE simulations. Comparisons show good agreement for
numerous load-conditions. This result highlights the merits
of harmonic modeling technique for the analysis of FE-SF
machines.

Finally, from radial magnetic flux-density and circumferen-
tial magnetic field predictions, instantaneous electromagnetic
torque can be assessed according to the Maxwell stress tensor
(See Appendix B). Comparative study of optimized electro-
magnetic performances of FE-SF machines will be presented
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(a) (b)

Fig. 12. Distribution of equipotential lines of magnetic vector-potential in air-gap and rotor/stator slot regions with the analytical model (a) and 2D FE
simulation (b). Unconventional 18-11 FE-SF topology with spacer teeth at no-load -NIexc = 1200A.tr - βs = 0.5 - βr = 0.7 - N = 150 - K = Q = 20

in a subsequent paper.

APPENDIX A
CONNECTING COIL MATRIX C FOR CLASSICAL AND

UNCONVENTIONAL FE-SFMACHINES

The connecting coil matrix of the 24-10 FE-SF machine
with double-layer windings is defined in (65), and for the 18-
11 FE-SF machine with spacer teeth and single-layer winding
by (66).

APPENDIX B
ELECTROMAGNETIC TORQUE CALCULATION

As explained before, the electromagnetic torque can be
calculated analytically according to the Maxwell stress tensor.
Fig. 16 presents a comparison between the electromagnetic
torque calculated with the analytical model and with 2D FE
simulation. As can be seen, both are in good agreement.
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