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This paper presents a general and accurate approach to determine the no-load flux of field-excited flux-switching (FE-FS)
machines. These structures are inherently difficult to model due to their doubly-slotted air-gap. This analytical approach is based
on MMF-permeance theory. The analytical model developed isextensively compared to field distribution obtained with 2DFinite
Element (2D FE) Simulations. The good agreement observed between analytical model and 2D FE results emphasizes the interest of
this general approach regarding the computation time. Hence, this analytical approach is suitable for optimization process in pre-
sizing loop. Furthermore, based on the field model, classical electromagnetic performances can be derived, such as flux-linkage and
back-electromotive force (back-EMF) and also, unbalancedmagnetic force. Once again, FE results validate the analytical prediction,
allowing investigations on several stator-rotor combinations, or optimization of the back-EMF.

Index Terms—Analytical model, magnetic field, switched flux, flux-switching, slotting effect, air-gap permeance, modified
magnetomotive force.

I. I NTRODUCTION

FLUX-Switching (FS) machines have attracted consider-
able attention in recent years, especially topologies using

permanent magnet (Permanent Magnet Flux-Switching PM-FS
machines). To the author’s knowledge, a single-phase flux-
switching alternator was firstly described in the 50’s [1].
A single phase and a three phase flux-switching topologies
were further studied in [2][3], where bipolar flux principle
has been revealed. Since then, extensive work was proposed
notably in United-Kingdom [4][5][6], in Japan [7] and in
France [8][9][10]. Their large torque capability with practi-
cally sinusoidal back-electromotive force (EMF) makes them
really interesting. Also, their robust structure, with a passive
rotor and all active parts located in the stator allows brushless
operation with reduced maintenance. For all these reasons,
the PM-FS machine appears to be eligible for many industrial
applications.

However, the difficult flux control capability in PM excited
topologies is in contradiction with wide speed operation (con-
stant power region), though, Hybrid-Excited Flux-Switching
(HE-FS) machines were proposed combining the effect of per-
manent magnet with an additional DC-coil allowing good flux
regulation. They have been analyzed extensively particularly
in terms of their potential to extend the flux-weakening range
of permanent magnet machines and to improve efficiency [11].
In the literature different HE-FS topologies are listed. Some
of them can be classified as serie flux path HE-FS machine
[12][13] and others as parallel flux path HE-FS machine [14].

Finally, Field-Excited Flux-Switching (FE-FS) machines
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were proposed. Few investigations were undertaken but every-
body agree that this topology is particularly attractive for low
cost-operation [15][16][17]. With a fully controllable flux, FE-
FS machines are similar to wound field synchronous machines
except that they have inherent static excitation,i.e., without
brushes. Fig. 1 shows an elementary cell of classical FE-FS
machines. It can be seen that this topology has overlapping
windings, which will result in a higher copper consumption.
To overcome this problem, authors of [18][19] proposed an
innovative topology, still based on flux-switching principle,
but with modular rotor and non-overlapping windings. In this
paper, the focus will be on classical FE-FS machine.

A. Principle of Operation

The flux-switching principle is briefly reminded in Fig. 1.
Similar to the classical PM-FS machine, in the FE-FS machine,
the negative and positive maximum flux-linkage of coil A1
occurs when a rotor pole is approximately aligned with one
of the stator teeth (Figs. 1.(a) and (b)).

Therefore, a movement of the rotor induce a bipolar flux-
linkage and hence, an alternating back-EMF (Fig. 1.(c)). Inthe
literature a significant number of publications are proposing
analytical modeling of the slot effect on the air-gap magnetic
field. An accurate model to account for the slot influence is of
first interest here, since saliency in these machines is directly
related to the operating principle. In the first part of this article,
we propose an original and low time-consuming analytical
approach for modeling the doubly-salient air-gap.

