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Abstract

The probabilistic framework of extreme value theory is well-known: the dependence
structure of large events is characterized by an angular measure on the positive
orthant of the unit sphere. The family of these angular measures is non-parametric
by nature. Nonetheless, any angular measure may be approached arbitrarily well
by a mixture of Dirichlet distributions. The semi-parametric Dirichlet mixture
model for angular measures is theoretically valid in arbitrary dimension, but the
original parametrization is subject to a moment constraint making Bayesian in-
ference very challenging in dimension greater than three. A new unconstrained
parametrization is proposed. This allows for a natural prior specification as well as
a simple implementation of a reversible-jump MCMC. Posterior consistency and
ergodicity of the Markov chain are verified and the algorithm is tested up to di-
mension five. In this non identifiable setting, convergence monitoring is performed
by integrating the sampled angular densities against Dirichlet test functions.

Keywords: multivariate extremes, semi parametric Bayesian inference, mixture
models, reversible-jump algorithm

1. Introduction

Estimating the dependence among extreme events in a multivariate context
has proven to be of great importance for risk management policies. The main
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probabilistic framework of multidimensional extreme value theory is well-known,
but inference and model choice remain an active research field. The dependence
structure of multivariate extreme value distributions is characterized by the so-
called spectral measure (or angular measure), which is defined on the unit positive
quadrant of the observations space. The non-parametric nature of this angular
measure calls for fully non-parametric methods. Still, a moment constraint has to
be satisfied and this restriction makes modeling and inference complex.

In a frequentist context, an empirical spectral measure estimator has been pro-
posed by Einmahl et al. (2001) and amended by Einmahl and Segers (2009), for
the two dimensional case. Weak convergence of a rescaled version of the empir-
ical measure has been established, but the intricate form of the limit law does
not provide, to our understanding, a simple way to derive asymptotic confidence
bounds. In a similar context, de Carvalho et al. (2013) provide a simpler Euclidean
likelihood estimator but an explicit expression for the asymptotic variance is still
missing. The recurrence of such difficulties in the field of multivariate extremes is a
strong argument in favor of Bayesian methods. To your knowledge, Guillotte et al.
(2011) are the only authors having implemented a fully non-parametric Bayesian
model, and the latter is only applicable to the bi-variate case.

Boldi and Davison (2007) were the first ones to adapt the elegant Dirichlet
mixture (DM) framework to multivariate extreme values and to provide posterior
predictive distributions in this context. This semi-parametric model (with vary-
ing number of mixture components) is designed for any sample space’s dimension
and weakly dense in the set of admissible angular measures. As posteriors were
very difficult to sample from, Boldi and Davison (2007) also resorted to maximum-
likelihood methods based on an EM algorithm and they concluded that “one prac-
tical drawback with the approach stems from the use of simulation algorithms,
which may converge slowly unless they have been tuned. A second is that the
number of parameters increases rapidly with the number of mixture components,
so model complexity must be sharply penalized through an information criterion
or a prior on the number of mixture components". One other key point about this
past work is that Bayesian estimation in dimension greater than three was ren-
dered very delicate by the low convergence rate of the reversible-jump Metropolis
algorithm used to approximate the posterior distribution. Most of the difficulties
they encountered were linked to the above mentioned moment constraint. Still,
a workable spectral estimator based on Dirichlet distributions will be a valuable
semi-parametric tool for Bayesian practitioners who would like to analyze multi-
variate extremes of moderate dimensions (i.e. around five).

Following Boldi and Davison’s steps, we propose in this paper a novel parametriza-
tion of the DM model. One strong advantage of this parametrization resides in



the fact that the moment constraint is automatically satisfied. This allows to con-
struct a prior in a relatively simple way (section 3), and it is verified that the
posterior is consistent for a large class of ‘true’ distributions. A trans-dimensional
Metropolis-within-Gibbs algorithm is implemented (section 4) to approach the pos-
terior distribution. In practice, assuming that the maximum number of clusters
within the mixture is below 15 (a reasonable hypothesis for most applications), it
becomes possible to make accurate Bayesian inferences for at least five dimensional
data sets (see section 7).

Theoretical ergodicity properties of the algorithm are investigated in section 5
and section 6 deals with the important issue of empirical convergence assessment.
Like in any other mixture model, the parameters are not identifiable, and the
monitored quantity cannot be a parameter component. Instead, convergence of
the densities can be checked, and we propose an approach based on the use of
well chosen Dirichlet test functions to be integrated against the Dirichlet mixture
densities generated by the algorithm. In addition, this method allows goodness-
of-fit checking. In section 7, a simulation study is performed with three- and
five- dimensional data sets, in order to compare our algorithm with Boldi and
Davison’s one, in terms of mixing properties and predictive accuracy. We also fit
the Dirichlet mixture model to air quality measurements, recorded in the city of
Leeds, UK, during the winter season, years 1994-1998. This data set is available
at http://www.airquality.co.uk and has already been studied by Cooley et al.
(2010), Heffernan and Tawn (2004), Boldi and Davison (2007) and Sabourin et al.
(2013) and we comment our results with respect to Boldi and Davison (2007)’s
approach. Another simulation study is performed to assess the impact of the
prior specification. Finally, comparison is made with Guillotte et al. (2011)’s non-
parametric Bayesian model in a bi-variate setting. Our results are discussed in
section 8.

2. Background and notations

2.1. Multivariate extremes and spectral measure

Multivariate extreme value theory aims at characterizing the joint behavior of
extreme events such as block maxima or multivariate excesses above a threshold
(Beirlant et al., 2004; de Haan and Ferreira, 2006; Resnick, 1987, 2007). Let X =
(X1,...,X4) be a positive random vector of size d. If the uni-variate marginal
distributions are known, there is no loss of generality in assuming each of them to
be unit-Fréchet distributed P(X; < x) = exp (—%) ,for i =1,...,d. Concerning
the multivariate dependence description, it is convenient to introduce the L' norm
R = X1+ -4 X, and to represent X in polar coordinates, letting R be the radial



component and W = X/R the angular one. Thus, W corresponds to a random
point on the d — 1 dimensional unit simplex Sy = {w = (w1, ,wq) : w; >
0w+ +wg=1}.

A major result of multivariate extreme value theory is that, under mild as-
sumptions (see e.g. Resnick, 1987, multivariate regular variation), the radial and
angular components become independent for large R’s. More precisely, with our
choice of unit Fréchet margins, the condition is that the cumulative distribution
function (cdf) of X be in the domain of attraction of a max-stable distribution G,
i.e. that there exist a non degenerate cdf G such that the limit P!(X < tx) goes
to G(x), as t — oo. This implies G'(tx) = G(x) for all ¢ > 0. In such a case, there
is a spectral probability measure H defined on Sy, such that for any Borelian subset
Bof Sy, PW e B,R>r) a r~1H(B), so that

P(WeB|R>r) — H(B). (1)
T—00
Thus, H represents the distribution of the angular components for asymptotically
large R’s. This measure has to satisfy the moment constraint

1
forallizl,...,d,/ w; dH(w) = —. (2)
S d

Conversely, any probability measure H satisfying (2) is a valid spectral measure for
a multivariate extreme value distribution G. In other words, H is a valid spectral
measure if and only if its center of mass lies at the centroid of the unit simplex.
In this paper, we focus on angular measures which mass is concentrated on the

