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We consider non-autonomous wave equations

where the operators A(t) and B(t) are associated with time-dependent sesquilinear forms a(t, ., .) and b defined on a Hilbert space H with the same domain V . The initial values satisfy u0 ∈ V and u1 ∈ H. We prove well-posedness and maximal regularity for the solution both in the spaces V ′ and H. We apply the results to non-autonomous Robin-boundary conditions and also use maximal regularity to solve a quasilinear problem.

Introduction

The present paper is a continuation of [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] which is devoted to maximal regularity for first order non-autonomous evolution equations governed by forms. Here we address the problem of maximal regularity for non-autonomous second order problems. We consider Hilbert spaces H and V such that V is continuously embedded into H and two families of sesquilinear forms

a : [0, T ] × V × V → C, b : [0, T ] × V × V → C such that a(., u, v) : [0, T ] → C, b(., u, v) : [0, T ] → C are measurable for all u, v ∈ V , |a(t, u, v)| ≤ M u V v V (t ∈ [0, T ]),
and Re a(t, u, u)

+ w u 2 H ≥ α u 2 V (u ∈ V, t ∈ [0, T ])
where M ≥ 0, w ∈ R, and α > 0 are constants. We assume also that b satisfies the same properties. For fixed t ∈ [0, T ], we denote by A(t), B(t) ∈ L(V, V ′ ) the operators associated with the forms a(t, ., .) and b(t, ., .), respectively. Given a function f defined on [0, T ] with values either in H or in V ′ and consider the second order evolution equation ü(t) + B(t) u(t) + A(t)u(t) = f (t) t-a.e. u(0) = u 0 , u(0) = u 1 .

(1.1) with initial values u 0 ∈ V and u 1 ∈ H. This is a damped non-autonomous wave equation. The equation without the factor u, i.e., ü(t) + A(t)u(t) = f (t) t-a.e. u(0) = u 0 , u(0) = u 1 .

(1.2) is a non-autonomous wave equation.

Our aim is to prove well-posedness and maximal regularity for (1.1) and (1.2). We shall prove three main results. The first one concerns maximal regularity in V ′ for the damped wave equation (1.1). We prove that for u 0 ∈ V, u 1 ∈ H and f ∈ L 2 (0, T, V ′ ) there exists a unique solution u ∈ H 1 (0, T, V ) ∩ H 2 (0, T, V ′ ). This result was first proved by Lions [Lio61,p. 151] by assuming regularity of t → a(t, u, v) and t → b(t, u, v) for every fixed u, v ∈ V . This regularity assumption was removed in Dautray-Lions [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF]p. 667], but taking f ∈ L 2 (0, T, H) and considering mainly symmetric forms. The general case was given recently by Batty, Chill and Srivastava [START_REF] Batty | Maximal regularity for second order non-autonomous Cauchy problems[END_REF] by reducing the problem to a first order non-autonomous equation. The result in [START_REF] Batty | Maximal regularity for second order non-autonomous Cauchy problems[END_REF] is stated in the case u 0 = u 1 = 0, only. Our proof is different from [START_REF] Batty | Maximal regularity for second order non-autonomous Cauchy problems[END_REF] and is inspired by that of Lions [START_REF] Lions | Equations Différentielles Opérationnelles et Problèmes aux Limites[END_REF]. Next we consider maximal regularity in H. This is more delicate and needs extra properties on the forms a and b. We prove that if the forms are symmetric and t → a(t, u, v) and t → b(t, u, v) are piecewise Lipschitz on [0, T ] then for u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T, H) there exists a unique solution u ∈ H 1 (0, T, V )∩H 2 (0, T, H) to the equation (1.1). We also allow some non-symmetric perturbations of a and b. The third result (Theorem 5.1) concerns the wave equation (1.2). We prove that if a is symmetric and t → a(t, u, v) is Lipschitz on [0, T ], then for every u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T, H) there exists a unique solution u ∈ L 2 (0, T, V )∩H 1 (0, T, H)∩H 2 (0, T, V ′ ) to the equation (1.2). This result is not new and was already proved by Lions [Lio61,p. 150] for the case u 0 = 0 and later in [DL88, p. 666] for u 0 ∈ V and u 1 ∈ H. Theorem 5.1 is stated in order to have a complete picture of maximal regularity for wave equations with or without damping. The proof in [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF] uses a Galerkin method and sectorial approximation. The proofs of the three main theorems use a representation result of Lions (see Theorem 2.4 below) for a given sesquilinear form E acting on a product of a Hilbert and pre-Hilbert spaces H × V. In each case we have to define the appropriate spaces H, V and the form E to which we apply Theorem 2.4. This idea was already used in [START_REF] Lions | Equations Différentielles Opérationnelles et Problèmes aux Limites[END_REF]. Our choice of the spaces H, V and the form E allow us to sharpen and extend some results from [START_REF] Lions | Equations Différentielles Opérationnelles et Problèmes aux Limites[END_REF] and assume less regularity on t → a(t, u, v) and t → b(t, u, v).

We illustrate our abstract results by two examples. The first one is a linear damped wave equation with time dependent Robin boundary conditions. The second is a quasi-linear second order non-autonomous problem. The latter is treated by a fixed point argument but the implementation of this classical idea uses heavily a priori estimates that follow from our maximal regularity results for linear equations.
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Preliminaries

Throughout this paper, V and H are separable Hilbert spaces over the field K = C or R. The scalar products of H and V and the corresponding norms will be denoted by (. | .) H , (. | .) V , . H and . V , respectively. We denote by V ′ the antidual of V when K = C and the dual when K = R. The duality between V ′ and V is denoted by ., . . Then

u, v = (u | v) H for u ∈ H and v ∈ V . We assume that V ֒→ d H;
i.e., V is a dense subspace of H such that for some constant c H > 0,

u H ≤ c H u V (u ∈ V ). (2.1)
By duality and density of V in H one has

H ֒→ d V ′ .
The space H is then identified with a dense subspace of

V ′ (associating to u ∈ H the antilinear map v → (u | v) H = u, v for v ∈ V ). Let a : [0, T ] × V × V → K
be a family of sesquilinear and V -bounded forms; i.e.

|a(t, u, v)| ≤ M u V v V (u, v ∈ V, t ∈ [0, T ]) (2.2)
for some constant M , such that a(., u, v) is measurable for all u, v ∈ V . We shall call a satisfying the above properties a V -bounded non-autonomous sesquilinear form. Moreover we say that a is quasi-coercive if there exist constants α > 0,

ω ∈ R such that Re a(t, u, u) + ω u 2 H ≥ α u 2 V (u ∈ V, t ∈ [0, T ]). (2.3)
If ω = 0, we say that the form a is coercive.

