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Maximal Regularity for Non-Autonomous Second

Order Cauchy Problems

Dominik Dier, El Maati Ouhabaz∗

November 8, 2013

Abstract

We consider non-autonomous wave equations

{

ü(t) + B(t)u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1.

where the operators A(t) and B(t) are associated with time-dependent
sesquilinear forms a(t, ., .) and b defined on a Hilbert space H with the
same domain V . The initial values satisfy u0 ∈ V and u1 ∈ H . We prove
well-posedness and maximal regularity for the solution both in the spaces
V ′ and H . We apply the results to non-autonomous Robin-boundary
conditions and also use maximal regularity to solve a quasilinear problem.

Key words: Sesquilinear forms, non-autonomous evolution equations, maximal
regularity, non-linear heat equations, wave equation.

MSC: 35K90, 35K45, 35K92, 47F05.

1 Introduction

The present paper is a continuation of [ADLO13] which is devoted to maximal
regularity for first order non-autonomous evolution equations governed by forms.
Here we address the problem of maximal regularity for non-autonomous second
order problems.
We consider Hilbert spaces H and V such that V is continuously embedded into
H and two families of sesquilinear forms

a : [0, T ] × V × V → C, b : [0, T ] × V × V → C

such that a(., u, v) : [0, T ] → C, b(., u, v) : [0, T ] → C are measurable for all
u, v ∈ V ,

|a(t, u, v)| ≤ M‖u‖V ‖v‖V (t ∈ [0, T ]),

and
Re a(t, u, u) + w‖u‖2

H ≥ α‖u‖2
V (u ∈ V, t ∈ [0, T ])

∗Corresponding author.
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where M ≥ 0, w ∈ R, and α > 0 are constants. We assume also that b satisfies
the same properties. For fixed t ∈ [0, T ], we denote by A(t),B(t) ∈ L(V, V ′) the
operators associated with the forms a(t, ., .) and b(t, ., .), respectively. Given a
function f defined on [0, T ] with values either in H or in V ′ and consider the
second order evolution equation

{

ü(t) + B(t)u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1.
(1.1)

with initial values u0 ∈ V and u1 ∈ H . This is a damped non-autonomous wave
equation. The equation without the factor u̇, i.e.,

{

ü(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1.
(1.2)

is a non-autonomous wave equation.
Our aim is to prove well-posedness and maximal regularity for (1.1) and

(1.2). We shall prove three main results. The first one concerns maximal reg-
ularity in V ′ for the damped wave equation (1.1). We prove that for u0 ∈
V, u1 ∈ H and f ∈ L2(0, T, V ′) there exists a unique solution u ∈ H1(0, T, V ) ∩
H2(0, T, V ′). This result was first proved by Lions [Lio61, p. 151] by assuming
regularity of t 7→ a(t, u, v) and t 7→ b(t, u, v) for every fixed u, v ∈ V . This
regularity assumption was removed in Dautray-Lions [DL88, p. 667], but taking
f ∈ L2(0, T,H) and considering mainly symmetric forms. The general case was
given recently by Batty, Chill and Srivastava [BCS08] by reducing the problem
to a first order non-autonomous equation. The result in [BCS08] is stated in the
case u0 = u1 = 0, only. Our proof is different from [BCS08] and is inspired by
that of Lions [Lio61]. Next we consider maximal regularity in H . This is more
delicate and needs extra properties on the forms a and b. We prove that if the
forms are symmetric and t 7→ a(t, u, v) and t 7→ b(t, u, v) are piecewise Lipschitz
on [0, T ] then for u0 ∈ V , u1 ∈ H and f ∈ L2(0, T,H) there exists a unique
solution u ∈ H1(0, T, V )∩H2(0, T,H) to the equation (1.1). We also allow some
non-symmetric perturbations of a and b. The third result (Theorem 5.1) con-
cerns the wave equation (1.2). We prove that if a is symmetric and t 7→ a(t, u, v)
is Lipschitz on [0, T ], then for every u0 ∈ V , u1 ∈ H and f ∈ L2(0, T,H) there
exists a unique solution u ∈ L2(0, T, V )∩H1(0, T,H)∩H2(0, T, V ′) to the equa-
tion (1.2). This result is not new and was already proved by Lions [Lio61, p.
150] for the case u0 = 0 and later in [DL88, p. 666] for u0 ∈ V and u1 ∈ H . The-
orem 5.1 is stated in order to have a complete picture of maximal regularity for
wave equations with or without damping. The proof in [DL88] uses a Galerkin
method and sectorial approximation. The proofs of the three main theorems use
a representation result of Lions (see Theorem 2.4 below) for a given sesquilinear
form E acting on a product of a Hilbert and pre-Hilbert spaces H × V . In each
case we have to define the appropriate spaces H, V and the form E to which we
apply Theorem 2.4. This idea was already used in [Lio61]. Our choice of the
spaces H, V and the form E allow us to sharpen and extend some results from
[Lio61] and assume less regularity on t 7→ a(t, u, v) and t 7→ b(t, u, v).

We illustrate our abstract results by two examples. The first one is a linear
damped wave equation with time dependent Robin boundary conditions. The
second is a quasi-linear second order non-autonomous problem. The latter is
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treated by a fixed point argument but the implementation of this classical idea
uses heavily a priori estimates that follow from our maximal regularity results
for linear equations.
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2 Preliminaries

Throughout this paper, V and H are separable Hilbert spaces over the field
K = C or R. The scalar products of H and V and the corresponding norms will
be denoted by (. | .)H , (. | .)V , ‖.‖H and ‖.‖V , respectively. We denote by V ′ the
antidual of V when K = C and the dual when K = R. The duality between V ′

and V is denoted by 〈., .〉. Then 〈u, v〉 = (u | v)H for u ∈ H and v ∈ V .
We assume that

V →֒
d
H ;

i.e., V is a dense subspace of H such that for some constant cH > 0,

‖u‖H ≤ cH‖u‖V (u ∈ V ). (2.1)

By duality and density of V in H one has

H →֒
d
V ′.

The space H is then identified with a dense subspace of V ′ (associating to u ∈ H

the antilinear map v 7→ (u | v)H = 〈u, v〉 for v ∈ V ).
Let

a : [0, T ] × V × V → K

be a family of sesquilinear and V -bounded forms; i.e.

|a(t, u, v)| ≤ M‖u‖V ‖v‖V (u, v ∈ V, t ∈ [0, T ]) (2.2)

for some constant M , such that a(., u, v) is measurable for all u, v ∈ V . We shall
call a satisfying the above properties a V -bounded non-autonomous sesquilinear
form. Moreover we say that a is quasi-coercive if there exist constants α > 0,
ω ∈ R such that

Re a(t, u, u) + ω‖u‖2
H ≥ α‖u‖2

V (u ∈ V, t ∈ [0, T ]). (2.3)

If ω = 0, we say that the form a is coercive.
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For t ∈ [0, T ], a V -bounded and quasi-coercive sesquilinear form a(t, ., .) is
closed. The operator A(t) ∈ L(V, V ′) associated with a(t, ., .) is defined by

〈A(t)u, v〉 = a(t, u, v) for u, v ∈ V. (2.4)

We may also associate with a(t, ., .) an operator on H by taking the part A(t)
of A(t) on H ; i.e.,

D(A(t)) := {u ∈ V : A(t)u ∈ H}
A(t)u := A(t)u.