[}
interior of the unit simplex, denoted Sy, and which admit densities with respect to
the Lebesgue measure dw; --- dwg—1 on the Euclidean plane of dimension d — 1.
The simplex is parametrized by {(w1,...,w4_1) : w; > 0; Zf:_ll w; < 1}

2.2. Dirichlet mizture model (Boldi and Davison, 2007)

Besides condition (2), there is no other constraint on H. In terms of model-
ing, this strongly favors non-parametric, or semi-parametric models. As H lives
on the interior of the unit-simplex, the Dirichlet mixtures family appears as the
ideal candidate. We recall that a Dirichlet density, which we denote diri, can be

[e]
parametrized by a mean vector p € S; and a concentration parameter v > 0, so
that

r .
Vw € Sy, diri(w | p,v) = _T» Hw’.’”lfl,



A k-component Dirichlet mixture density is a finite mixture

k
h pp,0) (W) = Z P diri(w | g s Vi),

m=1

with positive weight vector p = (pl, ey pk) summing to one, concentration vec-
tor v = (Vl,...,Uk) and mean matrix p = (p,,’l,..., p,,,k), where p. ., =
(1t1,m), - - -, fta,m) is the mean vector for the m!"

constraint (2) is equivalent to

mixture component. The moment

k
1
mem,m:g,for alli=1,...,d. (3)

m=1

This leads to the W-parametrization proposed and studied by Boldi and Davison
(2007) as a disjoint union:

U= H Uy, with Uy = {4 = (. 1., Priks 1) = (3) holds} .

E>1
Here, the vector p. .. denotes (“-,q’ ey “-,r) for ¢ < r. This type of notation
will be used throughout this work, e.g. pg., means (py,...,pr). Unless otherwise
mentioned, || - || denotes the Euclidean norm on R? while || - ||; stands for the L'

norm.

The weak density of such mixtures within the space of admissible angular mea-
sures, proved by Boldi and Davison (2007), renders this model very attractive in
terms of flexibility. However, in a Bayesian context, specifying an adequate prior
distribution for pu = p. 1, and p = piy subject to (3) is challenging. Boldi
and Davison (2007) conditioned g upon p. The prior on p was then defined
component by component, on the open set

d—1 k-1
1
de11:k—1: V1 <m <k, im < land V1 <17 <d, im < = ¢
{:U’l.d 1,1:k—1 =m Zﬂz,m an >1 me,uz,m d}

i=1 m=1

by successive conditioning, each component being uniformly distributed on the
largest interval keeping (3) satisfied. Besides a minor error on the admissible
bounds of such an interval (see Appendix G.1 for details), doing so introduced
some asymmetry in p’s prior distribution: in particular, the coordinates ; p, (1 =
1,...,d) of a given mean vector p. ,, were not exchangeable in their model and



the prior was concentrated in a relatively small region of the space of admissible
mixtures. This might partly explain the low convergence rate of their reversible
jump algorithm: such an asymmetric concentration may lead to the rejection of
many proposals and to a low acceptance rate. Below, we address this issue by
proposing an alternative parametrization such that constraint (2) is automatically
satisfied. This allows a natural prior specification in which space coordinates play
symmetrical roles.

3. Unconstrained Dirichlet mixture model

8.1. Re-parametrization

Our goal is to replace the weight vector p and the “last” mean vector . ; by
eccentricities e = (ey, ..., ex—1), between zero and one. Those e,,’s are sequentially
defined and indicate departure from centrality induced by decreasing subsets of
mixture components. Thus, (3) is automatically satisfied and the parameter space
for k-mixtures is a “rectangular” subset of Slgfl x (0, 1)k x (RT)F.

Let us go into details: suppose one wants to construct a k-components DM
density h(, p, . satisfying (3). For m € {0,...,k — 1}, we introduce, as an inter-
mediate variable, the center of mass «,, of the k —m + 1 last components

k
-1
j=m+1
where p,, = Zf:m_H pj=1-37"pj (m>1),and pp = 1. From (3), we know
that v, = (1/d,...,1/d), and, by associativity of the center of mass, ,, may also
be expressed in terms of the preceding mixture components:

m
Y=t | Vo= D ik ;|- (4)
j=1

By associativity again, for m = 1, we have

k
Yo=D1H. 1 +ij K. 5
j=2
=p1H.1+p171-
Visually, this means that v, is located on the line segment joining v, and p. ;
(see Figure 1, with m = 1, on the two-dimensional simplex S3), i.e. that -, lies on



the half line Dy = [y, p. 1), inside the simplex. If I; is the intersection between
D; and the boundary of the simplex, it is clear that one can use a number e;
between 0 and 1 to determine the position of -~; on the segment [+, I1]. Namely,
set

_ -l
HII - ’Yo”

Figure 1: Sequential construction of the partial centers of mass on the two-dimensional simplex
Ss at step m. The simplex points Ym, Ym—1 and m*™ mean vector . _m as defined in Proposition
1, belong to a common line D,,, and v¥,,—1 lies between v,, and p . ms SO that (7) holds for some
eccentricity parameter e, € (0,1).

At this stage, given p.; and ep, one can deduce the location of v; and ele-
mentary algebra provides relative weights p; and p; respectively assigned to p. 1
and ;. In a second step, as above, we have

Vi =Pl 1+ p2Ya-

The argument can be repeated to obtain recursively the subsequent centers of
mass vs,.-.., Yip—1 and weights pa, ..., pk—1, p2,-..,Pk—1, given k — 1 Dirichlet
mean vectors p. ;.,_; and eccentricities ej.x—1, via

Ym = Ym—1 + em(Im - FYm)
_ I Ym=Ym-all

Pm = Pm—1775, =]

Pm = Pm—1 — Pm

Finally, from the definition, v,_y = p. j and px = pm—1.



Roughly speaking, e, rules the eccentricity induced by p. ,, onto the sub-
sequent partial center of mass -,,, relatively to the current one «,,_;. It also
determines the weight to be attributed to p. ,,: for a small en, v,,_; and ,,
are close to each other, 7.e. the departure from <, ; induced by p. ,, is small,
so that p,, is also small.

It must be noted that the parametrization is valid only if

Vm—1 # M. g, forallme{1,... k—1}. (5)

This condition is satisfied for all p. ;,..., p. ;1 out of a nowhere dense subset
of Ss_l. In practice, it will be almost surely satisfied if one chooses any absolutely
continuous prior for the p. ,,’s.

For computational purposes, analytical expressions for the «,,’s are needed in
order to derive the weights and the last mean vector p. ;. We thus introduce the
positive scalar

Tm:SUp{tZOZ ’7m—1+t(’ym—1_ u~,m) Esd}<m€{17'-'uk_1})7 (6)

so that Iy, = v,,_1 + T(¥Ypm—1 — . 1), and that

Ym = Ym-1 7+ emTm (’7m71 - /*L-,m) . (7)

It is shown in Appendix A, that

T, = min _ Yim-1 , (8)
i€Cm im — Yim—1

where C,, is the index set {z e{l,....d} © Yim—1— tim < 0}. The following

proposition summarizes the argument.

Proposition 1. Let b, p 1) be a k-component DM density satisfying (3) and (5),
with partial centers of mass v, ..., Vi_1 defined in (4). Let {T,,, : 1 <m < k—1}
be the positive scalars introduced in (6).