For t ∈ [0, T ], a V -bounded and quasi-coercive sesquilinear form a(t, ., .) is closed. The operator A(t) ∈ L(V, V ′ ) associated with a(t, ., .) is defined by

A(t)u, v = a(t, u, v) for u, v ∈ V.
(2.4)

We may also associate with a(t, ., .) an operator on H by taking the part A(t) of A(t) on H; i.e.,

D(A(t))

:= {u ∈ V : A(t)u ∈ H} A(t)u := A(t)u.
Note that if a(t, ., .) is symmetric, i.e.,

a(t, u, v) = a(t, v, u)
for all u, v ∈ V , then the operator A(t) is self-adjoint. For a Hilbert space E we denote by L 2 (0, T, E) the L 2 -space on (0, T ) of functions with values in E and by H k (0, T, E) we denote the usual Sobolev space of order k of functions on (0, T ) with values in E. For u ∈ H 1 (0, T ; E) we denote the first derivative by u and for u ∈ H 2 (0, T ; E) the second derivative by ü.

We start with the following differentiation result.

Lemma 2.1. Let a : [0, T ] × V × V → K be a V -bounded, quasi-coercive non-autonomous form. Suppose that it is Lips- chitz with Lipschitz constant Ṁ , that is |a(t, φ, ψ) -a(s, φ, ψ)| ≤ Ṁ |t -s| φ V ψ V , t, s ∈ [0, T ] and φ, ψ ∈ V.
Let u, v ∈ H 1 (0, T ; V ). Then a(., u, v) ∈ W 1,1 (0, T ) and there exists a nonautonomous form ȧ which is V -bounded with constant Ṁ such that a(., u, v)˙= a(., u, v) + a(., u, v) + ȧ(., u, v)

If additionally a is symmetric then a(., u, u)˙= 2 Re a(., u, u) + ȧ(., u, u).

Note that for u, v ∈ V we have d dt a(t, u, v) = ȧ(t, u, v) for a.e. t ∈ [0, T ]. This lemma is a consequence of the next two results. Lemma 2.2. Let u ∈ H 1 (0, T ; V ) and v ∈ H 1 (0, T ; V ′ ). Then v(.), u(.) ∈ W 1,1 (0, T ) and v(.), u(.) ˙= v(.), u(.) + v(.), u(.) .

Proof. By Fubini's Theorem we have

t 0 v(s), u(s) ds = t 0 v(s), u(0) + s 0 u(r) dr ds = v(t), u(0) -v(0), u(0) + t 0 s 0 v(s), u(r) dr ds = v(t), u(0) -v(0), u(0) + t 0 t r v(s), u(r) ds dr = v(t), u(0) -v(0), u(0) + t 0 v(t), u(r) -v(r), u(r) dr = v(t), u(t) -v(0), u(0) - t 0 v(r), u(r) dr.
Thus

v(t), u(t) = v(0), u(0) + t 0 v(s), u(s) ds + t 0 v(s), u(s) ds
which proves the claim.

Proposition 2.3. Let S : [0, T ] → L(V, V ′ ) be Lipschitz continuous. Then the following assertions hold.

a) There exists a bounded, strongly measurable function

Ṡ : [0, T ] → L(V, V ′ ) such that d dt S(t)u = Ṡ(t)u (u ∈ V )
for a.e. t ∈ [0, T ] and

Ṡ(t) L(V,V ′ ) ≤ L (t ∈ [0, T ])
where L is the Lipschitz constant of S.

b) If u ∈ H 1 (0, T ; V ), then Su := S(.)u(.) ∈ H 1 (0, T ; V ′ ) and

(Su)˙= Ṡ(.)u(.) + S(.) u(.).

(2.5) Theorem 2.4 (Lions' Representation Theorem). Let H be a Hilbert space, V a pre-Hilbert space such that V ֒→ H. Let E : H × V → K be sesquilinear such that 1) for all w ∈ V, E(., w) is a continuous linear functional on H;

2) |E(w, w)| ≥ α w 2 V for all w ∈ V for some α > 0. Let L ∈ V ′ . Then there exists u ∈ H such that Lw = E(u, w)
for all w ∈ V.

Maximal Regularity for the Damped Wave Equation in V ′

Let H, V be Hilbert spaces such that V d ֒→ H. We define the following maximal regularity space

MR(V, V, V ′ ) := L 2 (0, T, V ) ∩ H 1 (0, T ; V ) ∩ H 2 (0, T ; V ′ ) = H 1 (0, T ; V ) ∩ H 2 (0, T ; V ′ ). Let a : [0, T ] × V × V → C and b : [0, T ] × V × V → C be non-autonomous V -bounded
and quasi-coercive sesquilinear forms. We denote by A(t) and B(t) their associated operators in the sense of (2.4). The following is our first result.

Theorem 3.1. For every u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T ; V ′ ), there exists a unique solution u ∈ MR(V, V, V ′ ) of the non-autonomous second order Cauchy problem ü(t) + B(t) u(t) + A(t)u(t) = f (t) t-a.e. u(0) = u 0 , u(0) = u 1 . (3.1)
Moreover there exists a constant C > 0 such that

u MR(V,V,V ′ ) ≤ C u 0 V + u 1 H + f L 2 (0,T ;V ′ ) . (3.2)
As mentioned in the introduction, this theorem was first proved by Lions [Lio61, p. 151] under an additional regularity assumption on t → a(t, u, v) and t → b(t, u, v). This regularity assumption was removed in Dautray-Lions [DL88, p. 667], but taking f ∈ L 2 (0, T, H) and considering mainly symmetric forms (they allow some non-symmetric perturbations). Their proof is based on a Galerkin method. Another proof of Theorem 3.1 was given recently by Batty, Chill and Srivastava [START_REF] Batty | Maximal regularity for second order non-autonomous Cauchy problems[END_REF] but they consider only the case u 0 = u 1 = 0. Our proof is based on Theorem 2.4 and is in the spirit of Lions [START_REF] Lions | Equations Différentielles Opérationnelles et Problèmes aux Limites[END_REF]. It is different from the proofs in [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF] and [START_REF] Batty | Maximal regularity for second order non-autonomous Cauchy problems[END_REF].

A classical result of Lions says that

MR(V, V ′ ) := L 2 (0, T, V ) ∩ H 1 (0, T ; V ′ ) ֒→ C([0, T ]; H), (3.3) 
and also that for

u ∈ MR(V, V ′ ) the function u(.) 2 H is in W 1,1 (0, T ) with ( u 2 H )˙= 2 Re u, u , (3.4) see [Sho97, p. 106] and [DL88, p.570]. This implies that MR(V, V, V ′ ) ֒→ C([0, T ]; V ) ∩ C 1 ([0, T ]; H). Thus for u ∈ MR(V, V, V ′ )
, both u(0) and u(0) make sense. We start with the following basic lemma.