B. Modeling of the Flux-Switching Machine in the Literature

As specified beforehand, the wealth of literature on FS
machines has hardly addressed the issue of FE-FS topologies.
The majority of papers were dedicated to PM-FS structures.
Usually, numerical techniques such as finite element methods
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Fig. 1. Flux distribution in stator teeth with field excitation (Region E+)
only: (a) Maximum flux-linkage position, (b) minimum flux-linkage position
of coil A and (c) evolution of flux-linkage as function of rotor position θ

are preferred to predict their electromagnetic performance,
especially to take into account the non-linearity of magnetic
materials [20][21]. Thanks to this approach, it is possibleto
predict fairly high saturation point observed in the air-gap or in
the tooth core due to high field concentration effect. However,
this approach is time-consuming particularly for initial sizing
of an electrical machine. Hence, the development of an analyt-
ical model for initial performances calculations appears to be
both challenging and meet a real design requirement. With the
wider acceptance of genetic algorithms, optimization methods
can be applied using the aforementioned analytical method.
Some work of interest was proposed to model PM excited
FS machine: Zhuet al. [22] have developed a non-linear
Magnetic Equivalent Circuit (MEC) model, while authors of
[23] solved the governing field-equations (Laplace and quasi-
Poisson equations) in the air-gap by means of Fourier analysis.
The same authors have developed an interesting hybrid model
[24] combining the advantages of the MEC model and Fourier
analysis. As far as we know, analytical modeling of FE-FS
machine has not yet been addressed.

In this paper, an analytical approach based on
Magnetomotive-Force (MMF) and air-gap permeance
distribution, for multi-phase FE-FS machine having any
pole and slot number, will be presented. A doubly-salient
air-gap permeance calculation is proposed. Only internal
rotor topologies are considered for the sake of clarity.
However, the model could be easily extended to external rotor
configurations. The air-gap field distribution for different
stator-rotor pole configurations, the phase flux-linkage, viz.
the back-EMF and also unbalanced magnetic forces (UMF)
are obtained using the model. Extensive FE simulations were
performed to validate the approach.

II. A NALYTICAL APPROACH FOR MODELING

FIELD-EXCITED FLUX -SWITCHING MACHINE

As was mentioned before, the analytical approach is based
on MMF-permeance theory. Some assumptions are made in
order to simplify the problem:

• Classically, the rotor and stator core have infinite perme-
ability, hence, the magnetic saturation is not considered.

• Non-conductive materials (No eddy currents) and 2D
problem (end effects are neglected).

The geometric representation of the doubly-slotted FE-FS
machine is shown in Fig. 2. Stator and rotor slots opening are
βsθs andβrθr respectively. The angular position in the air-gap
is defined withν, andθ corresponds to the rotor position.
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Fig. 2. Doubly-salient geometry of FE-FS machine withNs = 10 and
Nr = 8

A. Flux density in the air-gap

On the basis of Ampere’s circuital law, and assuming that
the MMF’s drop in stator and rotor iron portions are neglected,
the radial air-gap field distributionBr (ν, θ) can be expressed
as

Br (ν, θ) = µ0MMFexc (ν, θ) Λ (ν, θ) (1)
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In accordance with (1), we require the doubly-slotted air-gap
permeanceΛ (ν, θ) and the MMF created by current-carrying
conductors distributed in the stator slotsMMFexc (ν, θ).
Fourier series expansions of both quantities are proposed in
the next paragraphs.

B. Magnetomotive Force created by DC-winding

The MMF distribution created by excitation coils is shown
in Fig. 3 and can be defined as a function by parts over
[

0, 8π
Ns

]

:

MMFexc (ν) =
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Every DC coil is wound around two stator teeth, so the
stator tooth numberNs must be even. In [15], different ways
of connecting field conductors are proposed. However, since
end-effects are neglected (2D problem), connections of DC
coils do not impact electromagnetic performances. Expanding
(2) into Fourier series over

[

0, 8π
Ns

]

yields to

MMFexc (ν) ∼
+∞
∑

n=1,3,5...

bn sin

(

n
Ns

4
ν

)

(3)

where

bn =
2

T

4θs
∫

0

MMFexc (ν) sin

(

n
Ns

4
ν

)

dν

=
8nsIexc

βs (nπ)
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(

n
βsπ

4

)

(4)

This formula is valid for any configuration (number of phase
q or stator tooth numberNs) considered.
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Fig. 3. The Magnetomotive Force created by the DC field coils
MMFexc(ν, nsIexc, βs, θs)

C. Doubly-slotted air-gap permeance function

The slotting effect, which refers to a variation of reluctance
around the periphery of the air-gap, has long been investi-
gated in many papers. Two analytical approaches are mainly
considered in the literature.