Then, we have vy = (1/d,...,1/d), each Ty, is given by (8), and there ezists
k — 1 eccentricity parameters (ey, ..., e_1) € (0, 1)1 such that (7) holds for all
me{l,....k—1} .

Conwversely, suppose that p. 141 € (§d)k_1 and eyp_1 € (0,1)*71 satisfying
(5) are given, together with a concentration vector vy, v; > 0.

Then, one may successively define centers of mass { v, ..., Yp_1} through (7),
where T,, is given by (8); together with weights p1.p_1, po:k—1 via po = 1 and for



1<m<k-1,

Pm = Pm—1 — Pm - (9)

Setting the last mean vector and weight to p. = v,y and px = pg—1, the DM
parameters (p, p, V) satisfy the moment constraint (3) and the DM density b p o
15 an admissible angular measure.

In other words,the re-parametrized model is in one-to one correspondence with
the original DM model introduced by Boldi and Davison (2007) (if the latter
is restricted to the non degenerate mixtures verifying (5)). The unconstrained
parameter space for the DM model can now be defined as a disjoint union

[o.¢]
® = H ®p, where
k=1

O = {9 = (1. 1h—1> k-1, Vik) € (éd)k_l x (0, 1)1 x (RT)F + (5) hOldS}-
For k > 1, we introduce the re-parametrization maps for k-mixtures
Tp:0€Op— (1. 14 Pk Vik) € Vi,
which allows to define

' e —v
ge®k.—>Fk(9)6\I/k.

In the sequel, we denote hy a DM density with parameter § € ©. As opposed
to the W-parametrization from Boldi and Davison (2007), we refer to ours as the
O-parametrization.

3.2. Prior definition

We denote 7 the prior distribution and also, for the sake of simplicity, the
prior density. To prevent numerical issues, i.e. to facilitate storage and avoid
numerically infinite likelihoods, it appears preferable to restrict the prior’s support
to a (large) bounded subset

k max

Op = H Ssil X [07 emax]k_1 X [Vminaymax]k (1())
k=1



with, typically, kmax = 15, Vmin = eXp(—2), Vmax = 5 10% and epax = 1—-1075. The
general definition of @ p allows the case @ p = O, by setting the truncation bounds
10 emax = 1, Vmin = —00, Vmax = +090, kmax = +00. Then, the prior can be defined
as desired on ®p, according to the user’s beliefs. Here is described an example of
prior specification (the one used in our simulations), allowing the user to control
the concentration of the mean vectors p. 1, around the global center of mass «
(again, a priori). Recall that a DM angular density with mean vectors located near
the simplex’ center, together with high concentration parameters v1.x, corresponds
to high levels of dependence among extreme observations. On the contrary, mean
vectors near the vertices or low concentrations are associated with low levels of
dependence. As usual, the prior’s impact will vanish with large sample sizes, but
this kind of control may be useful for small samples, if prior expert knowledge is
available.
Conditionally on k, v is a priori independent from ( p,e)

w(k, e, v) = mi(k) mue(pe | K)mo (0] F) .

The prior 7 is a truncated geometric distribution

1\*'1
mh)x (1) lnkan®

with typical values for A ranging between 1 and 10. The concentration vector v has
a truncated multivariate log-normal distribution (denoted logN) with independent
components, from which simulation is straightforward. Namely, we set

Vjie{l,...,k}, m; o] logN(m,,, o2). (11)

Vminyymax}

The joint distribution for v is the product measure 7, = ®k

j—1 Tv,j- Finally, the
distribution 7, (- | k) is defined by successive conditioning

k—1
7ru7e(u,e | k) = H Wum(ﬂ-,m | K, N~,1:m—1=61:m—1)

m=1

o '7Tem(€m ’ k, K. 1ms el:m—l)

where, by convention, p. 1.0 = {7p} and e;p = 0. In general, one does not want
to see the mean vectors rejected on the simplex boundary, where the model is not
defined, again to avoid numerical problems such as infinite likelihood values. On



the other hand, it may be of interest to control the dispersion of the k mean vectors
i 1.5 This is achieved by setting

.. X
ﬂ'ﬂm< ’ ’ K. 1m—1> 61:m_1> = diri ( ‘ Ym> min1<<<ﬁ;{y }) ’
<< i,m

where x, is a concentration hyper parameter. Recall that ~,, depends on the first
m — 1 components through (4). Thus, for x, > 1, the prior density for u. ,, is
bounded; the larger x,,, the more . ,, concentrates around the current center of
mass 7,,_1- For 0 < x, <1, the prior is unbounded and the prior mass for p. ,,
is concentrated near the simplex boundaries. In our simulations, x, is set to 1.1.
Thus, p. ,, has relatively flat distribution with bounded density, centered around
Ym-

Concerning the eccentricity parameters, specifying an identical Beta distribu-
tion for each e, would trigger a bias against the last mixture components: the
weights p,, would tend to decrease with m. To avoid this issue, a Beta prior on
em is defined in such a way, that conditionally to (. 1., €1:m—1), the expectancy
of e, correspond to a weight ratio pn,/pm—1 close to 1/(k —m + 1). Rearranging

(9), we have e, = #ﬁ;l@. The ideal situation p,,/pm—1 = 1/(k —m + 1)

thus corresponds to e, = (Tr, (k — m))_l, which may be greater than one. The
distribution’s mean is thus set to

Me,m = min {(Tm(k - m))_l , emean.max} s

where emean.max = 99/100. Then, another concentration parameter x. is intro-
duced and typically set to 1.1. Finally, the Beta parameters (ajm,azm) for the
mt" eccentricity’s distribution are set to

al1.m — " Xe Me m
’ min{Me¢ m,1 — M} ’
azm = Xe (1= Mem).

min{Me¢ m,1 — M}

and Tem (- | Ky . 1 €1:m—1) 0 beta (- | a1m; a2,m) 1[0, enay) (+) Where beta de-
notes the Beta density.

The Directed acyclic graph in Figure 2 summarizes the model specification.
Simulating parameters (. 1.1, €1:k—1) can be achieved by successively drawing
k, then the p. ,.’s and ep,’s, in increasing order and finally by using the mapping
I' to obtain [T and pi.x.



Xps Xes émean.maxs €max My, Oy, Vmin; Vmax

o
wE Sy

Figure 2: Representation of the conditional dependencies of the DM Bayesian model as a Directed
acyclic graph. Hyper-parameters appear in simple square frames, parameters in oval frames and
observations in a double square frame. Simple arrows denote probabilistic relations whereas
double arrows stand for deterministic ones.