Lemma 3.2. For v ∈ H 1 (0, T ; V ) we have T 0 v(t) 2 V dt 1/2 ≤ T T 0 v(s) 2 V ds 1/2 + √ T v(0) V . Proof. Note that v(t) = v(0) + t 0 v(s) ds, thus T 0 v(t) 2 V dt = T 0 v(0) + t 0 v(s) ds v(t) V dt = T 0 T s ( v(s) | v(t)) V dt ds + T 0 (v(0) | v(t)) V dt ≤ T 0 T 0 v(s) V v(t) V dt ds + T 0 v(0) V v(t) V dt ≤ T 0 v(t) V dt T 0 v(s) V ds + v(0) V ≤ T T 0 v(t) 2 V dt 1/2 T T 0 v(s) 2 V ds 1/2 + v(0) V .
Proof of Theorem 3.1. It suffices to show that there exists a unique solution in the case where T < T 0 and T 0 > 0 is a constant that depends only on the constants M, ω and α of (2.2) and (2.3). Indeed we can extend this solution to [0, T ] for any fixed T as follows. We write the interval [0, T ] as a finite union of sub-intervals [τ i , τ i+1 ], each has length less than T 0 . On each interval [τ i , τ i+1 ] we have a unique solution

u i with u i (τ i ) ∈ V , ui (τ i ) ∈ H and u i ∈ MR(V, V, V ′ ) ֒→ C 1 ([τ i , τ i+1 ]; H) ∩ C([τ i , τ i+1 ]; V ). On [τ i+1 , τ i+2 ] we solve the equation with u i+1 (τ i+1 ) = u i (τ i+1 ) and ui+1 (τ i+1 ) = ui (τ i+1 ). We define u on [0, T ] by u = u i on [τ i , τ i+1 ] and check easily that u ∈ MR(V, V, V ′ ) (on [0, T ])
is the unique solution to (3.1).

We prove existence of a solution in the case where

T < T 0 = min α 2 M 2 , α √ 2M . (3.5)
Note that we may assume throughout this proof that the forms a and b are both coercive. Indeed, set v(t) = e wt u(t) then we have

v(t) + B(t) v(t) + A(t)v(t) = e wt ü(t) + (B(t) + 2w) u(t) + (A(t) + wB(t) + w 2 )u(t) . (3.6)
Since a and b are quasi-coercive, we may choose w large enough such that b+2w and a + wb

+ w 2 are coercive. Note also that v ∈ MR(V, V, V ′ ) if and only if u ∈ MR(V, V, V ′ ).
We define the Hilbert space H := H 1 (0, T ; V ) endowed with its usual norm u H := u H 1 (0,T ;V ) and the pre-Hilbert space

V := {v ∈ H 2 (0, T ; V ) : v(T ) = 0}
with norm . V := . H . Further we define the sesquilinear form E :

H × V → C by E(u, v) := - T 0 ( u | v) H dt + T 0 b(t, u, v) dt + T 0 a(t, u, v) dt + a(0, u(0), v(0)) and for u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T ; V ′ ) we define F : V → C by F (v) := T 0 f, v dt + a(0, u 0 , v(0)) + (u 1 | v(0)) H . We claim that 1) E(., v) ∈ H ′ and F ∈ V ′ ;
2) E is coercive; i.e., there exists a

C > 0 such that |E(v, v)| ≥ C v 2 H for all v ∈ V.
Suppose for a moment that 1) and 2) are satisfied. Then we can apply Lions's representation theorem (see Theorem 2.4) and obtain u ∈ H such that

E(u, v) = F (v) ∀ v ∈ V. (3.7)
We show that u is a solution of (3.1). Let ψ(t) ∈ D(0, T ) and w ∈ V and choose v(t)

:= t 0 ψ(s) ds w. It follows from (3.7) that - T 0 u(t), w ψ(t)dt = T 0 f (t) -B(t) u -A(t)u(t), w ψ(t) dt. This means that u ∈ H 1 (0, T ; V ′ ), hence u ∈ MR(V, V, V ′ ) and ü(t) + B(t) u(t) + A(t)u(t) = f (t) t-a.e.
(3.8) in V ′ . For general v ∈ V, we use again (3.7) and integration by parts to obtain

( u(0) | v(0)) H + T 0 ü, v dt + T 0 b(t, u, v) dt + T 0 a(t, u, v) dt + a(0, u(0), v(0)) = T 0 f, v dt + a(0, u 0 , v(0)) + (u 1 | v(0)) H .
This equality together with (3.8) imply that

( u(0) | v(0)) H + a(0, u(0), v(0)) = a(0, u 0 , v(0)) + (u 1 | v(0)) H .
Since v ∈ V is arbitrary we obtain that u(0) = u 0 and u(0) = u 1 . Therefore, u is a solution of (3.1) on [0, T ] for T ≤ T 0 and T 0 is such that the above properties 1) and 2) are satisfied. Now we return to 1) and 2). Property 1) is obvious. We show the coercivity property

2). Let v ∈ V. The equality d dt v(t) 2 H = 2 Re(v(t) | v(t)) H implies T 0 Re(v | v) H dt = - 1 2 v(0) 2 H .
It follows that

|E(v, v)| ≥ Re E(v, v) = 1 2 v(0) 2 H + T 0 Re b(t, v, v) dt + T 0 Re a(t, v, v) dt + Re a(0, v(0), v(0)).
We use coercivity of b, a and V -boundedness of a to obtain

|E(v, v)| ≥ 1 2 v(0) 2 H + α T 0 v 2 V dt -M T 0 v V v V dt + α v(0) 2 V .
Therefore, by Young's inequality, we have

|E(v, v)| ≥ 1 2 v(0) 2 H + α 2 T 0 v 2 V dt - M 2 2α T 0 v 2 V dt + α v(0) 2 V .
Next we apply Lemma 3.2 to obtain

|E(v, v)| ≥ α 2 - M 2 T 2 α T 0 v 2 V dt + α - M 2 T α v(0) 2 V .
Now we use (3.5) and the fact that by Lemma 3.2,

T 0 v 2 V dt is dominated (up to a constant) by T 0 v 2 V dt + v(0) 2 V .
We obtain 2). Next we prove uniqueness. Suppose that u and v are two solutions of (3.1) which are in