Note that if a(t, ., .) is symmetric, i.e.,

a(t, u, v) = a(t, v, u)

for all u, v ∈ V , then the operator A(t) is self-adjoint.
For a Hilbert space E we denote by L2(0, T, E) the L2-space on (0, T ) of

functions with values in E and by Hk(0, T, E) we denote the usual Sobolev
space of order k of functions on (0, T ) with values in E. For u ∈ H1(0, T ;E) we
denote the first derivative by u̇ and for u ∈ H2(0, T ;E) the second derivative
by ü.

We start with the following differentiation result.

Lemma 2.1. Let
a : [0, T ] × V × V → K

be a V -bounded, quasi-coercive non-autonomous form. Suppose that it is Lips-
chitz with Lipschitz constant Ṁ , that is

|a(t, φ, ψ) − a(s, φ, ψ)| ≤ Ṁ |t− s|‖φ‖V ‖ψ‖V , t, s ∈ [0, T ] and φ, ψ ∈ V.

Let u, v ∈ H1(0, T ;V ). Then a(., u, v) ∈ W 1,1(0, T ) and there exists a non-
autonomous form ȧ which is V -bounded with constant Ṁ such that

a(., u, v)̇ = a(., u, v̇) + a(., u̇, v) + ȧ(., u, v)

If additionally a is symmetric then

a(., u, u)̇ = 2 Re a(., u, u̇) + ȧ(., u, u).

Note that for u, v ∈ V we have d
dta(t, u, v) = ȧ(t, u, v) for a.e. t ∈ [0, T ].

This lemma is a consequence of the next two results.

Lemma 2.2. Let u ∈ H1(0, T ;V ) and v ∈ H1(0, T ;V ′). Then 〈v(.), u(.)〉 ∈
W 1,1(0, T ) and

〈v(.), u(.)〉̇ = 〈v̇(.), u(.)〉 + 〈v(.), u̇(.)〉.

Proof. By Fubini’s Theorem we have

∫ t

0

〈v̇(s), u(s)〉 ds =

∫ t

0

〈

v̇(s), u(0) +

∫ s

0

u̇(r) dr
〉

ds

= 〈v(t), u(0)〉 − 〈v(0), u(0)〉 +

∫ t

0

∫ s

0

〈v̇(s), u̇(r)〉 dr ds
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= 〈v(t), u(0)〉 − 〈v(0), u(0)〉 +

∫ t

0

∫ t

r

〈v̇(s), u̇(r)〉 ds dr

= 〈v(t), u(0)〉 − 〈v(0), u(0)〉 +

∫ t

0

〈v(t), u̇(r)〉 − 〈v(r), u̇(r)〉 dr

= 〈v(t), u(t)〉 − 〈v(0), u(0)〉 −
∫ t

0

〈v(r), u̇(r)〉 dr.

Thus

〈v(t), u(t)〉 = 〈v(0), u(0)〉 +

∫ t

0

〈v̇(s), u(s)〉 ds+

∫ t

0

〈v(s), u̇(s)〉 ds

which proves the claim.

Proposition 2.3. Let S : [0, T ] → L(V, V ′) be Lipschitz continuous. Then the
following assertions hold.

a) There exists a bounded, strongly measurable function Ṡ : [0, T ] → L(V, V ′)
such that

d

dt
S(t)u = Ṡ(t)u (u ∈ V )

for a.e. t ∈ [0, T ] and

‖Ṡ(t)‖
L(V,V ′) ≤ L (t ∈ [0, T ])

where L is the Lipschitz constant of S.

b) If u ∈ H1(0, T ;V ), then Su := S(.)u(.) ∈ H1(0, T ;V ′) and

(Su)̇ = Ṡ(.)u(.) + S(.)u̇(.). (2.5)

Proposition 2.3 is proved in [ADLO13]. Lemma 2.1 follows from (2.4),
Lemma 2.2 and Proposition 2.3.

We shall need the following representation result due to Lions. See [Lio59,
p. 156], [Lio61, p. 61] or [ADLO13].

Theorem 2.4 (Lions’ Representation Theorem). Let H be a Hilbert space, V
a pre-Hilbert space such that V →֒ H. Let E : H × V → K be sesquilinear such
that

1) for all w ∈ V, E(., w) is a continuous linear functional on H;

2) |E(w,w)| ≥ α‖w‖2
V

for all w ∈ V

for some α > 0. Let L ∈ V ′. Then there exists u ∈ H such that

Lw = E(u,w)

for all w ∈ V.
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3 Maximal Regularity for the Damped Wave

Equation in V
′

Let H,V be Hilbert spaces such that V
d→֒ H . We define the following maximal

regularity space

MR(V, V, V ′) := L2(0, T, V ) ∩H1(0, T ;V ) ∩H2(0, T ;V ′)

= H1(0, T ;V ) ∩H2(0, T ;V ′).

Let a : [0, T ] × V × V → C and b : [0, T ] × V × V → C be non-autonomous
V -bounded and quasi-coercive sesquilinear forms. We denote by A(t) and B(t)
their associated operators in the sense of (2.4). The following is our first result.

Theorem 3.1. For every u0 ∈ V , u1 ∈ H and f ∈ L2(0, T ;V ′), there exists a
unique solution u ∈ MR(V, V, V ′) of the non-autonomous second order Cauchy
problem

{

ü(t) + B(t)u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1.
(3.1)

Moreover there exists a constant C > 0 such that

‖u‖
MR(V,V,V ′) ≤ C

[

‖u0‖V + ‖u1‖H + ‖f‖L2(0,T ;V ′)

]

. (3.2)

As mentioned in the introduction, this theorem was first proved by Lions
[Lio61, p. 151] under an additional regularity assumption on t 7→ a(t, u, v) and
t 7→ b(t, u, v). This regularity assumption was removed in Dautray-Lions [DL88,
p. 667], but taking f ∈ L2(0, T,H) and considering mainly symmetric forms
(they allow some non-symmetric perturbations). Their proof is based on a
Galerkin method. Another proof of Theorem 3.1 was given recently by Batty,
Chill and Srivastava [BCS08] but they consider only the case u0 = u1 = 0. Our
proof is based on Theorem 2.4 and is in the spirit of Lions [Lio61]. It is different
from the proofs in [DL88] and [BCS08].

A classical result of Lions says that

MR(V, V ′) := L2(0, T, V ) ∩H1(0, T ;V ′) →֒ C([0, T ];H), (3.3)

and also that for u ∈ MR(V, V ′) the function ‖u(.)‖2
H is in W 1,1(0, T ) with

(‖u‖2
H )̇ = 2 Re〈u̇, u〉, (3.4)

see [Sho97, p. 106] and [DL88, p.570]. This implies that MR(V, V, V ′) →֒
C([0, T ];V ) ∩ C1([0, T ];H). Thus for u ∈ MR(V, V, V ′), both u(0) and u̇(0)
make sense.

We start with the following basic lemma.

Lemma 3.2. For v ∈ H1(0, T ;V ) we have

(

∫ T

0

‖v(t)‖2
V dt

)1/2

≤ T
(

∫ T

0

‖v̇(s)‖2
V ds

)1/2

+
√
T‖v(0)‖V .
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Proof. Note that v(t) = v(0) +
∫ t

0
v̇(s) ds, thus

∫ T

0

‖v(t)‖2
V dt =

∫ T

0

(

v(0) +

∫ t

0

v̇(s) ds
∣

∣

∣
v(t)

)

V
dt

=

∫ T

0

∫ T

s

(v̇(s) | v(t))V dt ds+

∫ T

0

(v(0) | v(t))V dt

≤
∫ T

0

∫ T

0

‖v̇(s)‖V ‖v(t)‖V dt ds+

∫ T

0

‖v(0)‖V ‖v(t)‖V dt

≤
∫ T

0

‖v(t)‖V dt
(

∫ T

0

‖v̇(s)‖V ds+ ‖v(0)‖V

)

≤
(

T

∫ T

0

‖v(t)‖2
V dt

)1/2((

T

∫ T

0

‖v̇(s)‖2
V ds

)1/2

+ ‖v(0)‖V

)

.