3.8. Model consistency

Boldi and Davison (2007) have shown that the family of finite constrained
mixtures of Dirichlet densities is weakly dense in the set of admissible angular
measures. Following their steps, we investigate weak consistency properties of
the posterior in the re-parametrized model. It is well known (see e.g. Freedman,
1963) that weak density does not entail weak consistency, unless some additional
regularity assumptions are satisfied, which are detailed in this section. Since the
mixture model is not identifiable (several parameters 6’s correspond to a single
density h), we use non-parametric consistency results, which allow one to work
with the densities themselves. Most of the theoretical background required here
may be found in Ghosal et al. (1999) and is derived from Schwartz (1965). For a
recent review about available theorems for different types of consistency in the non-
parametric case, in particular for the (stronger) Hellinger consistency, the reader
may also refer e.g. to Walker (2004) and the references therein. Recall that a
weak neighborhood U of some density hg on the sample space Sy is a family of
probability densities containing a finite intersection of subsets of the kind

{n-

[ (htoe) = oo o) ] < e}



where € > 0 and g is some bounded, continuous function defined on S,;. Similarly,
if (©,7) is a measurable parameter space indexing a family of densities (hg)gco,
a weak neighborhood of some 0y € ©® is a weak neighborhood of hg, restricted to
© (the weak topology on @ is the trace of the weak topology defined on the densi-
ties). Let 7 be a prior on 7 and 7, be the posterior, given independent, identically
distributed (i.7.d.) observations W1, ..., W, sampled from a probability measure
ho. The posterior is said to be weakly consistent at hg if, with hg-probability one,
for all weak neighborhood U of hg, m,(U¢) — 0. It is clear from the definition

n—oo

that two distinct parameters 61 # 6 defining the same density hg, = hy, will
automatically belong to the same weak neighborhoods, so that identifiability is
not an issue anymore. Also, weak consistency is usually sufficient for most appli-
cations, because the angular density is mainly destined to be integrated against
some bounded, continuous function. For example, probabilities of a joint excess of
high multivariate thresholds (uq,...,uq) are derived by integration of the angular
density against g(w) = min(w; /uq, ..., wq/uq).

One classical way to prove weak consistency at some density hg is to use
Schwartz’s theorem (Schwartz, 1965, theorem 6.1), which guarantees it under a
relatively limited number of assumptions, the most crucial of which being that the
prior assign positive mass to any Kullback-Leibler (KL) neighborhood of hy (see Ap-
pendix B for details). We call this property the KL condition. Recall that the KL
neighborhoods are defined in terms of the KL divergence between two densities,
which is the non-negative quantity K L(hg,h) = de log(ho(w)/h(w))ho(w) dw.
A KL neighborhood of some density hg is thus a set of densities of the form
Kpye = {h : KL(ho,h) < €}, for some € > 0. The KL support of the prior is
the set of all densities for which 7(K} ) > 0 for all € > 0. The KL condition is
thus that hg be in the KL support of the prior. A generally weaker assumption is
that hg be in the KL closure of the model, i.e. that any KL neighborhood of hy,
regardless of its prior mass, contain a density hy from the model. The KL support
is included in the KL closure but the converse may not hold (e.g. if the prior does
not have full support in the model).

The following proposition (see Appendix B for a proof) establishes the posterior
consistency of the re-parametrized DM model on the KL closure of © g for a general
class of priors. Here, a ‘Fuclidean open set’ in © is any union of open sets for the
Euclidean topology on the ®;’s. These open sets define the co-product topology
induced by the Euclidean topology on the disjoint union [[, ©j.

Proposition 2. Let m be a prior on the DM model assigning positive mass to any
non-empty Euclidean open subset of Op, where Op is defined by (10). If hg is in
the Kullback-Leibler closure of ®pg, then the posterior is weakly consistent at hyg.



In particular, for all 6y € Op, the posterior is weakly consistent at hy,.

In particular, the prior 7 defined in section 3.2 satisfies the requirement of the
statement. This is also the case of the prior defined by Boldi and Davison (2007)
on the original model, which can be seen by using the one-to-one mapping I'. One
must note that this result put together with the weak density result from Boldi
and Davison is not sufficient to prove weak consistency at all angular measure
with continuous density on the simplex, even if one takes infinite bounds for @ p,
so that ®p = ©. Indeed, the KL topology is thinner than the weak topology,
which means that, in general, the KL condition may not be verified even for a
density in the weak support of the model. Freedman (1963) provides an example
of weakly inconsistent model in a discrete case where the prior still assigns positive
mass to all weak neighborhoods of hg.

For the sake of simplicity we assume in this paper that the true distribution
belongs to the model or to its KL closure. However, it would be of interest to
investigate the extent of the latter. Also, when the model is ‘incorrect’ (i.e. the
KL divergence between the model and the truth is positive), it might be possible
to exploit results from Bunke and Milhaud (1998) and show that the posterior
concentrates around pseudo-true parameters minimizing the KL divergence be-
tween the true hy and the model. Bunke and Milhaud (1998)’s results are valid for
parametric models containing only bounded densities, so that one should impose
a maximum number of mixture components and restrict the model to Dirichlet
densities such that vu; > 1 for all ¢ € {1,...,d}.

4. Metropolis algorithm

We describe in this section a trans-dimensional Metropolis algorithm to sample
the posterior distribution, which we call Metropolis for Dirichlet mizture, or, in
short, M-DM. It belongs to the class of trans-dimensional (with reversible jumps)
Metropolis within Gibbs algorithms (MH-Gibbs), as described e.g. in Roberts and
Rosenthal (2006).

One key principle of the M-DMalgorithm is to use the data to construct the pro-
posal distribution for the mean vectors p. ,,. At each step of the algorithm, three
classes of proposal moves are possible: regular moves, trans-dimensional moves and
shuffle moves. During a regular move, either a mean vector p. ,,, or an eccen-
tricity parameter e, or a concentration parameter v, is picked out of the current
state as a candidate for a move. If a mean vector p. ,, is chosen, it is thrown back
in regions of S; where data points concentrate. Trans-dimensional moves consist
of split and combine moves. During a split (resp. combine) move, an additional



mixture component is created in the @-parametrization. (resp. the last compo-
nent is removed) and the ‘last’ mean vector p. , = 7j_; is adjusted accordingly.
Finally, shuffle move do not alter the likelihood but are designed to improve the
chain’s mixing properties. They simply consists in transposing two indices in the
V- parametrization and deducing the corresponding ®-parametrization. They thus
correspond to a discrete transition kernel. The probability of choosing a regular
move, a trans-dimensional move or a shuffle move have been respectively set to
Creg = -9, Ctrans = 1/3 and cgpus = 1/6.

In the remainder, the proposal variables, the proposal distributions and densi-
ties, and the acceptance probability ratios are respectively denoted (-)*, Q(-, -*),
q(-,-*), and (-, -*) ; 0; denotes the chain’s state at time (iteration) ¢. The
starting value is generated according to a prior distribution.

4.1. Regular moves

If 0, = (g 11(t), e1x—1(t),v1:6(t)) € Oy, then 3k — 2 regular moves are
possible. Three subclasses are defined: p-mowves, e-moves or v-moves, depending
on the type of component affected. The choice between subclasses is made under
equi-probability.

e v-moves affect one component v, (t) of the concentration vector v. The pro-

posal density g, (vm(t),v}),) is log-Normal, with mean parameter log(vy,(t))

rrm

and standard-deviation parameter typically set to log(1 + 0.5%) (on the log
scale).

e Similarly, e-moves affect one eccentricity parameter e, (t). The proposal
density g.(emn(t), €}, is a Beta density with mode at e, (t). The latter is
constructed by fixing a recentring parameter €’ (typically set to 0.2). Then,

the Beta parameters are

6*

o= S+ 0= entt)] 25w = [1- (S 40— entn)| 2.