MR(V, V, V ′ ). Set w = u -v. Clearly w ∈ MR(V, V, V ′ ) and satisfies (in V ′ ) ẅ(t) + B(t) ẇ(t) + A(t)w(t) = 0, w(0) = 0, ẇ(0) = 0.
We show that w = 0. For fixed t ∈ (0, T ] we have 

ẇ 2 H ˙ds = 1 2 ẇ(t) 2 H - 1 2 ẇ(0) 2 H = 1 2 ẇ(t) 2 H ,
and hence

0 = 1 2 ẇ(t) 2 H + t 0 Re b(s, ẇ, ẇ) ds + t 0 Re a(s, w, ẇ) ds ≥ 1 2 ẇ(t) 2 H + α t 0 ẇ 2 V ds -M t 0 w V ẇ V ds.
Here we used coercivity of b and V -boundedness of a. Therefore, by Lemma 3.2, we have

0 ≥ 1 2 ẇ(t) 2 H + α t 0 ẇ 2 V ds -M t 0 w 2 V ds 1/2 t 0 ẇ 2 V ds 1/2 ≥ 1 2 ẇ(t) 2 H + (α -M T ) t 0 ẇ 2 V ds.
By (3.5) we obtain that w = 0. This shows uniqueness. Finally, in order to prove the apriori estimate (3.2), we consider the operator

S : V × H × L 2 (0, T, V ′ ) → MR(V, V, V ′ ), (u 0 , u 1 , f ) → u.
This is a linear operator which is well defined thanks to the uniqueness of the solution u of (3.1). It is easy to see that S is a closed operator. Therefore it is continuous by the closed graph theorem. This gives (3.2).

The previous proof does not give any information on the constant C in (3.2). For small time T one can prove that C depends only on the constants of the forms. This observation will be needed in our application to a quasi-linear problem.

Proposition 3.3. If T > 0 is small enough, then the constant C in (3.2) depends only on the constants w, α, M and T .

Proof. Let u ∈ MR(V, V, V ′ ) be the solution of (3.1). For fixed t ∈ (0, T ] we have Since by (3.4)

t 0 Re ü, u ds = 1 2 t 0 u 2 H ˙ds = 1 2 u(t) 2 H - 1 2 u(0) 2 H ,
it follows by Young's inequality that

1 α t 0 f 2 V ′ ds + α 4 t 0 u 2 V ds ≥ t 0 f V ′ u V ds ≥ t 0 Re f, u ds = 1 2 u(t) 2 H - 1 2 u(0) 2 H + t 0 Re b(s, u, u) ds + t 0 Re a(s, u, u) ds ≥ - 1 2 u(0) 2 H + α t 0 u 2 V ds -M t 0 u V u V ds ≥ - 1 2 u(0) 2 H + 3α 4 t 0 u 2 V ds - M 2 α t 0 u 2 V ds.
Here we used coercivity of b and V -boundedness of a. Therefore, by Lemma 3.2, we have

1 α t 0 f 2 V ′ ds + 1 2 u(0) 2 H ≥ α 2 t 0 u 2 V ds - M 2 α t 0 u 2 V ds ≥ α 2 - t 2 (2M 2 + α) α t 0 u 2 V ds -t 2M 2 + α α u(0) 2 V + 1 2 t 0 u 2 V ds.
(3.9)

where we choose

t such that α 2 > t 2 (2M 2 +α) α . Finally, since ü(s) = f (s) -A u(s) -Bu(s) s-a.e.
we obtain that ü(s)

2 V ′ ≤ 3 f (s) 2 V ′ + 3M u(s) 2 V + 3M u(s) 2 V s-a.e.
This together with (3.9) ends the proof of the proposition when T is such that

α 2 > T 2 (2M 2 + α) α .

Maximal Regularity for the Damped Wave Equation in H

Let V, H be separable Hilbert spaces such that V ֒→ d H and let

a, b : [0, T ] × V × V → K
be closed non-autonomous sesquilinear forms on which we impose the following conditions. Each can be written as the sum of two non-autonomous forms

a(t, u, v) = a 1 (t, u, v) + a 2 (t, u, v), b(t, u, v) = b 1 (t, u, v) + b 2 (t, u, v) u, v ∈ V where a 1 , b 1 : [0, T ] × V × V → K satisfy the following assumptions a) |a 1 (t, u, v)| ≤ M u V v V for all u, v ∈ V , t ∈ [0, T ]; b) a 1 (t, u, u) ≥ α u 2 V for all u ∈ V , t ∈ [0, T ] with α > 0; c) a 1 (t, u, v) = a 1 (t, v, u) for all u, v ∈ V , t ∈ [0, T ]; d) a 1 is piecewise Lipschitz-continuous; i.e., there exist 0 = τ 0 < τ 1 < • • • < τ n = T such that |a 1 (t, u, v) -a 1 (s, u, v)| ≤ Ṁ |t -s| u V v V for all u, v ∈ V, s, t ∈ [τ i-1 , τ i ], i ∈ {1, . . . , n},
and similarly for b 1 . Of course we may choose the same constants M, Ṁ and α for both forms a 1 and b 1 . We may also choose that same sub-intervals 0

= τ 0 < τ 1 < • • • < τ n = T for both forms.
The non-autonomous forms

a 2 , b 2 : [0, T ] × V × V → K are measurable and satisfy e) |a 2 (t, u, v)| ≤ M u V v H for all u, v ∈ V , t ∈ [0, T ],
and similarly for b 2 . Note that by Lemma 2.1, if c is a Lipschitz form on [0, T ], we may define its derivative ċ(t, ., .) and we have

|ċ(t, u, v)| ≤ Ṁ u V v V , u, v ∈ V (4.1)
for some constant Ṁ . We shall use this estimate for c = a 1 and for c = b 1 on sub-intervals of [0, T ] where these forms are supposed to be Lipschitz. Let us denote by A(t) and B(t) the operators given by

A(t)u, v = a(t, u, v) and B(t)u, v = b(t, u, v) for all u, v ∈ V .
As in the previous section we consider the damped wave equation. Here we study the maximal regularity property in H rather than in V ′ . We introduce the maximal regularity space

MR(V, V, H) := H 1 (0, T ; V ) ∩ H 2 (0, T ; H).
We have Theorem 4.1. Let a = a 1 + a 2 and b = b 1 + b 2 be non-autonomous V -bounded and quasi-coercive forms satisfying the above properties a)e). Then for every u 0 , u 1 ∈ V and f ∈ L 2 (0, T ; H), there exists a unique solution u ∈ MR(V, V, H) of the non-autonomous second order Cauchy problem

ü(t) + B(t) u(t) + A(t)u(t) = f (t) t-a.e. u(0) = u 0 , u(0) = u 1 (4.2) Moreover u(t) ∈ V for all t ∈ [0, T ].
For a related result see Lions [START_REF] Lions | Equations Différentielles Opérationnelles et Problèmes aux Limites[END_REF]p. 155]. However the result proved there is restricted to u 1 = 0 and assumes f, f ′ ∈ L 2 (0, T, H). Our proof resembles that of Theorem 3.1 and uses similar ideas as in Lions [START_REF] Lions | Equations Différentielles Opérationnelles et Problèmes aux Limites[END_REF].