Some models consider relative permeance functions to
modulate the radial flux calculated for a slotless motor.
Conformal transformation can be employed to evaluate this
relative permeance function [25]. One century ago, F.W. Carter
used conformal mapping to derive the well-known Carter’s
coefficient [26]. Also, in 1993, a series of papers dealing with
analytical modeling of brushless DC PM motors accounted for
the slotting effect using a conformal transformation method
[27]. It is worth mentioning that in the work [28][29] a
complex relative permeance function was developed. By fully
exploring conformal transformation properties, authors can
also determine the tangential field in the air-gap. The relative
air-gap permeance can also be predicted considering idealized
flux lines under the slot [30][31][32]. The second approach
consists of solving the Laplace/quasi-Poissonian equation in
different sub-domains [33][34] [35][36].

In this work, the first approach is considered, and a per-
meance function based on the mean flux path under the slot
opening is proposed.

In Fig. 4, the extended magnetic circuit of FE-FS machine
is presented. The doubly-slotted air-gap is divided into two
regions at its mean radius: Stator slots opposite to a smooth
surface (Region I) and rotor slots also opposite to the same
smooth surface (Region II). From Fig. 4, we can express the
reciprocal of the air-gap permeanceg (ν, θ) as

g (ν, θ) = e+ δs (ν) + δr (ν, θ) (5)

where,δs(ν) andδr(ν, θ) are respectively the stator and rotor,
additional air-gap introduced by slotting. Notably, the rotation
of the rotor is directly accounted for in the termδr(ν, θ).
Finally, the permeance functionΛ(ν, θ) is derived simply from
(5) as

Λ (ν, θ) =
1

g (ν, θ)
(6)

In Fig. 5, idealized magnetic flux-lines under an infinitely
deep slot are depicted. Assuming quarter-circular flux-lines
(with radii R1 andR2), it yields the arc lengthsΓ1 andΓ2
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Finally, the additional air-gapδs(ν) corresponds to an
equivalent length (Γ1 andΓ2 in parallel) that can be expressed
as follows

δs(ν) =
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with Rsi the internal radius of stator.
After linearization, and by using Fourier series expansion

of (8), it gives for the stator

δs(ν) ∼ a
(I)
0 +

+∞
∑

n=1

a(I)n cos (nNsν) + b(I)n sin (nNsν) (9)

wherea(I)0 , a(I)n andb(I)n are

a
(I)
0 =
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2Nsn2
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δs(ν) sin (nNsν) dν

=
Rsi

2Nsn2

{

1

πnβs

(1− cos (2πnβs))− sin (2πnβs)

}

(12)

Fig. 6 presents the evolution of the additional air-gap under
the stator slot considering respectively Eq. (8) and Eq. (9).
Excellent agreement is observed between both expressions as
long asNs > 3. However, configurations with less than 3 slots
are unlikely.
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Fig. 6. Comparison between the additional air-gap functionδs(ν) (Eq. (8))
and its Fourier series development (Eq. (9))

The same procedure is applied to the rotor slots (Region II)
and, including the influence of rotation, the termδr(ν, θ) is
given by

δr(ν, θ) ∼ a
(II)
0 +

+∞
∑

n=1

a(II)n cos (nNr (ν − θ))

+ b(II)n sin (nNr (ν − θ)) (13)

where the mean valuea(II)0 is

a
(II)
0 =

Rre (πβr)
2

6Nr

(14)
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with Rre the internal rotor radius. Like (11) and (12) , the
Fourier coefficients are found to be

a(II)n = −
Rre

2Nrn2

{

(1 + cos (2πnβr))−
1

πnβr

sin (2πnβr)

}

(15)
and

b(II)n =
Rre

2Nrn2

{

1

πnβr

(1− cos (2πnβr))− sin (2πnβr)

}

(16)
Fig. 7.(a) represents the equivalent air-gap for a 10-6 slots

configuration. The spectra ofΛ(ν, θ) (Fig. 7.(b)) shows that the
space harmonics introduced by stator and rotor teeth are well
accounted for. Classically,| iNs | and | iNr | harmonics are
introduced by each of the stator and rotor wave permeances,
wherei is an integer. Also, their interactions are found to be
i | Ns −Nr | and iNs± | Ns −Nr | harmonics.
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Fig. 7. (a) Evolution of functiong(ν, θ = 0) (with Ns = 10, Nr = 6,
βs = βr = 0.5, Rsi = 50mm ande = 2mm) and (b) spectra of the air-gap
permeanceΛ(ν, θ)