During an e-move affecting e;,, the weights p» . and the last mean vector
p* ;. (in the W-parametrization) are modified according to the mapping I' :

0 — .

e py-moves affect one of the k — 1 first mean vectors. Again, the subsequent
weights p* . and the last vector p* , in 9™ are modified according to I'.
The proposal p* ,, follows a DM distribution with density g.(p. (%), - ),



constructed from the angular data wi.,. The mixture is multi-modal, with
one mode located at each angular data point, and weights penalizing the
distance between the considered data point and the current mean vector
K. m(t). The precise construction is a generalization of the e-move distribu-
tion. More details are provided in Appendix D.

The acceptance probability for each regular move is classically given by (e.g.
for e-moves affecting the m‘* coordinate)

ho(W1:n)7(0%) ge (e, em<t))>
"l (Win)m(01) qe(em(t), er) )

r(em(t), ) = min <1

4.2. Trans-dimensional moves

4.2.1. Split moves

This type of move is only proposed when k < kpax. A new mean vector p*
is generated in a neighborhood of p. (t), similarly to the proposal rule for the
p-moves, and the last eccentricity parameter e; is proposed according to the prior,
see Appendix D.2 for details. Finally, the last mean vector uﬁf’k 41 18 deduced
from the re-parametrization map I'.

4.2.2. Combine moves

These deterministic moves are allowed for £k > 2. They simply consist in
removing the last component (. 1, €x—1,7%) from the W-parametrization. The
last mean vector p* . in the W- parametrization is thus the center of mass of the
two last mean vectors in the current state.

4.2.8. Acceptance ratio for trans-dimensional moves
From Green (1995), the posterior distribution is invariant under a trans-dimensional
move if we set the acceptance probability, for a split move, to

hos (W1.)w(60%) pe(k + 1) "
" ho, (Win)m(0)  ps(k)

-1
[Q,u,split(etv lﬁ,k) Gesplit (0t ek | lﬁ,k) Qu split (Ot VZ+1)] } )

Tsplit = Min {1

and, for a combine move, to



hg* (Wl:n)ﬂ'(g*) ps(k? — ].)
’ hﬁt(wlzn)ﬂ'(et) pc(k)

QM,Split(a*a M. s k(t)) Qe,split(g*a €k| K ~,k(t>) QV,Split(H*v Vg (t))} )

Tcombine = 1M1 {1

where p.(k) and ps(k) are respectively the probability of choosing a combine
or a split move, when the current state is in ;. Namely, we have set ps = 1p—1 +
%11<k<kmax and pe = lg=g,.. + %11<k<kmax- Note that the Jacobian appearing
in Green’s balance condition is, in our case, equal to one. Indeed, the additional
component is directly simulated, without further mapping.

4.3. Shuffle moves

These moves do not affect the density hg, but improve the convergence of the
algorithm. Without shuffling, the weights affected to the last component of the
mixture would have a tendency to decrease, as the number of mixture components
increases, by a stick breaking effect. Let k be the number of components at step t,
Y = (. 1.5(t), pr(t), vik(t)). Let mi,mg <k, and 7y, m, be the transposition
between elements indexed by m; and ma in ;. Let @mym, = I 7L 0 Ty my o T
The proposal parameter is then defined by 6* = ., m,(0:). The mapping ©m, m,
is differentiable, and we prove in Appendix C that, setting

hg* (len)ﬂ'(e*) >
S 7T /. N_/D\ J mi,m +
het(wlzn)ﬂ'(et) | ac(<p 1, 2)[9 }‘

as an acceptance probability for this move, the posterior is invariant under the
shuffle kernel. The involved Jacobian is (see Appendix D.3)

T'shuffle,m1,mo (gtv 9*) = min <1

k—1 k-1 * )2

pm—1Tm (1+ e 1)
Jac(om, ma)ion| = [[ ——". (12)
el o gl (It emTm)* 5% Pa T

where the e, p¥ _1,Tx’s (resp. the ep, pm—1,Tn’s ) are relative to the proposal

parameter 0* = @, m, (0;) (resp. 0;), and the T,’s are defined in Proposition 1.

5. Ergodicity properties of the M-DMalgorithm

There is an abundant literature concerning asymptotic convergence of Markov
chains towards their objective distribution, see e.g. Meyn et al. (1993) for an
extensive exposition. In short, let 7 is an objective probability on (©,7), i.e. a



distribution from which one wishes to generate a sample (here, 7 is the posterior m,
and © = Op). Let 7’s density with respect to some reference measure dn be known
up to a normalizing constant. We also denote 7 this un-normalized density.We
shall use a classical result (see e.g. Rosenthal, 2001; Roberts and Rosenthal, 2006;
Tierney, 1994): under regularity assumptions, if an aperiodic Markov chain is
generated by a transition kernel K (0, -) admitting 7 as an invariant probability
measure, and if K (0, -) is n-irreducible, then for 7-almost all starting value, the
law K™ (fstart, - ) defined by the n-step transition kernel converges in total variation
distance towards 7.

The regularity assumption is that 7 be countably generated. This is not too
restrictive, since it is true in any case where © is some Borel space and 7 is its Borel
o-field. In particular, this is true in our context, since ® can be identified with
a finite union of open subsets in finite dimensional euclidean spaces. Aperiodicity
means the state space cannot be finitely partitioned into subsets ©1,...,0, (d > 1)
such that for 1 <i < d and 6; € ©;, K(0;,0;4+1) = 1, and for 65 € ©4, K(04,01)
= 1. Also, 7 is inwvariant by K if V0 € ©,VA € T, [ K(0,A) d7(z) = 7(A).
Such a 7 is also called stationary. Finally, n-irreducibility stipulates that for all
set A C O such that n(A) > 0, for all § € ©, for some t € N, K*(Ogpart, A) > 0.

Convergence in total variation distance entails a mean ergodicity property that
can be used in conjunction with weak consistency. Namely, for all 7 integrable
function g, and for 7-almost all starting value, it implies

1 T

T Z g(et) T:Zo Efr (g)v P@start almost SurelY? (13)
t=1

where Py, represents the probability measure on (O, 7®N) induced by the
Markov kernel and the initial state O, and 6; is the random state at time ¢.
Note that, from Roberts and Rosenthal (2004) (¢f their remark following Corollary
6), aperiodicity is not required for (13). In our case, a natural choice for 7 is the
Lebesgue measure on the Euclidean co-product space ®p, defined by (10). In
order to verify that (13) holds for the M-DMalgorithm, we show in Appendix C
the following

Proposition 3. The M-DMalgorithm generates a n-irreducible, aperiodic Markov
chain admitting the posterior m, as an invariant probability measure.

The original part of the proof of Proposition 3 concerns the invariance of the
discrete shuffling kernel. Indeed, standard reversibility arguments are only valid
for continuous proposal kernels. In contrast, irreducibility and aperiodicity are
verified in a classical way and some ideas are in common e.g. with Roberts and



Smith (1994) (in the context of the standard Gibbs sampler) and Guillotte et al.
(2011) (pp- 392-393, proofs 6.3.2 and 6.3.3, together with their Appendix A.5, for
a particular trans-dimensional Gibbs sampler). As noted by the latter authors, the
literature is scarce concerning general conditions for irreducibility and aperiodicity
in a trans-dimensional context. We thus provide a proof that suits our purposes.