We use the following lemma for the proof of Theorem 4.1.

Lemma 4.2. Suppose that the forms a 1 and b 1 are Lipschitz continuous on

[0, T ]. Let v ∈ H 2 (0, T ; V ) and ǫ > 0. Then (i) T 0 e -λt Re b 1 (t, v, v) dt = λ 2 T 0 e -λt b 1 (t, v, v) dt -1 2 T 0 e -λt ḃ1 (t, v, v) dt + 1 2 e -λT b 1 (T, v(T ), v(T )) -1 2 b 1 (0, v(0), v(0)). (ii) T 0 e -λt Re a 1 (t, v, v) dt = λ 2 e -λT a 1 (T, v(T ), v(T )) -λ 2 a 1 (0, v(0), v(0)) + e -λT Re a 1 (T, v(T ), v(T )) -Re a 1 (0, v(0), v(0)) + λ 2 2 T 0 e -λt a 1 (t, v, v) dt -λ 2 T 0 e -λt ȧ1 (t, v, v) dt - T 0 e -λt Re ȧ1 (t, v, v) dt - T 0 e -λt a 1 (t, v, v) dt. (iii) T 0 e -λt Re b 1 (t, v, v) dt + T 0 e -λt Re a 1 (t, v, v) dt ≥ 1 2 (αλ -2 Ṁ -2M ) T 0 e -λt v 2 V dt + ( λ 2 (αλ -Ṁ ) - Ṁ2 2 ) T 0 e -λt v 2 V dt + 1 2 e -λT (α -ǫ) v(T ) 2 V + (λα - Ṁ2 ǫ ) v(T ) 2 V -1 2 b 1 (0, v(0), v(0)) -λ 2 a 1 (0, v(0), v(0)) -Re a 1 (0, v(0), v(0)).
Proof. The proof of (i) and (ii) is based on Lemma 2.1 and the product rule. Part (i) is a direct consequence of the formulae

e -λt b 1 (t, v, v) ˙= -λe -λt b 1 (t, v, v) + e -λt ḃ1 (t, v, v) + 2e -λt Re b 1 (t, v, v).
For (ii) we first calculate the following derivatives Re e -λt a 1 (t, v, v) ˙= -λe -λt a 1 (t, v, v) + e -λt Re ȧ1 (t, v, v)

+ 2e -λt Re a 1 (t, v, v) Re e -λt a 1 (t, v, v) ˙= -λe -λt Re a 1 (t, v, v) + e -λt Re ȧ1 (t, v, v) + e -λt a 1 (t, v, v) + e -λt Re a 1 (t, v, v)
then we multiply the first equation by λ 2 and add the second equation. Now (ii) follows by integration over t from 0 to T .

For (iii) we add (i) and (ii) and use coercivity of

a 1 , b 1 and V -boundedness of a 1 , ȧ1 , b 1 , ḃ1 . Thus T 0 e -λt Re b 1 (t, v, v) dt + T 0 e -λt Re a 1 (t, v, v) dt ≥ 1 2 (αλ -Ṁ -2M ) T 0 e -λt v 2 V dt + λ 2 (αλ -Ṁ ) T 0 e -λt v 2 V dt -Ṁ T 0 e -λt v V v V dt + 1 2 e -λT α v(T ) 2 V + λα v(T ) 2 V -2M v(T ) V v(T ) V -1 2 b 1 (0, v(0), v(0)) -λ 2 a 1 (0, v(0), v(0)) -Re a 1 (0, v(0), v(0)).
We apply Young's inequality and see that the last term is bounded from below by

1 2 (αλ -2 Ṁ -2M ) T 0 e -λt v 2 V dt + ( λ 2 (αλ -Ṁ ) - Ṁ2 2 ) T 0 e -λt v 2 V dt + 1 2 e -λT (α -ǫ) v(T ) 2 V + (λα - Ṁ2 ǫ ) v(T ) 2 V -1 2 b 1 (0, v(0), v(0)) -λ 2 a 1 (0, v(0), v(0)) -Re a 1 (0, v(0), v(0))
for ǫ > 0.

Proof of Theorem 4.1. Uniqueness follows from Theorem 3.1 and we only need to prove existence of a solution. As in the proof of Theorem 3.1 we may assume that the forms a and b are both coercive (see (3.6)).

1-Lipschitz-continuous forms. Suppose first that the forms a 1 and b 1 are Lipschitz-continuous on [0, T ].

We define the Hilbert space

H := {u ∈ H 2 (0, T ; H) ∩ H 1 (0, T ; V ) : u(0), u(0), u(T ) ∈ V } with norm u H given by u 2 H := ü 2 L 2 (0,T ;H) + u 2 H 1 (0,T ;V ) + u(0) 2 V + u(0) 2 V + u(T ) 2 V
and the pre-Hilbert space V := H 2 (0, T ; V ) with norm . V := . H . Next we define the sesquilinear form E :

H × V → C by E(u, v) := T 0 e -λt (ü | v) H dt + T 0 e -λt b(t, u, v) dt + T 0 e -λt a(t, u, v) dt + η( u(0) | v(0)) V + η(u(0) | v(0)) V ,
where λ and η are positive parameters. Later on, we will choose them to be large enough. For u 0 , u 1 ∈ V and f ∈ L 2 (0, T ; H), we define F : V → C by

F (v) := T 0 e -λt (f | v) H dt + η(u 1 | v(0)) V + η(u 0 | v(0)) V
We proceed as in the proof of Theorem 3.1. Suppose for a moment that

1) E(., v) ∈ H ′ and F ∈ V ′ ;
2) E is coercive; i.e., there exists a

C > 0 such that |E(v, v)| ≥ C v 2 H for all v ∈ V.
Then by Lions's representation theorem there exists u ∈ H such that

E(u, v) = F (v) (4.3)
for all v ∈ V. For arbitrary w ∈ V and ψ ∈ D(0, T ) we take v(t) = t 0 s 0 ψ(r) dr ds w.