Proof of Theorem 3.1. It suffices to show that there exists a unique solution in
the case where T < T0 and T0 > 0 is a constant that depends only on the
constants M,ω and α of (2.2) and (2.3). Indeed we can extend this solution
to [0, T ] for any fixed T as follows. We write the interval [0, T ] as a finite
union of sub-intervals [τi, τi+1], each has length less than T0. On each interval
[τi, τi+1] we have a unique solution ui with ui(τi) ∈ V , u̇i(τi) ∈ H and ui ∈
MR(V, V, V ′) →֒ C1([τi, τi+1];H) ∩ C([τi, τi+1];V ). On [τi+1, τi+2] we solve the
equation with ui+1(τi+1) = ui(τi+1) and u̇i+1(τi+1) = u̇i(τi+1). We define u on
[0, T ] by u = ui on [τi, τi+1] and check easily that u ∈ MR(V, V, V ′) (on [0, T ])
is the unique solution to (3.1).

We prove existence of a solution in the case where

T < T0 = min

{

α2

M2
,

α√
2M

}

. (3.5)

Note that we may assume throughout this proof that the forms a and b are both
coercive. Indeed, set v(t) = ewtu(t) then we have

v̈(t) + B(t)v̇(t) + A(t)v(t)

= ewt
[

ü(t) + (B(t) + 2w)u̇(t) + (A(t) + wB(t) + w2)u(t)
]

. (3.6)

Since a and b are quasi-coercive, we may choose w large enough such that b+2w
and a + wb + w2 are coercive. Note also that v ∈ MR(V, V, V ′) if and only if
u ∈ MR(V, V, V ′).

We define the Hilbert space H := H1(0, T ;V ) endowed with its usual norm
‖u‖

H
:= ‖u‖H1(0,T ;V ) and the pre-Hilbert space

V := {v ∈ H2(0, T ;V ) : v̇(T ) = 0}

with norm ‖.‖
V

:= ‖.‖
H

. Further we define the sesquilinear form E : H×V → C

by

E(u, v) := −
∫ T

0

(u̇ | v̈)H dt+

∫ T

0

b(t, u̇, v̇) dt

+

∫ T

0

a(t, u, v̇) dt+ a(0, u(0), v(0))
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and for u0 ∈ V , u1 ∈ H and f ∈ L2(0, T ;V ′) we define F : V → C by

F (v) :=

∫ T

0

〈f, v̇〉 dt+ a(0, u0, v(0)) + (u1 | v̇(0))H .

We claim that

1) E(., v) ∈ H′ and F ∈ V ′;

2) E is coercive; i.e., there exists a C > 0 such that |E(v, v)| ≥ C‖v‖2
H

for
all v ∈ V .

Suppose for a moment that 1) and 2) are satisfied. Then we can apply Lions’s
representation theorem (see Theorem 2.4) and obtain u ∈ H such that

E(u, v) = F (v) ∀ v ∈ V . (3.7)

We show that u is a solution of (3.1).

Let ψ(t) ∈ D(0, T ) and w ∈ V and choose v(t) :=
∫ t

0
ψ(s) dsw. It follows

from (3.7) that

−
∫ T

0

〈u̇(t), w〉ψ̇(t)dt =

∫ T

0

〈f(t) − B(t)u̇− A(t)u(t), w〉ψ(t) dt.

This means that u̇ ∈ H1(0, T ;V ′), hence u ∈ MR(V, V, V ′) and

ü(t) + B(t)u̇(t) + A(t)u(t) = f(t) t-a.e. (3.8)

in V ′. For general v ∈ V , we use again (3.7) and integration by parts to obtain

(u̇(0) | v̇(0))H +

∫ T

0

〈ü, v̇〉 dt+

∫ T

0

b(t, u̇, v̇) dt+

∫ T

0

a(t, u, v̇) dt

+ a(0, u(0), v(0)) =

∫ T

0

〈f, v̇〉 dt+ a(0, u0, v(0)) + (u1 | v̇(0))H .

This equality together with (3.8) imply that

(u̇(0) | v̇(0))H + a(0, u(0), v(0)) = a(0, u0, v(0)) + (u1 | v̇(0))H .

Since v ∈ V is arbitrary we obtain that u(0) = u0 and u̇(0) = u1. Therefore, u is
a solution of (3.1) on [0, T ] for T ≤ T0 and T0 is such that the above properties
1) and 2) are satisfied.

Now we return to 1) and 2). Property 1) is obvious. We show the coercivity

property 2). Let v ∈ V . The equality d
dt ‖v̇(t)‖2

H = 2 Re(v̈(t) | v̇(t))H implies

∫ T

0

Re(v̈ | v̇)H dt = −1

2
‖v̇(0)‖2

H .

It follows that

|E(v, v)| ≥ ReE(v, v)

=
1

2
‖v̇(0)‖2

H +

∫ T

0

Re b(t, v̇, v̇) dt

8



+

∫ T

0

Re a(t, v, v̇) dt+ Re a(0, v(0), v(0)).

We use coercivity of b, a and V -boundedness of a to obtain

|E(v, v)| ≥ 1

2
‖v̇(0)‖2

H + α

∫ T

0

‖v̇‖2
V dt

−M

∫ T

0

‖v‖V ‖v̇‖V dt+ α‖v(0)‖2
V .

Therefore, by Young’s inequality, we have

|E(v, v)| ≥ 1

2
‖v̇(0)‖2

H +
α

2

∫ T

0

‖v̇‖2
V dt− M2

2α

∫ T

0

‖v‖2
V dt+ α‖v(0)‖2

V .

Next we apply Lemma 3.2 to obtain

|E(v, v)| ≥
(

α

2
− M2T 2

α

)
∫ T

0

‖v̇‖2
V dt+

(

α− M2T

α

)

‖v(0)‖2
V .

Now we use (3.5) and the fact that by Lemma 3.2,
∫ T

0
‖v‖2

V dt is dominated (up

to a constant) by
∫ T

0
‖v̇‖2

V dt+ ‖v(0)‖2
V . We obtain 2).

Next we prove uniqueness. Suppose that u and v are two solutions of (3.1)
which are in MR(V, V, V ′). Set w = u − v. Clearly w ∈ MR(V, V, V ′) and
satisfies (in V ′)

ẅ(t) + B(t)ẇ(t) + A(t)w(t) = 0, w(0) = 0, ẇ(0) = 0.

We show that w = 0. For fixed t ∈ (0, T ] we have

∫ t

0

Re〈ẅ, ẇ〉 ds+

∫ t

0

Re b(s, ẇ, ẇ) ds+

∫ t

0

Re a(s, w, ẇ) ds = 0.