D. Modified Magnetomotive Force

In this part, we introduce the need of a compensation of
the MMF created by excitation coils. Indeed, depending on
the stator-rotor configuration, some permeance harmonics and
field coil MMF harmonics will present the same wave length,
so as an offset is introduced. Since, Maxwell’s equations (with
Gauss’s law for magnetism) implydiv ~B = 0, we introduce
the coefficientκc

κc (ν, θ) = −

∫ 2π

0
MMFexc (ν) Λ (ν, θ) dν

∫ 2π

0 Λ (ν, θ) dν
(17)

and (3) is modified as follows

MMFexc (ν, θ) ∼ κc (ν, θ)+

+∞
∑

n=1,3,5...

bn sin

(

n
Ns

4
ν

)

(18)

In fact, κc refers to the rotor scalar magnetic potential, that
was assumed zero in Section II.B. After obtaining the air-
gap permeance and the DC coil MMF, the radial air-gap flux
density can be predicted according to (1), (6) and (18).

III. N O-LOAD FLUX AND BACK -EMF PREDICTION AND

COMPARISON WITHFINITE ELEMENT SIMULATIONS

In this part, the previously developed analytical model is
extensively compared to 2D FE simulations for different kind
of stator-rotor topologies. Common parameters of the different
considered structures are detailed in Table I. In order to use the
same assumption as for the analytical model, highly permeable
linear material (µr = 1000) is considered in the simulations
(the free-of-charge FEMM software was used).

TABLE I
COMMUN PARAMETERS OF THE MODEL

Description Symbol Numerical value

Inner radius of stator Rsi 126.6mm

Middle air-gap radius Re 126.35mm

Outer radius of rotor Rre 126.1mm

Active axial length La 45mm

DC field MMF nsIexc 1200A.turn

Speed Ω 1300rpm

A. Air-gap field distribution

1) Single-phase structures
We firstly consider and investigate single phase configura-

tions. Stator and rotor combinations are easily defined as

Ns = 2Nr (19)

The radial flux density distributions in the middle of the air-
gap (r = Re) for a 12-6 slots configuration and different rotor
positions are plotted in Fig. 8.

Contrary to classical wound field excited synchronous ma-
chines, the air-gap field distribution exhibits significanthar-
monics due to inherent doubly-saliency. Even so, from Fig.
8, we can observe an excellent agreement between analytical
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Fig. 8. Magnetic flux density in middle of air-gapBr (ν, θ) |r=Re
for a 12-6 slots configuration (single phase) (withβs = 0.6, Lds = Ldr and

nsIexc = 1200A.turn) and for different rotor positions: (a)Br distribution at initial positionθ = 0 (d-axis) and (b) the magnetic flux lines with FE
software, (c)Br distribution atθ = π

Nr
(q-axis) and (d) the magnetic flux lines, (e)Br distribution atθ = 2π

Nr
(Minimum flux-linkage in the phase) and (f)

the magnetic flux lines

and FE results. The relative error for the peak flux density
does not exceed3%. Furthermore, the flux-switching principle
can be observed by carefully examining Figs. 8.(a) and (c),
i.e., for maximum and minimum flux-linkage in the phase.
Indeed, the air-gap flux density is locally inverted (or switched)
over the coil phase leading to a bipolar flux-linkage. Even for
configurations which are difficult to model, such as in that
shown in Fig. 9, where the stator slot opening is wider than
the rotor tooth width, the analytical model gives quite a good
evaluation of the air-gap field.

While for single phase structures, the no-load field distribu-
tion in the air-gap is well accounted for with4π

Nr
periodicity.

We explore in the next sectionq-phase structures.

2) Multi-phase structures

Air-gap field distribution for multi-phase structures is more
complicated to assess, with symmetry often over180◦ or 360◦

(for non-symmetrical configurations). Indeed, unlike single-
phase structures, we cannot define clearly a stator-rotor com-
bination (Ns −Nr). For one stator configuration, many rotor
combinations are likely to work. While the model is devoted
to multi-phase topologies, a special emphasis will be placed
on 3 phase (q = 3) structures. In the interest of clarity and
simplification, radial air-gap field distributions atr = Re for a
24 stator slots configuration (3 phases) and different rotorteeth
are proposed in Appendix A (Figs. 19, 20, 21 and 22). It can be
seen that with an even number of rotor teeth,Br distribution
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(a)

(b)

Fig. 9. Magnetic flux density in middle of air-gapBr (ν, θ) |r=Re
for a 12-

6 slots configuration (single phase) (withβs = 0.5, βr = 0.2 andnsIexc =
1200A.turn) in q-axis position and with stator slot wider than rotor tooth:
(a) Br distribution and (b) the magnetic flux lines with FE software

is π-periodic, whereas for odd one,Br is 2π-periodic. To sort
different possible combinations, coefficientsγ = gcd(Ns, Nr)
and nc are introduced. For instance, periodicity ofBr (ν, θ)
for 3 phase structures, set out in Appendix A, is2π/γ. The
parameternc refers to the number of individual coils (having
different flux-linkage) per phase. That coefficient directly
depends on winding configuration and so, it is acknowledged
afterwards.