The 7-null set on which (13) is not guaranteed may be problematic because
its extent is unknown. If, in addition to the properties listed in Proposition 3, a
Markov chain is Harris recurrent, then the result holds for all starting value. A
n-irreducible Markov chain with stationary distribution 7 is said Harris-recurrent
if for all A C ©, such that n(A) > 0, the stopping time 74 = inf{N > 1: 0y € A}
is almost surely finite for all starting value: Py, (74 < 00) =1 for all Ogpare. Full-
dimensional MH algorithms are Harris-recurrent under weak assumptions regarding
the support of the proposal distributions. A short and self contained proof was
recently proposed by Asmussen and Glynn (2010), see also e.g. Rosenthal (2001);
Roberts and Rosenthal (2004) or Roberts and Rosenthal (2006) for a review of
the properties of the class of MH-Gibbs and trans-dimensional MH algorithms.
Harris-recurrence is less easily achieved for the two latter classes than for the full-
dimensional MH algorithm, and the question is even stated as an open problem in
the case of coordinate mixing, trans-dimensional Markov chains (which is precisely
our framework, see paragraph ‘shuffle moves’ in the preceding section). Similarly to
Guillotte et al. (2011), we do not prove Harris-recurrence for the M-DMalgorithm.
In our case, the difficulty comes from discontinuities of the proposal density around
singular points where (5) does not hold. However, generating the starting value
according to the prior and noticing that m# < 7, the starting value will almost-
surely not belong to the problematic set.

We now turn to practical implications of (13) (which itself derives from Propo-
sition 3). As discussed in section 3.3, for applied purpose, the quantity of interest
is often obtained as an integral of some bounded, continuous function g defined on
the simplex, with respect to the angular measure H. We thus define, for such a g,

3(0) = /S 9(w)ho(w) dw

= (g, hg) .

(14)

The function g is bounded by ||g|/co, and its continuity (for the weak topology)
may be verified: The arguments are the same as those leading to the continuity
of k, in the proof of Proposition 2. Note that standard arguments involving the
continuity of the inner product cannot be used instead, because hg does not belong
to the L? space corresponding to the inner product (i.e. hj is not integrable) if



one Dirichlet exponent vy, 1t is less than 1/2.

As a consequence of the weak continuity, provided that the true measure hg
satisfies the assumptions of Proposition 2 (so that the posterior is weakly consistent
at hg), we have

Ex,(5) — d(ho) = (g.ho)  (ho-a).

Combining this with (13) shows that

T
. 1
it (hm Tz<gvh0?>> = (g.ho)  (hox Poypmas),  (15)

n—oo \ T—oo
t=1

where n is the data sample size and 67" is the current state at time ¢ of the algorithm.

6. Convergence assessment

6.1. Choice of the monitored quantity

In this section, we propose a method to assess goodness-of-fit and monitor
MCMC convergence, i.e. to verify in practice that the double limit in (15) has
approximately been reached. The method also allows to check that the mixing
properties of the generated chains are good enough to provide a representative
sample from the posterior. Non-identifiability and shuffling prevent from monitor-
ing the parameter components generated by the algorithm. On the other hand,
there is no obvious way to visualize the evolution of the generated densities (hg,):
themselves. One solution is to extract suitable numerical quantities that represent
the generated densities, in relation to (15), and then to apply standard convergence
tests to the numerical representations. For example, in the bi-variate case, Boldi
and Davison (2007) monitor the evolution of the dependence measure correspond-
ing to the density hg,: §(6;) = fol min(w, 1 — w)hg, (w) dw. This quantity has an
analytical expression (using incomplete Beta functions) in the case d = 2 only.

The ideas developed here aim at proposing suitable ¢’s, for which §(0) =
(g, hg) in (15) can easily be derived in arbitrary dimension, and such that the M-
DMestimates 7 th:l<g, hg,) can be compared to a reference value (the true value
(g, ho) for simulations or an empirical estimate in realistic cases). For this purpose,
it is very convenient to choose g in the set of bounded Dirichlet distributions, which
are those with parameters (p,v) verifying v p; > 1, for all i = 1,...,d. To see this,
suppose that h and g are two Dirichlet densities with respective parameters (u, V)
and (fi,7), and suppose that g is bounded, so that v f; > 1 for all ¢ < d. Then,
direct calculations yield the (rather complicated, but tractable) expression
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where v/ =v+ 0 —d > 0and p) = (v + ;v — 1) /.

In experiments with simulated data, the true hg may be a Dirichlet mixture, in
which case the reference (g, hp) has a similar expression. Indeed, there is no further
difficulty if the simple Dirichlet A in (16) is replaced with any DM density hg = hy
with § = (p, p,v). The quantity (g,0) := (g, hg) is then obtained as a convex
combination of Z,, ., ([, 7) with weight vector p (see (E.1) in Appendix).

When hg is unkﬁown, an empirical mean estimator may be used instead: Con-
sider a function g and a data set Wy, as above. Then, note that (g, hg) = de gh=
Ep,(9), so that a classical non-parametric estimate of (g, ho) is

AnonP — Zg (17)

In addition to a reference value, a reference error is needed. It is obtained as
the standard deviation §7°"F(g) (under ho) of the estimator gnorP

P (g) = = Wy (02 = = [Bne?) ~ En0)?] 7, (18)

A closed form when hg is a Dirichlet mixture is derived in Appendix E.2. Again, a
1/2

. A P
non parametric estimate is readily available: §"°"F(g) = ﬁ [(92)non — (gnonp)z}

The Dirichlet test functions ¢g’s can be interpreted from a statistical point of
view, other than being a convenient computational tool. Take g as a highly peaked
Dirichlet (i.e. with large concentration v), with mean vector p € Sy. Then (g, ho)
is close to ho( ) and the (g, hg,)’s are close to hg,(p). Thus, closeness of the
estimate & > (g, hg,) to the true value may be reformulated in terms of goodness-
of-fit of the posterior predictive density in a neighborhood of the simplex point



. In practice, this allows to check that the posterior predictive behaves well in
regions of interest (for example, in the regions where the observed angular data
concentrate). Thus, in this paper, the mean vectors for the Dirichlet test functions
g’s are drawn in the neighborhoods of the angular data points. More details are
gathered in Appendix E.1.

6.2. Assessing convergence in practice

For each case study, the M-DMalgorithm is ran J times (typically, J = 4
or J = 8) with starting values generated from the prior. A set of Dirichlet test
functions {gs,1 < ¢ < L} is randomly chosen from the data and convergence of
the j** chain (6;(j))i>0 is monitored via the mapped chain ((h@t(j),gg>)t. For the
sake of simplicity, we use the convergence assessment tools available in R package
coda. First, the stationarity of single mapped chains is investigated using the the
Heidelberger and Welch criterion, (Heidelberger and Welch, 1983). The latter is
based on a Cramer-von-Mises statistic and is implemented in R function heidel.diag.
Under the null hypothesis that the chain has reached its stationary domain, the
statistic has standard normal distribution. In a second step, only the stationary
chains are retained, and it must be checked that starting values have lost their
influence. For such a purpose, we use the diagnostic proposed by Gelman and
Rubin (1992) and implemented in R functions gelman.diag and gelman.plot. The
principle is to compare within-chain and inter-chain variances. The multivariate
Gelman ratio statistic R (shrink factor for the L-variate chains) converges to 1
under the null-hypothesis and a typical requirement is that Rg < 1.1.