Using (3.4) we have

∫ t

0

Re〈ẅ, ẇ〉 ds =
1

2

∫ t

0

(

‖ẇ‖2
H

)

˙ ds =
1

2
‖ẇ(t)‖2

H − 1

2
‖ẇ(0)‖2

H =
1

2
‖ẇ(t)‖2

H ,

and hence

0 =
1

2
‖ẇ(t)‖2

H +

∫ t

0

Re b(s, ẇ, ẇ) ds+

∫ t

0

Re a(s, w, ẇ) ds

≥ 1

2
‖ẇ(t)‖2

H + α

∫ t

0

‖ẇ‖2
V ds−M

∫ t

0

‖w‖V ‖ẇ‖V ds.

Here we used coercivity of b and V -boundedness of a. Therefore, by Lemma 3.2,
we have

0 ≥ 1

2
‖ẇ(t)‖2

H + α

∫ t

0

‖ẇ‖2
V ds−M

(

∫ t

0

‖w‖2
V ds

)1/2(

∫ t

0

‖ẇ‖2
V ds

)1/2

≥ 1

2
‖ẇ(t)‖2

H + (α− MT )

∫ t

0

‖ẇ‖2
V ds.
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By (3.5) we obtain that w = 0. This shows uniqueness.
Finally, in order to prove the apriori estimate (3.2), we consider the operator

S : V ×H × L2(0, T, V ′) 7→ MR(V, V, V ′), (u0, u1, f) 7→ u.

This is a linear operator which is well defined thanks to the uniqueness of the
solution u of (3.1). It is easy to see that S is a closed operator. Therefore it is
continuous by the closed graph theorem. This gives (3.2).

The previous proof does not give any information on the constant C in (3.2).
For small time T one can prove that C depends only on the constants of the
forms. This observation will be needed in our application to a quasi-linear
problem.

Proposition 3.3. If T > 0 is small enough, then the constant C in (3.2)
depends only on the constants w, α, M and T .

Proof. Let u ∈ MR(V, V, V ′) be the solution of (3.1). For fixed t ∈ (0, T ] we
have

∫ t

0

Re〈f, u̇〉 ds =

∫ t

0

Re〈ü, u̇〉 ds+

∫ t

0

Re b(s, u̇, u̇) ds+

∫ t

0

Re a(s, u, u̇) ds.

Since by (3.4)

∫ t

0

Re〈ü, u̇〉 ds =
1

2

∫ t

0

(

‖u̇‖2
H

)

˙ ds =
1

2
‖u̇(t)‖2

H − 1

2
‖u̇(0)‖2

H ,

it follows by Young’s inequality that

1

α

∫ t

0

‖f‖2
V ′ ds+

α

4

∫ t

0

‖u̇‖2
V ds ≥

∫ t

0

‖f‖V ′‖u̇‖V ds ≥
∫ t

0

Re〈f, u̇〉 ds

=
1

2
‖u̇(t)‖2

H − 1

2
‖u̇(0)‖2

H +

∫ t

0

Re b(s, u̇, u̇) ds+

∫ t

0

Re a(s, u, u̇) ds

≥ −1

2
‖u̇(0)‖2

H + α

∫ t

0

‖u̇‖2
V ds−M

∫ t

0

‖u‖V ‖u̇‖V ds

≥ −1

2
‖u̇(0)‖2

H +
3α

4

∫ t

0

‖u̇‖2
V ds− M2

α

∫ t

0

‖u‖2
V ds.

Here we used coercivity of b and V -boundedness of a. Therefore, by Lemma
3.2, we have

1

α

∫ t

0

‖f‖2
V ′ ds+

1

2
‖u̇(0)‖2

H ≥ α

2

∫ t

0

‖u̇‖2
V ds− M2

α

∫ t

0

‖u‖2
V ds

≥
(

α

2
− t2(2M2 + α)

α

)
∫ t

0

‖u̇‖2
V ds

− t

(

2M2 + α

α

)

‖u(0)‖2
V +

1

2

∫ t

0

‖u‖2
V ds.

(3.9)

where we choose t such that α
2 >

t2(2M2+α)
α . Finally, since

ü(s) = f(s) − Au̇(s) − Bu(s) s-a.e.
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we obtain that

‖ü(s)‖2
V ′ ≤ 3‖f(s)‖2

V ′ + 3M‖u̇(s)‖2
V + 3M‖u(s)‖2

V s-a.e.

This together with (3.9) ends the proof of the proposition when T is such that

α

2
>
T 2(2M2 + α)

α
.

4 Maximal Regularity for the Damped Wave

Equation in H

Let V,H be separable Hilbert spaces such that V →֒
d
H and let

a, b : [0, T ] × V × V → K

be closed non-autonomous sesquilinear forms on which we impose the following
conditions. Each can be written as the sum of two non-autonomous forms

a(t, u, v) = a1(t, u, v) + a2(t, u, v), b(t, u, v) = b1(t, u, v) + b2(t, u, v) u, v ∈ V

where
a1, b1 : [0, T ] × V × V → K

satisfy the following assumptions

a) |a1(t, u, v)| ≤ M‖u‖V ‖v‖V for all u, v ∈ V , t ∈ [0, T ];

b) a1(t, u, u) ≥ α‖u‖2
V for all u ∈ V , t ∈ [0, T ] with α > 0;

c) a1(t, u, v) = a1(t, v, u) for all u, v ∈ V , t ∈ [0, T ];

d) a1 is piecewise Lipschitz-continuous; i.e., there exist 0 = τ0 < τ1 < · · · <
τn = T such that

|a1(t, u, v) − a1(s, u, v)| ≤ Ṁ |t− s|‖u‖V ‖v‖V

for all u, v ∈ V, s, t ∈ [τi−1, τi], i ∈ {1, . . . , n},

and similarly for b1. Of course we may choose the same constants M, Ṁ and α
for both forms a1 and b1. We may also choose that same sub-intervals 0 = τ0 <

τ1 < · · · < τn = T for both forms.
The non-autonomous forms

a2, b2 : [0, T ] × V × V → K

are measurable and satisfy

e) |a2(t, u, v)| ≤ M‖u‖V ‖v‖H for all u, v ∈ V , t ∈ [0, T ],

11



and similarly for b2.
Note that by Lemma 2.1, if c is a Lipschitz form on [0, T ], we may define its

derivative ċ(t, ., .) and we have

|ċ(t, u, v)| ≤ Ṁ‖u‖V ‖v‖V , u, v ∈ V (4.1)

for some constant Ṁ . We shall use this estimate for c = a1 and for c = b1 on
sub-intervals of [0, T ] where these forms are supposed to be Lipschitz.

Let us denote by A(t) and B(t) the operators given by 〈A(t)u, v〉 = a(t, u, v)
and 〈B(t)u, v〉 = b(t, u, v) for all u, v ∈ V .

As in the previous section we consider the damped wave equation. Here we
study the maximal regularity property in H rather than in V ′. We introduce
the maximal regularity space

MR(V, V,H) := H1(0, T ;V ) ∩H2(0, T ;H).

We have

Theorem 4.1. Let a = a1 + a2 and b = b1 + b2 be non-autonomous V -bounded
and quasi-coercive forms satisfying the above properties a) − e). Then for every
u0, u1 ∈ V and f ∈ L2(0, T ;H), there exists a unique solution u ∈ MR(V, V,H)
of the non-autonomous second order Cauchy problem

{

ü(t) + B(t)u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1

(4.2)

Moreover u̇(t) ∈ V for all t ∈ [0, T ].

For a related result see Lions [Lio61, p. 155]. However the result proved there
is restricted to u1 = 0 and assumes f, f ′ ∈ L2(0, T,H). Our proof resembles
that of Theorem 3.1 and uses similar ideas as in Lions [Lio61].