B. Flux-linkage and back-EMF

Since local quantities,i.e. air-gap field distributions, are
fairly well predicted thanks to the analytical model, it is
interesting to evaluate global quantities such as flux linkage
and back-EMF. Furthermore, those global quantities can be
used to evaluate, at no-load, electromagnetic performanceand
perform initial sizing of a structure. In the next section, the
evaluation of flux linkage and back-EMF are discussed and
analytical expressions are deduced. Particularly, statorand
rotor configurations and also phase winding configurations
(single or double-layers) are investigated and systematically
compared to FE simulations.

The key differences between single and double layers FE-
FS machines are shown in Fig. 10. Indeed, in double layer
machines, each phase stator slot contains two different phase
coils while single layer machines (also designed as alternate
pole wound machine in [37][38] for PM-FS machine) contain
coils from only one phase. Hence, the flux-linkage calcula-
tion depends on the phase winding under consideration. The

DC Field Coils

Phase A

coils

(a)

DC Field Coils

Phase A

coils

(b)

Fig. 10. Cross section of the FS machine of different phase winding
configuration: (a) single-layer and (b) double-layer

classical technique to evaluate the flux-linkage of one coilis
based on the integration of radial flux density over the coil.

However, as mentioned in [39], this technique does not take
into account in an explicit manner the influence of slotting.For
consistency in our demonstration, analytical results obtained
by the integration of the flux density are compared to those
obtained by 2D FE simulations with a direct integration of
magnetic vector potential in slots. In so doing, we could
completely validate the approach. The total phase flux-linkage
is obtained by adding fluxes flowing through every coil be-
longing to the same phase. For single phase structures, it is
reasonable to consider that each phase coil see the same the
flux-linkageϕs. So, the phase flux-linkage can be expressed
directly as follows

ϕs(θ) = ReLa

5θs
2

∫

θs
2

Br(ν, θ)dν (20)

for single-layer configurations, or as follows

ϕs(θ) = ReLa

θs(5− βs
2 )

2
∫

θs(1+ βs
2 )

2

Br(ν, θ)dν (21)

for double-layer winding configuration.
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In multi-phase structures, as we shall see in subsequent
sections, flux-linkages of different coils of the same phase
differ. This phenomenon, firstly reported in [22], is inherent
to FS machines, since relative positions between stator and
rotor tooth over each coil are different. Hereafter, expressions
of global flux-linkage depending on winding configuration
and number of rotor teethNr are derived. For the sake of
clarity, only configurations withNr = Ns/2 ± γ have been
investigated. Nevertheless, those configurations are the most
promising in terms of power capability.

Finally, once the total flux-linkage is obtained, the back-
EMF Es is determined from

Es = −NtspΩ
π

30

dϕs

dθ
(22)

with Ntsp the number of turns in series per phase.
Analytical evaluation of flux-linkage and back-EMF are,

hereafter, compared to 2D FE simulations.
1) Single-layer configuration
The overall flux-linkage for single-layer winding configura-

tions havingγ ≥ 2 andnc = Ns/4qγ coils can be derived as
(20). Indeed, like single phase structures, the relative position
between each phase coil and the rotor tooth is the same.

With regard to configurations withγ = 1 andnc = Ns/4q
coils, the total flux-linkage is found to be, fornc = 2,

ϕs (θ) =
ReLa

nc















nc−1
∑

i=0

(−1)
i

θs(5+8qi)
2

∫

θs(1+8qi)
2

Br(ν, θ)dν















(23)

In Fig. 11, the flux-linkageϕs for two rotor configurations
(Nr = 10 et 13) and a single-layer winding configuration are
plotted. Good agreements are observed for both configurations
(with a relative error between3−4% on the peak flux-linkage
for the configurationNr = 10 or Nr = 13). As mentioned
before, for an odd number of rotor teethNr (γ = 1), the
flux-linkage must be computed for two adjacent coils (A1 and
A2) (Fig. 11.(b)), while whenNr is even (γ = 2), only the
flux-linkage of one coil is needed (Fig. 11.(a)).