It follows from (4.3) that ü(t) + B(t) u(t) + A(t)u(t) = f (t)
in L 2 (0, T ; V ′ ). This identity applied to (4.3) implies that

η( u(0) | v(0)) V + η(u(0) | v(0)) V = η(u 1 | v(0)) V + η(u 0 | v(0)) V for all v ∈ V. Hence u(0) = u 0 and u(0) = u 1 . This means that u ∈ MR(V, V, H) is a solution of (4.2).
It remain to prove properties 1) and 2). Again, 1) is obvious and we focus on 2). Let v ∈ V. For ǫ ∈ (0, α) set

R := η v(0) 2 V + η v(0) 2 V + 1 2 e -λT (α -ǫ) v(T ) 2 V + (λα - Ṁ2 ǫ ) v(T ) 2 V -1 2 b 1 (0, v(0), v(0)) -λ 2 a 1 (0, v(0), v(0)) -Re a 1 (0, v(0), v(0)).
By the V -boundedness of a 1 and b 1 we have

R ≥ 1 2 e -λT (α -ǫ) v(T ) 2 V + (λα - Ṁ2 ǫ ) v(T ) 2 V + (η - M 2 ) v(0) 2 V 14 + (η - λM 2 ) v(0) 2 V -M v(0) V v(0) V .
Young's inequality yields

R ≥ C 1 v(T ) 2 V + v(T ) 2 V + v(0) 2 V + v(0) 2 V
for some C 1 > 0 provided λ and η are sufficiently large. Now

Re E(v, v) = T 0 e -λt v 2 H dt + T 0 e -λt Re b 1 (t, v, v) dt + T 0 e -λt Re b 2 (t, v, v) dt + T 0 e -λt Re a 1 (t, v, v) dt + T 0 e -λt Re a 2 (t, v, v) dt + η( v(0) | v(0)) V + η(v(0) | v(0)) V .
We apply assertion (iii) of Lemma 4.2, it follows that

Re E(v, v) ≥ T 0 e -λt v 2 H dt + T 0 e -λt Re b 2 (t, v, v) dt + T 0 e -λt Re a 2 (t, v, v) dt + 1 2 (αλ -2 Ṁ -2M ) T 0 e -λt v 2 V dt + 1 2 (λ(αλ -Ṁ ) -Ṁ ) T 0 e -λt v 2 V dt + R.
Thus V -boundedness of a 2 and b 2 and Young's inequality yield

Re E(v, v) ≥ C v 2 H ,
for some C > 0 provided that λ and η are sufficiently large. This proves 2). Finally, we have seen that the unique solution u satisfies u(T ) ∈ V but we may replace in the previous arguments [0, T ] by [0, t] for any fixed t ∈ (0, T ) and obtain u(t) ∈ V .

2-Piecewise Lipschitz-continuous forms. Suppose now that the forms a 1 and b 1 satisfy assumption d). We may replace in the first step the interval [0, T ] by

[τ i-1 , τ i ]. There exists a solution u i ∈ H 1 (τ i-1 , τ i ; V ) ∩ H 2 (τ i-1 , τ i ; H) of the equation v(t) + B(t) u(t) + A(t)u(t) = f (t) a.e. t ∈ [τ i-1 , τ i ],
with prescribed u i (τ i-1 ), ui (τ i-1 ) in V . We also know from the previous step that u i (τ i ), ui (τ i ) ∈ V . Now we can solve the previous equation on [τ i , τ i+1 ] and obtain a solution

u i+1 such that u i+1 (τ i ) = u i (τ i ) and ui+1 (τ i ) = ui (τ i ). We define u on [0, T ] by u = u i on [τ i-1 , τ i ]. It is easy to check that u ∈ MR(V, V, H)
and u is a solution to (4.2). This finishes the proof of the theorem.

The Wave Equation

Let H, V be Hilbert spaces such that

V d ֒→ H. Suppose a : [0, T ] × V × V → C is a Lipschitz-continuous,
symmetric, V-bounded and quasi-coercive nonautonomous form. We denote again by A(t) the operator associated with a(t) on V ′ and by A(t) the part of A(t) in H.

We introduce the maximal regularity space

MR(V, H, V ′ ) := L 2 (0, T ; V ) ∩ H 1 (0, T ; H) ∩ H 2 (0, T ; V ′ )
for the second order Cauchy problem. We have the following result.

Theorem 5.1. There exists a unique solution u ∈ MR(V, H, V ′ ) of the nonautonomous second order Cauchy problem

ü(t) + A(t)u(t) = f (t) t-a.e. u(0) = u 0 , u(0) = u 1 (5.1) for every u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T ; H). Moreover u(t) ∈ V for all t ∈ [0, T ].
Note that by [DL88, p. 579], for every u ∈ MR(V, H, V ′ ), u can be viewed as a continuous function from [0, T ] into the interpolation space (H, V ′ ) 1 2 . In particular, u(0) is well defined and u(0) ∈ V ′ .

We start with the following lemma. Here ȧ(t, ., .) denotes the derivative of t → a(t, ., .). Lemma 5.2. Let v ∈ H 2 (0, T ; V ) with v(T ) = 0. Then

(i) T 0 e -λt Re(v | v) H dt = λ 2 T 0 e -λt v 2 H dt - 1 2 v(0) 2 H (ii) T 0 e -λt Re a(t, v, v) dt = λ 2 T 0 e -λt a(t, v, v) dt - 1 2 T 0 e -λt ȧ(t, v, v) dt + 1 2 a(T, v(T ), v(T )) - 1 2 a(0, v(0), v(0))
Proof. For the first part we calculate the formula

e -λt v 2 H ˙= -λe -λt v 2 H + 2e -λt Re(v, v) H .
For (ii) we use Lemma 2.1 and the product rule to obtain

e -λt a(t, v, v) ˙= -λe -λt a(t, v, v) + 2e -λt Re a(t, v, v) + e -λt ȧ(t, v, v).
Now the Lemma follows by integrating over t.