We use the following lemma for the proof of Theorem 4.1.

Lemma 4.2. Suppose that the forms a1 and b1 are Lipschitz continuous on
[0, T ]. Let v ∈ H2(0, T ;V ) and ǫ > 0. Then

(i)

∫ T

0

e−λt Re b1(t, v̇, v̈) dt = λ
2

∫ T

0

e−λt
b1(t, v̇, v̇) dt− 1

2

∫ T

0

e−λt
ḃ1(t, v̇, v̇) dt

+ 1
2e

−λT
b1(T, v̇(T ), v̇(T )) − 1

2b1(0, v̇(0), v̇(0)).

(ii)

∫ T

0

e−λt Re a1(t, v, v̈) dt = λ
2 e

−λT
a1(T, v(T ), v(T )) − λ

2 a1(0, v(0), v(0))

+ e−λT Re a1(T, v(T ), v̇(T )) − Re a1(0, v(0), v̇(0))

+ λ2

2

∫ T

0

e−λt
a1(t, v, v) dt− λ

2

∫ T

0

e−λt
ȧ1(t, v, v) dt

−
∫ T

0

e−λt Re ȧ1(t, v, v̇) dt−
∫ T

0

e−λt
a1(t, v̇, v̇) dt.

(iii)

∫ T

0

e−λt Re b1(t, v̇, v̈) dt+

∫ T

0

e−λt Re a1(t, v, v̈) dt

≥ 1
2 (αλ − 2Ṁ − 2M)

∫ T

0

e−λt‖v̇‖2
V dt
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+ (λ
2 (αλ − Ṁ) − Ṁ2

2 )

∫ T

0

e−λt‖v‖2
V dt

+ 1
2e

−λT
[

(α− ǫ)‖v̇(T )‖2
V + (λα− Ṁ2

ǫ )‖v(T )‖2
V

]

− 1
2b1(0, v̇(0), v̇(0)) − λ

2 a1(0, v(0), v(0)) − Re a1(0, v(0), v̇(0)).

Proof. The proof of (i) and (ii) is based on Lemma 2.1 and the product rule.
Part (i) is a direct consequence of the formulae

(

e−λt
b1(t, v̇, v̇)

)

˙ = −λe−λt
b1(t, v̇, v̇) + e−λt

ḃ1(t, v̇, v̇) + 2e−λt Re b1(t, v̇, v̈).

For (ii) we first calculate the following derivatives

Re
(

e−λt
a1(t, v, v)

)

˙ = −λe−λt
a1(t, v, v) + e−λt Re ȧ1(t, v, v)

+ 2e−λt Re a1(t, v, v̇)

Re
(

e−λt
a1(t, v, v̇)

)

˙ = −λe−λt Re a1(t, v, v̇) + e−λt Re ȧ1(t, v, v̇)

+ e−λt
a1(t, v̇, v̇) + e−λt Re a1(t, v, v̈)

then we multiply the first equation by λ
2 and add the second equation. Now (ii)

follows by integration over t from 0 to T .
For (iii) we add (i) and (ii) and use coercivity of a1, b1 and V -boundedness

of a1, ȧ1, b1, ḃ1. Thus

∫ T

0

e−λt Re b1(t, v̇, v̈) dt+

∫ T

0

e−λt Re a1(t, v, v̈) dt

≥ 1
2 (αλ − Ṁ − 2M)

∫ T

0

e−λt‖v̇‖2
V dt

+ λ
2 (αλ − Ṁ)

∫ T

0

e−λt‖v‖2
V dt− Ṁ

∫ T

0

e−λt‖v‖V ‖v̇‖V dt

+ 1
2e

−λT
[

α‖v̇(T )‖2
V + λα‖v(T )‖2

V − 2M‖v(T )‖V ‖v̇(T )‖V

]

− 1
2b1(0, v̇(0), v̇(0)) − λ

2 a1(0, v(0), v(0)) − Re a1(0, v(0), v̇(0)).

We apply Young’s inequality and see that the last term is bounded from below
by

1
2 (αλ − 2Ṁ − 2M)

∫ T

0

e−λt‖v̇‖2
V dt+ (λ

2 (αλ − Ṁ) − Ṁ2

2 )

∫ T

0

e−λt‖v‖2
V dt

+ 1
2e

−λT
[

(α− ǫ)‖v̇(T )‖2
V + (λα− Ṁ2

ǫ )‖v(T )‖2
V

]

− 1
2b1(0, v̇(0), v̇(0)) − λ

2 a1(0, v(0), v(0)) − Re a1(0, v(0), v̇(0))

for ǫ > 0.

Proof of Theorem 4.1. Uniqueness follows from Theorem 3.1 and we only need
to prove existence of a solution. As in the proof of Theorem 3.1 we may assume
that the forms a and b are both coercive (see (3.6)).

1- Lipschitz-continuous forms. Suppose first that the forms a1 and b1 are
Lipschitz-continuous on [0, T ].
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We define the Hilbert space

H := {u ∈ H2(0, T ;H) ∩H1(0, T ;V ) : u(0), u̇(0), u̇(T ) ∈ V }

with norm ‖u‖
H

given by

‖u‖2
H

:= ‖ü‖2
L2(0,T ;H) + ‖u‖2

H1(0,T ;V ) + ‖u(0)‖2
V + ‖u̇(0)‖2

V + ‖u̇(T )‖2
V

and the pre-Hilbert space V := H2(0, T ;V ) with norm ‖.‖
V

:= ‖.‖
H

. Next we
define the sesquilinear form E : H × V → C by

E(u, v) :=

∫ T

0

e−λt(ü | v̈)H dt+

∫ T

0

e−λt
b(t, u̇, v̈) dt+

∫ T

0

e−λt
a(t, u, v̈) dt

+ η(u̇(0) | v̇(0))V + η(u(0) | v(0))V ,

where λ and η are positive parameters. Later on, we will choose them to be
large enough. For u0, u1 ∈ V and f ∈ L2(0, T ;H), we define F : V → C by

F (v) :=

∫ T

0

e−λt(f | v̈)H dt+ η(u1 | v̇(0))V + η(u0 | v(0))V

We proceed as in the proof of Theorem 3.1. Suppose for a moment that

1) E(., v) ∈ H′ and F ∈ V ′;

2) E is coercive; i.e., there exists a C > 0 such that |E(v, v)| ≥ C‖v‖2
H

for
all v ∈ V .

Then by Lions’s representation theorem there exists u ∈ H such that

E(u, v) = F (v) (4.3)

for all v ∈ V . For arbitraryw ∈ V and ψ ∈ D(0, T ) we take v(t) =
∫ t

0

∫ s

0 ψ(r) dr dsw.
It follows from (4.3) that

ü(t) + B(t)u̇(t) + A(t)u(t) = f(t)

in L2(0, T ;V ′). This identity applied to (4.3) implies that

η(u̇(0) | v̇(0))V + η(u(0) | v(0))V = η(u1 | v̇(0))V + η(u0 | v(0))V

for all v ∈ V . Hence u(0) = u0 and u̇(0) = u1. This means that u ∈ MR(V, V,H)
is a solution of (4.2).