Beside stationarity and mixing properties, goodness-of-fit (i.e. accuracy of the
density estimates) is of primarily interest. Let hg be the ‘true’ density and consider
a test function g. Discarding the first 77 iterations of each run and counsidering the
sub-samples obtained between iterations 77 + 1 and Ty ( To > T3 ), the estimate
of (g, ho) produced by the M-DMalgorithm, using the J’ < J stationary chains,

. J T
0= Gy 2 D (@he) -
J(L2 =) J=1t=Ty+1

Each term of the summation has analytical expression derived from (16). If hg is
belongs to the model (e.g. for a simulation experiment), the true value (g, ho) is
known and the exact DM error is then

A(g) =13 — (g, ho)| -



As a summary, the error ratio

o) = )

(19)

may be used as a goodness-of fit indicator for the posterior mean estimates. Values
lower than one indicate that the DM estimate (for a given test function) is in the
expected range of the empirical estimator. If hg is unknown, goodness-of-fit may
still be assessed by comparing the model estimate with its empirical counterpart,
i.e. by replacing (g, ho) with g"°*F in (19) and 6°°"F with its estimate 6"°"F_ This

defines the empirical DM error A(g) and the empirical error ratio 7(g) = Snfn(lggg)‘

7. Results

In this section, the re-parametrized algorithm is tested on a variety of simulated
data sets, and on the air quality data set recorded in Leeds, presented in the
introduction. Comparison is made with the original version of the algorithm.
For each data set, five Dirichlet test functions are randomly chosen. Only the
chains for which the minimum Heidelberger p-value (over the five test functions)
is greater than 0.01 are kept for further analysis. Then, the quality of convergence
is measured in terms of number J’ of stationary chains, and of mean Heidelberger
and Welches p-value hw (over the stationary chains and the five test functions).
Too low values indicate a lack of stationarity. The multivariate Gelman ratio
Rg summarizes the mixing properties, and goodness-of-fit is assessed using the
mean error ratio over the five test functions, computed over the stationary chains,
7= %22:1 r(ge), as well as the minimum and maximum ratios ryi, = ming 7(ge),
rmax = maxgr(gy). For these error ratios, lower values indicate better fit.

7.1. Example: tri-variate simulated data

In this example, a sample of one hundred tri-variate points is simulated from
a three component DM distribution with parameter 6y = (g, po, o), with

03 0.2 0475
o= 06 01 0175 |,
01 07 035 (20)

po = (5/12,1/4,0.5,1/3), and vy = (15,11, 20).

Figure 3 compares the true density with the posterior predictive resulting from one
chain produced by the re-parametrized M-DMalgorithm. To save computational
time, only one out of 100 iterations were kept to compute the predictive density.



For the other tests based on integration against Dirichlet densities, the thinning
interval was set to 10. The predictive angular density appears to reproduce well

w2

Figure 3: Predictive angular density contours (solid lines) obtained via the M-DMalgorithm, on
the two-dimensional simplex Ss, inferred with 100 simulated points (Gray points) simulated from
the true density (dotted lines) defined by (20).

the characteristics of the mixture. The contour lines of the predictive density
obtained with the original version of the DM model are very similar (not shown).
However, this visual check is not sufficient to assess the convergence of the chains.
For this purpose, we follow the procedure described in section 6.2. Four parallel
chains of 50000 iterations are run, using the re-parametrized algorithm and the
original one. The first 10000 iterations of each chain are discarded. Table 1
summarizes the convergence statistics introduced at the beginning of section 7.
Both algorithms perform well in terms of goodness-of-fit, as indicated by the error
ratios 7, Tmin, Ymax- FoOr this data set, the original algorithm even yields better
estimates (after averaging over the different parallel chains). Also, in both cases,
all the chains are deemed stationary in terms of Heidelberger statistic. However,
in terms of mixing properties, summarized by the Gelman shrink factor Rg, the
original algorithm is outperformed by the re-parametrized version.

For a more immediate convergence diagnostic, Figure 4 shows the evolution
of the quantities (g, hg,(;)) (as defined in (14)), where j € {1,...,4} is the chain
index, and of the mean estimates gr; = %ZtST(g, hg,(j)); for one given test



‘ J hw Rq T (rminv rmax)
Re-parametrized | 4 0.40 1.01 0.52 (0.02,1.05)
Original 4 064 137 036 (0.02,0.72)

Table 1: Convergence assessment on tri-variate simulated data: comparison between the re-
parametrized algorithm (first line) and the original version (second line). From left to right:
number of stationary chains, mean Heidelberger p-values, multivariate Gelman shrink factor,
mean error ratio (minimum and maximum values), see section 6.2 for details.

function g. Clearly, the mixing properties differ between the two algorithms, so
that the original one should be ran with a larger number of iterations to span
properly the support of the posterior.

7.2. Example: simulated five-dimensional data

We now turn to five dimensional problems. A 100-points data set is simulated
from a four-components DM distribution with parameters

0.1 05 0.2 0.18
0.1 0.2 0.2 0.24
0.1 01 01 0.3 ,
0.2 01 0.3 0.18
05 01 02 0.1

po = (0.2,0.1,0.2,0.5), 1y = (30,40,20,25).

Ho

Four parallel chains of length 200 x 103 are run in each model, from which the
first 80 x 10% are discarded. The same convergence diagnostic is performed as for
the three dimensional case, results are gathered in Table 2. Visually, the chains
in both versions of the algorithm evolve in a very similar way as in Figure 4.
The same conclusion can be drawn as in the tri-variate case. The only difference
is the number of simulations required to obtain good convergence statistics with
the M-DMalgorithm. The computational burden remains reasonable: the typical
run-time is of five minutes for one chain.

‘ J hw Rg T (rminy T'max)
Re-parametrized | 2 0.25 1.02 0.59 (0.06,1.41)
Original 3027 206 0.87(0.26,1.74)

Table 2: Convergence assessment on five-variate simulated data, with the same statistics as in
Table 1
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Figure 4: Convergence monitoring with three-dimensional data, with four parallel chains in
each model. Integration of the densities generated by the original DM model (left panel)
and by the re-parametrized version (right panel) against a Dirichlet density with parameter
v p~ (7.67,2.72, 4.60).

Gray lines: Evolution of (g, hg,(;)). Black, solid lines: cumulative mean. Dashed line: true value
(g, ho). Dotted lines: true value + /- 1 theoretical standard deviation 62°"F of the empirical mean
estimate with n = 100 points.

One practical implication of the slow mixing on the original parametrization is
that posterior credible intervals are difficult to estimate. As an example, Figure 5
displays, for the two parametrizations, the estimated posterior mean of the bi-
variate angular density for the coordinates pair (3, 5), obtained by marginalization
of the five-variate estimated density. The posterior credible band corresponds to
the point-wise 0.05 — 0.95 quantiles of the density. In both cases, the estimates are
obtained from the last 120.10° iterations of one chain. The estimated credible band
with the original algorithm is much thinner than it is with the re-parametrized one.
As a consequence, the true density is out of the interval for a large proportion of
angular points in (0, 1).
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Figure 5: Simulated five-dimensional data (100 points): Bi-variate angular posterior predictive
densities for the pair (3,5). Left panel: Original algorithm; Right panel: re-parametrized version.
Dash-dotted line: true density; solid line: posterior predictive; Gray area: posterior credible set
at level 0.9.