Proof of Theorem 5.1. First we prove existence of a solution. We define the Hilbert space

H := {u ∈ L 2 (0, T ; V ) ∩ H 1 (0, T ; H) : u(0), u(T ) ∈ V } with norm u H such that u 2 H := u 2 L 2 (0,T ;V ) + u 2 L 2 (0,T ;H) + u(0) 2 V + u(T ) 2
V and the pre-Hilbert space V := {v ∈ H 2 (0, T ; V ) : v(T ) = 0} with norm . V := . H . Further we define E :

H × V → C by E(u, v) := - T 0 u (e -λt v)˙ H dt + T 0 e -λt a(t, u, v) dt + a(0, u(0), v(0))
and for u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T ; V ′ ) we define F : V → C by

F (v) := T 0 e -λt f, v dt + a(0, u 0 , v(0)) + (u 1 | v(0)) H .
As in the previous sections, we use Lions's representation Theorem. Suppose that the assumptions of Lions's Theorem are satisfied. Then there exists a u ∈ H such that

E(u, v) = F (v) (5.2)
for all v ∈ V. For the particular choice of v(t) := ψ(t)w where ψ ∈ D(0, T ) and w ∈ V we obtain from (5.2) that

T 0 u, w (e -λt ψ(t))˙dt = T 0 f -Au, w e -λt ψ(t) dt.
This implies that u ∈ H 1 (0, T ; V ′ ), hence u ∈ MR(V, H, V ′ ) and that where we used the identity (5.2). This together with (5.3) implies that u(0), v(0) + a(0, u(0), v(0)) = a(0, u 0 , v(0))

ü(t) + A(t)u(t) = f (t) t-a.
+ (u 1 | v(0)) H .
Since v ∈ V was arbitrary this shows that u(0) = u 0 and u(0) = u 1 .

Next we check the assumptions of Theorem 2.4. Assumption 1) is again easy to verify. Let v ∈ V, then integration by parts yields to

|E(v, v)| ≥ Re E(v, v) = v(0) 2 H + T 0 e -λt Re(v | v) H dt + T 0 e -λt Re a(t, v, v) dt + a(0, v(0), v(0)).
Thus Lemma 5.2 applied to the first and second integral and Young's inequality shows that

Re E(v, v) ≥ 1 2 v(0) 2 H + λ 2 T 0 e -λt v 2 H dt + λ 2 T 0 e -λt a(t, v, v) dt - 1 2 T 0 e -λt ȧ(t, v, v) dt + 1 2 a(T, v(T ), v(T )) + 1 2 a(0, v(0), v(0)) ≥ C v 2 H
for some C > 0 if λ is large enough. Note that we can choose C depending only on the coercivity, V -boundedness, Lipschitz constant of the form and on T . Uniqueness: Let u ∈ MR(V, H, V ′ ) be a solution of (5.1) where f = 0 and u 0 = u 1 = 0. We have to show that u = 0. Fix r ∈ [0, T ] and define v r (t) :

= T t 1 [0,r] u(s) ds. Then v r ∈ H 1 (0, T ; V ) with v r (r) = 0 and vr = -1 [0,r] u. We obtain 0 = 2 T 0 Re ü, v r dt + 2 T 0 Re a(t, u, v r ) dt = 2 r 0 r t Re ü(t), u(s) ds dt -2 r 0 Re a(t, vr , v r ) dt = 2 r 0 s 0 Re ü(t), u(s) dt ds -2 r 0 Re a(t, vr , v r ) dt = 2 r 0 Re s 0 ü(t) dt, u(s) ds - r 0 (a(t, v r , v r ))˙-ȧ(t, v r , v r ) dt = 2 r 0 Re u, u ds + a(0, v r (0), v r (0)) - r 0 ȧ(t, v r , v r ) dt ≥ u(r) 2 H + α v r (0) 2 V -Ṁ r 0 v r 2 V dt. We set w(r) := v r (0) = r 0 u(s) ds ∈ L 2 (0, T ; V ). Then w(r) -w(t) = v r (t) and α w(r) 2 V ≤ Ṁ r 0 w(r) -w(t) 2 V dt ≤ 2r Ṁ w(r) 2 V + 2 Ṁ r 0 w(t) 2 V dt.
Let 0 < r 0 < α 2 Ṁ and set C r0 := α -2r 0 Ṁ > 0, then for every r ∈ [0, r 0 ] we have

w(r) 2 V ≤ 2 Ṁ C -1 r0 r 0 w(t) 2 V dt.
We conclude by Gronwall's lemma that w(r) = 0 for all r ∈ [0, r 0 ], hence u = 0 on [0, r 0 ]. Now we may proceed inductively to obtain u = 0 on [0, T ].

Remark 5.3. If we add a V × H-bounded perturbation to a as in Section 4, we can still prove existence in Theorem 5.1. But for the uniqueness we have to assume additionally that this perturbation is also H × V -bounded. Remark 5.4. Let B(t) be bounded operators on H with B(t) L(H) ≤ M B for a.e. t ∈ [0, T ]. We consider the wave equation

ü(t) + B(t) u(t) + A(t)u(t) = f (t) t-a.e. u(0) = u 0 , u(0) = u 1 (5.4)
Then for u 0 ∈ V , u 1 ∈ H and f ∈ L 2 (0, T, V ′ ) there exists a solution u ∈ MR(V, H, V ′ ) to (5.4). The proof is the same as above, one has only to change

E(u, v) into E(u, v) := - T 0 u (e -λt v)˙ H dt + T 0 e -λt (B(t) u | v) H dt + T 0 e -λt a(t, u, v) dt + a(0, u(0), v(0)).
The 

Applications

In this section we give applications of our results. We consider two problems, one is linear and the second one is quasi-linear.

I) Laplacian with time dependent Robin boundary conditions.

Let Ω be a bounded domain of R d with Lipschitz boundary Γ. Denote by σ be the (d -1)-dimensional Hausdorff measure on Γ. Let which is valid for all ǫ > 0 (c ǫ is a constant depending on ǫ). Note that (6.4) is a consequence of compactness of the trace as an operator from H 1 (Ω) into L 2 (Γ, dσ), see [Nec67, Chap. 2 § 6, Theorem 6.2]. Let A(t) be the operator associated with a(t, ., .) and B(t) the operator associated with b(t, ., .). Note that the part A(t) in H := L 2 (Ω) of A(t) is interpreted as (minus) the Laplacian with time dependent Robin boundary conditions

β 1 , β 2 : [0, T ] × Γ → R
∂ ν v + β 1 (t, .)v = 0 on Γ.
Here we use the following weak definition of the normal derivative. Let v ∈ H 1 (Ω) such that ∆v ∈ L 2 (Ω). Let h ∈ L 2 (Γ, dσ). Then ∂ ν v = h by definition if Ω ∇v∇w + Ω ∆vw = Γ hw dσ for all w ∈ H 1 (Ω). Based on this definition, the domain of A(t) is the set D(A(t)) = {v ∈ H 1 (Ω) : ∆v ∈ L 2 (Ω), ∂ ν v + β 1 (t)v| Γ = 0}, and for v ∈ D(A(t)) the operator is given by A(t)v = -∆v.