It remain to prove properties 1) and 2). Again, 1) is obvious and we focus
on 2). Let v ∈ V . For ǫ ∈ (0, α) set

R := η‖v̇(0)‖2
V + η‖v(0)‖2

V + 1
2e

−λT
[

(α− ǫ)‖v̇(T )‖2
V + (λα − Ṁ2

ǫ )‖v(T )‖2
V

]

− 1
2b1(0, v̇(0), v̇(0)) − λ

2 a1(0, v(0), v(0)) − Re a1(0, v(0), v̇(0)).

By the V -boundedness of a1 and b1 we have

R ≥ 1
2e

−λT
[

(α− ǫ)‖v̇(T )‖2
V + (λα − Ṁ2

ǫ )‖v(T )‖2
V

]

+ (η − M

2
)‖v̇(0)‖2

V
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+ (η − λM

2
)‖v(0)‖2

V −M‖v̇(0)‖V ‖v(0)‖V .

Young’s inequality yields

R ≥ C1

[

‖v̇(T )‖2
V + ‖v(T )‖2

V + ‖v̇(0)‖2
V + ‖v(0)‖2

V

]

for some C1 > 0 provided λ and η are sufficiently large. Now

ReE(v, v) =

∫ T

0

e−λt‖v̈‖2
H dt+

∫ T

0

e−λt Re b1(t, v̇, v̈) dt

+

∫ T

0

e−λt Re b2(t, v̇, v̈) dt+

∫ T

0

e−λt Re a1(t, v, v̈) dt

+

∫ T

0

e−λt Re a2(t, v, v̈) dt+ η(v̇(0) | v̇(0))V + η(v(0) | v(0))V .

We apply assertion (iii) of Lemma 4.2, it follows that

ReE(v, v) ≥
∫ T

0

e−λt‖v̈‖2
H dt+

∫ T

0

e−λt Re b2(t, v̇, v̈) dt

+

∫ T

0

e−λt Re a2(t, v, v̈) dt

+
1

2
(αλ − 2Ṁ − 2M)

∫ T

0

e−λt‖v̇‖2
V dt

+
1

2
(λ(αλ − Ṁ) − Ṁ)

∫ T

0

e−λt‖v‖2
V dt+R.

Thus V -boundedness of a2 and b2 and Young’s inequality yield

ReE(v, v) ≥ C‖v‖2
H
,

for some C > 0 provided that λ and η are sufficiently large. This proves 2).
Finally, we have seen that the unique solution u satisfies u̇(T ) ∈ V but we

may replace in the previous arguments [0, T ] by [0, t] for any fixed t ∈ (0, T )
and obtain u̇(t) ∈ V .

2- Piecewise Lipschitz-continuous forms. Suppose now that the forms a1 and
b1 satisfy assumption d). We may replace in the first step the interval [0, T ] by
[τi−1, τi]. There exists a solution ui ∈ H1(τi−1, τi;V ) ∩ H2(τi−1, τi;H) of the
equation

v̈(t) + B(t)u̇(t) + A(t)u(t) = f(t) a.e. t ∈ [τi−1, τi],

with prescribed ui(τi−1), u̇i(τi−1) in V . We also know from the previous step
that ui(τi), u̇

i(τi) ∈ V . Now we can solve the previous equation on [τi, τi+1] and
obtain a solution ui+1 such that ui+1(τi) = ui(τi) and u̇i+1(τi) = u̇i(τi). We
define u on [0, T ] by u = ui on [τi−1, τi]. It is easy to check that u ∈ MR(V, V,H)
and u is a solution to (4.2). This finishes the proof of the theorem.
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5 The Wave Equation

Let H,V be Hilbert spaces such that V
d→֒ H . Suppose a : [0, T ] × V × V →

C is a Lipschitz-continuous, symmetric, V-bounded and quasi-coercive non-
autonomous form. We denote again by A(t) the operator associated with a(t)
on V ′ and by A(t) the part of A(t) in H .

We introduce the maximal regularity space

MR(V,H, V ′) := L2(0, T ;V ) ∩H1(0, T ;H) ∩H2(0, T ;V ′)

for the second order Cauchy problem. We have the following result.

Theorem 5.1. There exists a unique solution u ∈ MR(V,H, V ′) of the non-
autonomous second order Cauchy problem

{

ü(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1

(5.1)

for every u0 ∈ V , u1 ∈ H and f ∈ L2(0, T ;H). Moreover u(t) ∈ V for all
t ∈ [0, T ].

Note that by [DL88, p. 579], for every u ∈ MR(V,H, V ′), u̇ can be viewed
as a continuous function from [0, T ] into the interpolation space (H,V ′) 1

2

. In

particular, u̇(0) is well defined and u̇(0) ∈ V ′.
We start with the following lemma. Here ȧ(t, ., .) denotes the derivative of

t 7→ a(t, ., .).

Lemma 5.2. Let v ∈ H2(0, T ;V ) with v̇(T ) = 0. Then

(i)

∫ T

0

e−λt Re(v̈ | v̇)H dt =
λ

2

∫ T

0

e−λt‖v̇‖2
H dt− 1

2
‖v̇(0)‖2

H

(ii)

∫ T

0

e−λt Re a(t, v, v̇) dt =
λ

2

∫ T

0

e−λt
a(t, v, v) dt− 1

2

∫ T

0

e−λt
ȧ(t, v, v) dt

+
1

2
a(T, v(T ), v(T )) − 1

2
a(0, v(0), v(0))

Proof. For the first part we calculate the formula
(

e−λt‖v̇‖2
H

)

˙= −λe−λt‖v̇‖2
H + 2e−λt Re(v̈, v̇)H .

For (ii) we use Lemma 2.1 and the product rule to obtain

(

e−λt
a(t, v, v)

)

˙= −λe−λt
a(t, v, v) + 2e−λt Re a(t, v, v̇) + e−λt

ȧ(t, v, v).

Now the Lemma follows by integrating over t.

Proof of Theorem 5.1. First we prove existence of a solution. We define the
Hilbert space H := {u ∈ L2(0, T ;V ) ∩H1(0, T ;H) : u(0), u(T ) ∈ V } with norm

‖u‖
H

such that ‖u‖2
H

:= ‖u‖2
L2(0,T ;V )+‖u̇‖2

L2(0,T ;H)+‖u(0)‖2
V +‖u(T )‖2

V and the

pre-Hilbert space V := {v ∈ H2(0, T ;V ) : v̇(T ) = 0} with norm ‖.‖
V

:= ‖.‖
H

.
Further we define E : H × V → C by

E(u, v) := −
∫ T

0

(

u̇
∣

∣ (e−λtv̇)̇
)

H
dt
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+

∫ T

0

e−λt
a(t, u, v̇) dt+ a(0, u(0), v(0))

and for u0 ∈ V , u1 ∈ H and f ∈ L2(0, T ;V ′) we define F : V → C by

F (v) :=

∫ T

0

e−λt〈f, v̇〉 dt+ a(0, u0, v(0)) + (u1 | v̇(0))H .

As in the previous sections, we use Lions’s representation Theorem. Suppose
that the assumptions of Lions’s Theorem are satisfied. Then there exists a
u ∈ H such that

E(u, v) = F (v) (5.2)

for all v ∈ V . For the particular choice of v(t) := ψ(t)w where ψ ∈ D(0, T ) and
w ∈ V we obtain from (5.2) that

∫ T

0

〈u̇, w〉(e−λtψ̇(t))̇ dt =

∫ T

0

〈f − Au,w〉e−λtψ̇(t) dt.