The back-EMF for the same configuration are presented
in Figs. 12 and 13. The computation is done for a rotation
speedΩ = 1300rpm. Both analytical and FE results are in
close agreement. Moreover, back-EMF spectra (Figs. 12.(b)
and 13.(b)) show that it is possible to correctly predict their
harmonic content. Thus, the analytical model could be used
to determine optimum stator and rotor relative slot openings
(respectivelyβs andβr).

2) Double-layer configuration
For double-layer winding configurations havingγ ≥ 2

and nc = Ns/2qγ coils, the phase flux-linkageϕs can be
expressed as

ϕs (θ) =
ReLa

nc
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θs(5+4qi−
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2
∫

θs(1+4qi−
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Fig. 11. Flux-linkage (per turn) waveform for a 24 stator slots structure
and single-layer winding configuration (withβs = 0.6, Lds = Ldr and
nsIexc = 1200A.turn): (a) 10 rotor teeth and (b) 13 rotor teeth
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Fig. 12. Back-EMF waveform (a) and its spectra (b) for a 24-10slots
structure and single-layer winding configuration (withβs = 0.6, Lds = Ldr,
nsIexc = 1200A.turn andΩ = 1300rpm)
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Fig. 13. Back-EMF waveform (a) and its spectra (b) for a 24-13slots
structure and single-layer winding configuration (withβs = 0.6, Lds = Ldr ,
nsIexc = 1200A.turn andΩ = 1300rpm)

According to (24), those configurations would have just 2
coils per phase having a slight difference on the flux-linkage.

Regarding configurations withγ = 1 andnc = Ns/2q coils,
it is possible to express the phase flux-linkage as (24) for
nc = 2, and as follows,

ϕs (θ) =
ReLa

nc
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for nc = 4.
Here, to compute the total flux-linkage, an integration over

at least 4 coils per phase needs to be performed. Flux-
linkages forNr = 11 andNr = 14, in Fig. 14, demonstrate
once again a good agreement between analytical and FE
results. Also, it can be seen that each coil’s flux-linkage is
again slightly different, and the analytical model correctly
predicts this phenomenon. The back-EMF and their spectra
(at Ω = 1300rpm) are also in close agreement (See Figs. 15
and 16).
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Fig. 14. Flux-linkage (per turn) waveform for a 24 stator slots structure
and double-layer winding configuration (withβs = 0.6, Lds = Ldr and
nsIexc = 1200A.turn): (a) 11 rotor teeth and (b) 14 rotor teeth
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Fig. 15. Back-EMF waveform (a) and its spectra (b) for a 24-11slots
structure and double-layer winding configuration (withβs = 0.6, Lds =
Ldr, nsIexc = 1200A.turn andΩ = 1300rpm)

IV. U NBALANCED MAGNETIC FORCESCALCULATION

A. Analytical expression of radial magnetic forces

Unbalanced magnetic force (UMF) is the overall magnetic
force that acts on the rotor due to an asymmetric air-gap
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(a) (b) (c) (d)

Fig. 17. Magnetic pressurePm (ν, θ) |r=Re
for a 24 stator slots structure (withβs = 0.6, Lds = Ldr andnsIexc = 1200A.turn): (a) 10 rotor teeth,

(b) 11 rotor teeth, (c) 13 rotor teeth and (d) 14 rotor teeth
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Fig. 16. Back-EMF waveform (a) and its spectra (b) for a 24-14slots
structure and double-layer winding configuration (withβs = 0.6, Lds =
Ldr , nsIexc = 1200A.turn andΩ = 1300rpm)

magnetic field distribution. This phenomenon was extensively
studied in the literature, in particular for PM synchronousma-
chines [40][41], switched-reluctance machine [42] or induction
machine [43][44], since it could lead to significant noise and
vibration. Hence, some configurations, especially those with
odd number of rotor slots, can also exhibit UMF. In [45], using
Maxwell’s stress tensor method, an overall Maxwell pressure
distribution Pm in the air-gap can be derived. After, some
assumptions (neglecting tangential component of magnetic
field Ht and high permeability of iron),Pm can be expressed
as

Pm ≈
B2

r

2µ0
(26)

with Br the radial flux density in the centre of the air-gap.
After, the global force acting on the rotor (at a given position