Maximal regularity on H for the first order Cauchy problem associated with A(t) was proved in [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF]. Here we study the second order problem. By Theorem 4.1, the damped wave equation

     ü(t) -∆ u(t) -∆u(t) = f (t) u(0) = u 0 , u(0) = u 1 ∈ H 1 (Ω)
∂ ν ( u(t) + u(t)) + β 2 (t, .) u(t) + β 1 (t, .)u(t) = 0 on Γ has a unique solution u ∈ MR(V, V, H) = H 2 (0, T ; L 2 (Ω)) ∩ H 1 (0, T ; H 1 (Ω)) whenever f ∈ L 2 (0, T, L 2 (Ω)).

Indeed, Theorem 4.1 implies that there exists u ∈ MR(V, V, V ′ ) with u(0) = u 0 , u(0) = u 1 and (ü, v) H + b(t, u, v) + a(t, u, v) = (f, v) H (6.5) for all v ∈ V and all t ∈ [0, T ] \ N , where N is a Lebesgue null set. Let t ∈ [0, T ] \ N , then for the special choice v ∈ D(Ω) we obtain that (6.5) implies ü(t) -∆ u(t) -∆u(t) = f (t). This together with (6.5) and the above definition of the normal derivative shows ∂ ν ( u(t) + u(t)) + β 2 (t, .) u(t) + β 1 (t, .)u(t) = 0 on Γ.

II) A quasi-linear problem.

Let Ω be a bounded open set of R d and let H be the real-valued Hilbert space L 2 (Ω, dx) and V be a closed subspace of H 1 (Ω) which contains H 1 0 (Ω). If V = H 1 0 (Ω) we assume that Ω is a Lipschitz domain to ensure that the embedding of V in H is compact. This latter property is always true for V = H 1 0 (Ω) for any bounded domain Ω.

For g, h ∈ L 2 (0, T ; H) we define the forms a g,h , b g,h : [0, T ] × V × V → R by b jk (t, x, y, z)ξ k ξ j ≥ η|ξ| 2

00

  Re b(s, ẇ, ẇ) ds + t Re a(s, w, ẇ) ds = 0. Using (3.4) we have

00

  Re b(s, u, u) ds + t Re a(s, u, u) ds.

0 e 0 e 0 e

 000 e. (5.3) Following the proof of Lemma 1 and Theorem 2 in [DL88, p. 571 and 575] we can integrate by parts in the first term of E(u, v) to obtainE(u, v) = u(0), v(0) + T -λt ü, v dt + T -λt a(t, u, v) dt + a(0, u(0), v(0)) = T -λt f, v dt + a(0, u 0 , v(0)) + (u 1 | v(0)) H

|u| 2 dσ ≤ ǫ u 2 H 1 (Ω) + c ǫ u 2 L

 212 be bounded measurable functions which are Lipschitz continuous w.r.t. the first variable, i.e.,|β i (t, x)β i (s, x)| ≤ M |t -s| (i = 1, 2) (6.1)for some constant M and all t, s ∈ [0, T ], x ∈ Γ. We consider the symmetric forms a, b: [0, T ] × H 1 (Ω) × H 1 (Ω) → R defined by a(t, u, v) = Ω ∇u∇v dx + Γ β 1 (t,.)uv dσ. (6.2) and b(t, u, v) = Ω ∇u∇v dx + Γ β 2 (t, .)uv dσ. (6.3) respectively. The forms a, b are H 1 (Ω)-bounded and quasi-coercive. The first statement follows readily from the continuity of the trace operator and the boundedness of β. The second one is a consequence of the inequality Γ

a

  g,h (t, u, v) = d k,j=1 Ω a jk (t, x, g, h)∂ k u∂ j v dx and b g,h (t, u, v) = d k,j=1 Ω b jk (t, x, g, h)∂ k u∂ j v dx.We assume that the coefficients a jk , b jk :[0, T ] × Ω × R × R → R are uniformly bounded on [0, T ] × Ω × R × Rby a constant M > 0 and satisfy the usual ellipticity condition d k,j=1 a jk (t, x, y, z)ξ k ξ j ≥ η|ξ| 2 , d k,j=1

  uniqueness of u is however not clear except if the map t → B(t) is Lipschitz. If this later condition is satisfied one can use similar ideas as in[START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF] p. 686] to prove uniqueness. The proof for uniqueness in Theorem 5.1 is similar to that of[START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF] p. 673].

for a.e. (t, x) ∈ [0, T ] × Ω and all y, z ∈ R, ξ ∈ R d . Here η > 0 is a constant. Moreover we assume that a jk (t, x, ., .), b jk (t, x, ., .) are continuous for a.e. (t, x). We denote by A g,h (t) and B g,h (t) the associated operators.

Given

has a unique solution u g,h ∈ MR(V, V, V ′ ) by Theorem 3.1. Moreover, by Proposition 3.3 there exists C > 0 and 0 < T 0 ≤ T depending only on M and η such that the solution of (6.6) on [0, T 0 ] satisfies the estimate

Note that C and T 0 are independent of g and h. We want to show that the quasi-linear problem

We define the mapping S :

Note that by (6.7) and the fact that C is independent of g and h, Im(S) is a bounded subset of MR(V, V, V ′ ). Moreover by Aubin-Lions lemma, MR(V, V, V ′ ) is compactly embedded into H 1 (0, T ; H). Therefore, if S is continuous then we can apply Schauder's fixed point theorem to obtain u ∈ H 1 (0, T ; H) such that Su = u. Thus u is also in MR(V, V, V ′ ) and u ∈ Im(S). Hence u is a solution of (6.8). It remains to prove that S is continuous. Let g n → g in H 1 (0, T ; H) and set u n := Sg n . Since a sequence converges to a fixed element u if and only if each subsequence has a subsequence converging to u we may deliberately take subsequences. Since L 2 (0, T ; H) is isomorphic to L 2 ((0, T ) × Ω) we may assume (after taking a sub-sequence) that g n → g and ġn → ġ for a.e. (t, x). Furthermore since the sequence u n is bounded in MR(V, V, V ′ ) we may assume (after taking a sub-sequence) that u n → u in H 1 (0, T ; H) and u n ⇀ u in MR(V, V, V ′ ). Hence a jk (t, x, g n , ġn ) → a jk (t, x, g, ġ) and b jk (t, x, g n , ġn ) → b jk (t, x, g, ġ) for a.e. (t, x). Now the equality

for all v ∈ L 2 (0, T ; V ) and u n (0) = u 0 , un (0) = u 1 . By the dominated convergence theorem a jk (t, x, g n , ġn )

for all v ∈ L 2 (0, T ; V ) and u(0) = u 0 , u(0) = u 1 . Note that for the initial condition we have used that MR(V, V, V ′ ) ֒→ C 1 ([0, T ]; H) ∩ C([0, T ]; V ), see (3.3). This is equivalent to Sg = u. Hence S is continuous.