This implies that u̇ ∈ H1(0, T ;V ′), hence u ∈ MR(V,H, V ′) and that

ü(t) + A(t)u(t) = f(t) t-a.e. (5.3)

Following the proof of Lemma 1 and Theorem 2 in [DL88, p. 571 and 575] we
can integrate by parts in the first term of E(u, v) to obtain

E(u, v) = 〈u̇(0), v̇(0)〉 +

∫ T

0

e−λt〈ü, v̇〉 dt

+

∫ T

0

e−λt
a(t, u, v̇) dt+ a(0, u(0), v(0))

=

∫ T

0

e−λt〈f, v̇〉 dt+ a(0, u0, v(0)) + (u1 | v̇(0))H

where we used the identity (5.2). This together with (5.3) implies that

〈u̇(0), v̇(0)〉 + a(0, u(0), v(0)) = a(0, u0, v(0)) + (u1 | v̇(0))H .

Since v ∈ V was arbitrary this shows that u(0) = u0 and u̇(0) = u1.
Next we check the assumptions of Theorem 2.4. Assumption 1) is again easy

to verify. Let v ∈ V , then integration by parts yields to

|E(v, v)| ≥ ReE(v, v) = ‖v̇(0)‖2
H +

∫ T

0

e−λt Re(v̈ | v̇)H dt

+

∫ T

0

e−λt Re a(t, v, v̇) dt+ a(0, v(0), v(0)).

Thus Lemma 5.2 applied to the first and second integral and Young’s inequality
shows that

ReE(v, v) ≥ 1

2
‖v̇(0)‖2

H +
λ

2

∫ T

0

e−λt‖v̇‖2
H dt+

λ

2

∫ T

0

e−λt
a(t, v, v) dt

17



− 1

2

∫ T

0

e−λt
ȧ(t, v, v) dt+

1

2
a(T, v(T ), v(T )) +

1

2
a(0, v(0), v(0))

≥ C‖v‖2
H

for some C > 0 if λ is large enough. Note that we can choose C depending only
on the coercivity, V -boundedness, Lipschitz constant of the form and on T .

Uniqueness: Let u ∈ MR(V,H, V ′) be a solution of (5.1) where f = 0 and
u0 = u1 = 0. We have to show that u = 0. Fix r ∈ [0, T ] and define vr(t) :=
∫ T

t
1[0,r]u(s) ds. Then vr ∈ H1(0, T ;V ) with vr(r) = 0 and v̇r = −1[0,r]u. We

obtain

0 = 2

∫ T

0

Re〈ü, vr〉 dt+ 2

∫ T

0

Re a(t, u, vr) dt

= 2

∫ r

0

∫ r

t

Re〈ü(t), u(s)〉 ds dt− 2

∫ r

0

Re a(t, v̇r, vr) dt

= 2

∫ r

0

∫ s

0

Re〈ü(t), u(s)〉 dt ds− 2

∫ r

0

Re a(t, v̇r, vr) dt

= 2

∫ r

0

Re〈
∫ s

0

ü(t) dt, u(s)〉 ds−
∫ r

0

(a(t, vr, vr))̇ − ȧ(t, vr, vr) dt

= 2

∫ r

0

Re〈u̇, u〉 ds+ a(0, vr(0), vr(0)) −
∫ r

0

ȧ(t, vr, vr) dt

≥ ‖u(r)‖2
H + α‖vr(0)‖2

V − Ṁ

∫ r

0

‖vr‖2
V dt.

We set w(r) := vr(0) =
∫ r

0
u(s) ds ∈ L2(0, T ;V ). Then w(r) −w(t) = vr(t) and

α‖w(r)‖2
V ≤ Ṁ

∫ r

0

‖w(r) − w(t)‖2
V dt ≤ 2rṀ‖w(r)‖2

V + 2Ṁ

∫ r

0

‖w(t)‖2
V dt.

Let 0 < r0 <
α

2Ṁ
and set Cr0

:= α − 2r0Ṁ > 0, then for every r ∈ [0, r0] we
have

‖w(r)‖2
V ≤ 2ṀC−1

r0

∫ r

0

‖w(t)‖2
V dt.

We conclude by Gronwall’s lemma that w(r) = 0 for all r ∈ [0, r0], hence u = 0
on [0, r0]. Now we may proceed inductively to obtain u = 0 on [0, T ].

Remark 5.3. If we add a V ×H-bounded perturbation to a as in Section 4, we
can still prove existence in Theorem 5.1. But for the uniqueness we have to
assume additionally that this perturbation is also H × V -bounded.

Remark 5.4. Let B(t) be bounded operators on H with ‖B(t)‖L(H) ≤ MB for
a.e. t ∈ [0, T ]. We consider the wave equation

{

ü(t) +B(t)u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1

(5.4)

Then for u0 ∈ V , u1 ∈ H and f ∈ L2(0, T, V ′) there exists a solution u ∈
MR(V,H, V ′) to (5.4). The proof is the same as above, one has only to change
E(u, v) into

E(u, v) := −
∫ T

0

(

u̇
∣

∣ (e−λtv̇)̇
)

H
dt
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+

∫ T

0

e−λt(B(t)u̇ | v̇)H dt

+

∫ T

0

e−λt
a(t, u, v̇) dt+ a(0, u(0), v(0)).

The uniqueness of u is however not clear except if the map t 7→ B(t) is Lipschitz.
If this later condition is satisfied one can use similar ideas as in [DL88, p. 686]
to prove uniqueness. The proof for uniqueness in Theorem 5.1 is similar to that
of [DL88, p. 673].

6 Applications

In this section we give applications of our results. We consider two problems,
one is linear and the second one is quasi-linear.

I) Laplacian with time dependent Robin boundary conditions.
Let Ω be a bounded domain of Rd with Lipschitz boundary Γ. Denote by σ be
the (d− 1)-dimensional Hausdorff measure on Γ. Let

β1, β2 : [0, T ] × Γ → R

be bounded measurable functions which are Lipschitz continuous w.r.t. the first
variable, i.e.,

|βi(t, x) − βi(s, x)| ≤ M |t− s| (i = 1, 2) (6.1)

for some constant M and all t, s ∈ [0, T ], x ∈ Γ. We consider the symmetric
forms

a, b : [0, T ] ×H1(Ω) ×H1(Ω) → R

defined by

a(t, u, v) =

∫

Ω

∇u∇v dx+

∫

Γ

β1(t, .)uv dσ. (6.2)

and

b(t, u, v) =

∫

Ω

∇u∇v dx+

∫

Γ

β2(t, .)uv dσ. (6.3)

respectively. The forms a, b are H1(Ω)-bounded and quasi-coercive. The first
statement follows readily from the continuity of the trace operator and the
boundedness of β. The second one is a consequence of the inequality

∫

Γ

|u|2 dσ ≤ ǫ‖u‖2
H1(Ω) + cǫ‖u‖2

L2(Ω), (6.4)

which is valid for all ǫ > 0 (cǫ is a constant depending on ǫ). Note that (6.4)
is a consequence of compactness of the trace as an operator from H1(Ω) into
L2(Γ, dσ), see [Nec67, Chap. 2 § 6, Theorem 6.2].