θ) can be decomposed in Cartesian coordinates as







Fx (θ) = ReLa

∫ 2π

0

(

−B2
r

2µ0

)

cos (ν) dν

Fy (θ) = ReLa

∫ 2π

0

(

−B2
r

2µ0

)

sin (ν) dν
(27)

B. Comparison with Finite-Element analysis

Parameters of Table I are still considered in this section for
the both analytical model and FE simulations. Configurations
with 24 stator slots are principally considered due to space
limitations but the method could be applied to any stator-
rotor configuration. In Fig. 17, magnetic pressurePm along
the air-gap is compared with the analytical model and with FE
simulations and respectively for, 10, 11, 13 and 14 rotor teeth
(with 24 stator slots). Good agreement is observed with FE
Analysis and, thanks to a representation in polar coordinates,
we can see that configurations with 11 and 13 rotor teeth could
exhibit UMF. Applying (27), it was shown that, indeed, even
(10 and 14 teeth) rotor teeth configurations do not exhibit
UMF, while odd one (11 and 13 teeth) does. In Fig. 18,
analytically predicted and FE calculted UMF are compared,
for 11 and 13 rotor teeth configurations. The analytical model
predicts fairly UMF and, consequently, their influences on the
level of noise or vibrations should be considered in designing
machines.

V. CONCLUSION

In this work, an analytical model for Field-Excited Flux-
Switching machine is developed taking into account the inher-
ent double-saliency of this topology. The approach to model
the air-gap flux density is based on MMF-permeance theory. A
general expression for the magnetomotive force is derived as a
Fourier series, as well as the doubly-slotted air-gap reluctance,
assuming idealized flux paths under the slot opening.

Extensive comparisons with 2D FE results were performed
and it is shown that the model can accurately predict the radial
air-gap field distribution at no-load. Moreover, the model is
suitable for multi-phase structures that have different rotor
topologies.

Furthermore, analytical expressions have been presented
to assess phase flux-linkage and back-EMF waveforms, de-
pending on stator and rotor teeth configurations and/or phase
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Fig. 18. Evolution of UMF (Fx andFy) as function of rotor positionθelec
for a 24 stator slots structure (withβs = 0.6, Lds = Ldr and nsIexc =
1200A.turn): (a) 11 rotor teeth and (c) 13 rotor teeth

winding configurations. Close agreements with FE analysis
have been demonstrated, showing a clear advantage of the
analytical model with regard to computation time.

The last section of the paper focused on radial force
calculation. Indeed, some rotor configurations could exhibit
UMF. Once again, a good prediction of the magnetic force is
achieved allowing the investigation of vibrations of magnetic
origin. On-load performance, with the air-gap armature reac-
tion field calculations, will be described in a subsequent part
of this paper.

APPENDIX A
A IR-GAP FIELD DISTRIBUTION FOR3 PHASE

CONFIGURATIONS

Figs. 19, 20, 21 and 22 compare analytical predictions and
FE simulations of the radial flux densityBr in a 24 stator slots
(3 phases) having 10, 11, 13 and 14 rotor teeth, respectively.
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Fig. 19. Magnetic flux density in middle of air-gapBr (ν, θ) |r=Re
for

a 24-10 slots configuration (3 phase) (withβs = 0.6, Lds = Ldr and
nsIexc = 1200A.turn): (a) Br distribution for 24-10 slots configuration
and (b) the magnetic flux lines with FE software
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Fig. 20. Magnetic flux density in middle of air-gapBr (ν, θ) |r=Re
for

a 24-11 slots configuration (3 phase) (withβs = 0.6, Lds = Ldr and
nsIexc = 1200A.turn): (a) Br distribution for 24-11 slots configuration
and (b) the magnetic flux lines with FE software
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Fig. 21. Magnetic flux density in middle of air-gapBr (ν, θ) |r=Re
for

a 24-13 slots configuration (3 phase) (withβs = 0.6, Lds = Ldr and
nsIexc = 1200A.turn): (a) Br distribution for 24-13 slots configuration
and (b) the magnetic flux lines with FE software
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Fig. 22. Magnetic flux density in middle of air-gapBr (ν, θ) |r=Re
for

a 24-14 slots configuration (3 phase) (withβs = 0.6, Lds = Ldr and
nsIexc = 1200A.turn): (a) Br distribution for 24-14 slots configuration
and (b) the magnetic flux lines with FE software
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