Let A(t) be the operator associated with a(t, ., .) and B(t) the operator asso-
ciated with b(t, ., .). Note that the part A(t) in H := L2(Ω) of A(t) is interpreted
as (minus) the Laplacian with time dependent Robin boundary conditions

∂νv + β1(t, .)v = 0 on Γ.
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Here we use the following weak definition of the normal derivative. Let v ∈
H1(Ω) such that ∆v ∈ L2(Ω). Let h ∈ L2(Γ, dσ). Then ∂νv = h by definition
if

∫

Ω ∇v∇w +
∫

Ω ∆vw =
∫

Γ hw dσ for all w ∈ H1(Ω). Based on this definition,
the domain of A(t) is the set

D(A(t)) = {v ∈ H1(Ω) : ∆v ∈ L2(Ω), ∂νv + β1(t)v|Γ = 0},

and for v ∈ D(A(t)) the operator is given by A(t)v = −∆v.
Maximal regularity on H for the first order Cauchy problem associated with

A(t) was proved in [ADLO13]. Here we study the second order problem. By
Theorem 4.1, the damped wave equation











ü(t) − ∆u̇(t) − ∆u(t) = f(t)

u(0) = u0, u̇(0) = u1 ∈ H1(Ω)

∂ν(u̇(t) + u(t)) + β2(t, .)u̇(t) + β1(t, .)u(t) = 0 on Γ

has a unique solution u ∈ MR(V, V,H) = H2(0, T ;L2(Ω)) ∩ H1(0, T ;H1(Ω))
whenever f ∈ L2(0, T, L2(Ω)).

Indeed, Theorem 4.1 implies that there exists u ∈ MR(V, V, V ′) with u(0) =
u0, u̇(0) = u1 and

(ü, v)H + b(t, u̇, v) + a(t, u, v) = (f, v)H (6.5)

for all v ∈ V and all t ∈ [0, T ] \ N , where N is a Lebesgue null set. Let
t ∈ [0, T ] \N , then for the special choice v ∈ D(Ω) we obtain that (6.5) implies
ü(t) − ∆u̇(t) − ∆u(t) = f(t). This together with (6.5) and the above definition
of the normal derivative shows

∂ν(u̇(t) + u(t)) + β2(t, .)u̇(t) + β1(t, .)u(t) = 0 on Γ.

II) A quasi-linear problem.
Let Ω be a bounded open set of Rd and let H be the real-valued Hilbert space
L2(Ω, dx) and V be a closed subspace of H1(Ω) which contains H1

0 (Ω). If V 6=
H1

0 (Ω) we assume that Ω is a Lipschitz domain to ensure that the embedding
of V in H is compact. This latter property is always true for V = H1

0 (Ω) for
any bounded domain Ω.

For g, h ∈ L2(0, T ;H) we define the forms ag,h, bg,h : [0, T ] × V × V → R by

ag,h(t, u, v) =

d
∑

k,j=1

∫

Ω

ajk(t, x, g, h)∂ku∂jv dx

and

bg,h(t, u, v) =

d
∑

k,j=1

∫

Ω

bjk(t, x, g, h)∂ku∂jv dx.

We assume that the coefficients ajk, bjk : [0, T ] × Ω × R × R → R are uniformly
bounded on [0, T ] × Ω × R × R by a constant M > 0 and satisfy the usual
ellipticity condition

d
∑

k,j=1

ajk(t, x, y, z)ξkξj ≥ η|ξ|2,
d

∑

k,j=1

bjk(t, x, y, z)ξkξj ≥ η|ξ|2

20



for a.e. (t, x) ∈ [0, T ] × Ω and all y, z ∈ R, ξ ∈ Rd. Here η > 0 is a constant.
Moreover we assume that ajk(t, x, ., .), bjk(t, x, ., .) are continuous for a.e. (t, x).
We denote by Ag,h(t) and Bg,h(t) the associated operators.

Given u0 ∈ V , u1 ∈ H and f ∈ L2(0, T ;V ′) the second order Cauchy
problem

{

ü(t) + Bg,h(t)u̇(t) + Ag,h(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1

(6.6)

has a unique solution ug,h ∈ MR(V, V, V ′) by Theorem 3.1. Moreover, by Propo-
sition 3.3 there exists C > 0 and 0 < T0 ≤ T depending only on M and η such
that the solution of (6.6) on [0, T0] satisfies the estimate

‖ug,h‖
MRT0

(V,V,V ′) ≤ C
[

‖u0‖V + ‖u1‖H + ‖f‖L2(0,T0;V ′)

]

. (6.7)

Note that C and T0 are independent of g and h. We want to show that the
quasi-linear problem

{

ü(t) + Bu,u̇(t)u̇(t) + Au,u̇(t)u(t) = f(t) t-a.e.

u(0) = u0, u̇(0) = u1

(6.8)

has a solution u in MR(V, V, V ′). We define the mapping S : H1(0, T ;H) →
H1(0, T ;H) by Sg := ug,ġ. Note that by (6.7) and the fact that C is independent
of g and h, Im(S) is a bounded subset of MR(V, V, V ′). Moreover by Aubin-
Lions lemma, MR(V, V, V ′) is compactly embedded into H1(0, T ;H). Therefore,
if S is continuous then we can apply Schauder’s fixed point theorem to obtain
u ∈ H1(0, T ;H) such that Su = u. Thus u is also in MR(V, V, V ′) and u ∈
Im(S). Hence u is a solution of (6.8).

It remains to prove that S is continuous. Let gn → g in H1(0, T ;H) and
set un := Sgn. Since a sequence converges to a fixed element u if and only
if each subsequence has a subsequence converging to u we may deliberately
take subsequences. Since L2(0, T ;H) is isomorphic to L2((0, T ) × Ω) we may
assume (after taking a sub-sequence) that gn → g and ġn → ġ for a.e. (t, x).
Furthermore since the sequence un is bounded in MR(V, V, V ′) we may assume
(after taking a sub-sequence) that un → u in H1(0, T ;H) and un ⇀ u in
MR(V, V, V ′). Hence ajk(t, x, gn, ġn) → ajk(t, x, g, ġ) and bjk(t, x, gn, ġn) →
bjk(t, x, g, ġ) for a.e. (t, x). Now the equality un = Sgn means that

〈ün,v〉L2(0,T ;V ′),L2(0,T ;V ) +
d

∑

j,k=1

(∂j u̇n | bjk(t, x, gn, ġn)∂kv)L2(0,T ;H)

+

d
∑

j,k=1

(∂jun | ajk(t, x, gn, ġn)∂kv)L2(0,T ;H) = 〈f, v〉L2(0,T ;V ′),L2(0,T ;V )

for all v ∈ L2(0, T ;V ) and un(0) = u0, u̇n(0) = u1. By the dominated con-
vergence theorem ajk(t, x, gn, ġn)∂kv → ajk(t, x, g, ġ)∂kv in L2(0, T ;H). More-
over un ⇀ u in MR(V, V, V ′) implies that ∂jun ⇀ ∂ju and ∂j u̇n ⇀ ∂j u̇ in
L2(0, T ;H). Thus taking the limit for n → ∞ yields

〈ü,v〉L2(0,T ;V ′),L2(0,T ;V ) +

d
∑

j,k=1

(∂j u̇ | bjk(t, x, g, ġ)∂kv)L2(0,T ;H)
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+

d
∑

j,k=1

(∂ju | ajk(t, x, g, ġ)∂kv)L2(0,T ;H) = 〈f, v〉L2(0,T ;V ′),L2(0,T ;V )

for all v ∈ L2(0, T ;V ) and u(0) = u0, u̇(0) = u1. Note that for the initial
condition we have used that MR(V, V, V ′) →֒ C1([0, T ];H) ∩ C([0, T ];V ), see
(3.3). This is equivalent to Sg = u. Hence S is continuous.
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