7.8. Case study: Leeds data set

This data set gathers daily maximum concentrations of five air pollutants:
particulate matter (PM10), nitrogen oxide (NO), nitrogen dioxide (NO2), ozone
(03), and sulfur dioxide (SO2). As noted e.g. by Heffernan and Tawn (2004),
the time series exhibits a daily cycle and short term temporal dependence, so
that daily maxima may be considered as independent in time. Following Cooley
et al. (2010), marginal distributions are estimated by fitting a generalized Pareto
distribution to the upper 0.7 quantile and using the empirical distribution for
the remaining observations. Marginal transformation into unit Fréchet is then
performed by probability integral mapping. The 100 largest observations (for the
L' norm) over the 498 non missing five-variate observations are retained for model
inference.

For those extremes, the convergence is slow. This may be due to the weak
dependence at asymptotic levels found by Heffernan and Tawn (2004), which en-
tails a concentration of the angular points near the boundaries of the simplex, so
that the estimated densities are often unbounded. Indeed, when vy, p;,m < 1 for
some (i,m), the Dirichlet mixture density grows to infinity in the #*" vertice and
the likelihood is very sensitive to small perturbations of 1 ,,. Eight chains of 106
iterations each were generated, the first 4 10 iterations being discarded as a burn-
in period. For this data, convergence was slightly enhanced by modifying some
of the hyper-parameters for the prior and of the MCMC tuning parameters: the
maximum eccentricity emayx was set to 1 — 1073, while the maximum expectancy



€mean.max Tor the corresponding Beta distribution for the e,,’s was set to 0.9. (in-
stead of, respectively, 1 — 1076 and 0.99). As for the MCMC tuning parameters,
the recentring parameters ezplit for split-moves and €. for e-moves are respectively
set to 0.3 and 0.4 (instead of 0.5 and 0.2). Results are gathered in Table 3. Here,
the error ratio are computed using the empirical estimates §"°"F as a reference.
Again, mixing remains acceptable in the re-parametrized DM model, provided the
run length is long enough, contrary to the original version. Figure 6 shows the pro-
jection of the predictive density on three out of the ten two-dimensional simplex
faces. This example allows to verify that our estimates are close to those found by
Boldi and Davison (2007) using a non-Bayesian EM algorithm. Again, the mean
estimates obtained with the original MCMC algorithm are very similar but the
posterior 0.05 — 0.95 quantiles are thinner (not shown).

‘ J hw Rg r (Tmina Tmax)
Re-parametrized | 2 0.19 1.11 0.64 (0.05, 1.09)
Original 4 019 1.66 0.77 (0.12,1.39)

Table 3: Convergence assessment on Leeds air quality data set, with the same statistics as in
Table 1.
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Figure 6: Five dimensional Leeds data set: posterior predictive density. Black lines: projec-
tions of the predictive angular density defined on the four-dimensional simplex S5 onto the two-
dimensional faces. Gray dots: projections of the 100 points with greatest L' norm.

7.4. Prior influence

In this section, the influence of the prior specification is investigated. The re-
parametrized model is fitted on the same simulated five-dimensional data set as in
section 7.2, with different values for the hyper-parameters A, o,, x,, X defined in
section 3.2. Also, we verify that defining the prior distribution of ( u,€) jointly, as



in section 3.2, leads to a substantially more reliable inference than when the p. ;’s
and the e;’s are a priori mutually independent. An alternative prior for (u,e) is
thus defined so that all the mean vectors (resp. eccentricities) are independent
and uniformly distributed on the simplex (resp. the segment [0, emax]). For this
simplified prior, the shape hyper-parameter o, is varied in the same way as in the
preceding setting.

The default hyper-parameter values are set to

A=05, kpax = 15,
m, = log(60), cr?, = log(1 + 52) , log(Vmin) = —2, log(vmax) = 5000,
Xe =11, emeanmax =099 emax=1-10"% x,=11.

Starting from this, the hyper-parameters A, 0., x,, X are perturbed, one at a time,
see Figure 7 for details. For each hyper-parameters value, four chains are run in
parallel, with a burn-in period of 80 x 103 followed by another period of 80 x 10? it-
erations. The same Dirichlet test functions as in section 7.2 are chosen. Goodness-
of-fit is assessed in terms of the average error ratio ¥°M = %Z?:l rPM(go) (left
panel of Figure 7) and mixing is checked wia the multivariate Gelman ratio (right
panel) computed on the stationary chains only. On both panels, lower values
indicate better properties.

When @ and e are a priori dependent, as in section 3.2, convergence and
goodness-of-fit are rather robust to hyper-parameters specification: First, the
hyper-parameter A ruling the number of components has a limited impact, only the
value A = 1 (which penalizes sharply the number of mixture components) damages
the goodness-of-fit. The number of mixture components does not explode for large
values of A (Figure 8), which matches the findings of Boldi and Davison (2007) with
the original algorithm. The scores are also approximately constant over the stud-
ied range of the other hyper-parameters (Figure 7). Only the large value x, = 8
damages the mixing properties of the algorithm. The only case of instability is
observed with the simplified version of the prior on (u,e), for which the mixing
properties are generally poor. Note that the third Gelman ratio (corresponding to
02 = log(1 + 2?)) is missing, because less than two chains passed the Heidelberger
test for this particular experiment. As a conclusion, the structure of the prior de-
fined in section 3.2 appears to result in mean estimates that are relatively robust
to the hyper-parameters specification, and to ensure better mixing properties than
the simplified version where p and e are a prior:i independent.
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Figure 7: Influence of the prior on the quality of the fit (left panel, mean error ratio #°™), and
on the chains’ mixing properties (right panel, multivariate potential scale reduction factor R¢).
o, simplified prior on ( , €), influence of o,, (variance of the shapes), o2 € {log(1+(0.5)%), log(1+
12),1og(1 4 2%),log(1 + 52), log(1 + 10%), log(1 + 20%)} (from left to right) ; I, dependent prior on
(u, e), influence of o,,, same values for o,; o, influence of A (mean number of mixture components),
A €41,3,5,7,10,12}; o, influence of x, (concentration of mean vectors), x, € {0.5,1,1.5,2,4,8}
; A, influence of x. (concentration of eccentricities), x. € {0.5,1,1.1,1.5,3,6} ; Horizontal gray
line (right panel), level 1.1 for the Gelman ratio.

7.5. Comparison with other methods for bi-variate data

Here, the M-DMalgorithm is compared with other Bayesian models that have
already been proposed for the bi-variate case. Namely, comparison is made with
the original DM model and with the non-parametric Bayesian model for bi-variate
spectral measure from Guillotte et al. (2011). In the latter, the angular measure
is obtained as a smoothed version of a discrete distribution on (0,1), allowing for
atomic masses on {0} and {1} and satisfying the moments constraint. The param-
eters’ randomness concerns the number and positions of the atoms on (0,1) defin-
ing the underlying discrete distribution (to be smoothed), as well as the amount
of mass to be attributed to the boundary.

A simulation study is performed following the same pattern as in Guillotte
et al. (2011) and Einmahl and Segers (2009). Bi-variate data sets are simulated
from three multivariate extreme value distributions belonging respectively to the
Logistic model, to the Asymmetric Logistic model and to the DM model itself
(see Appendix F for details). These ‘true’ distributions are respectively denoted
Hy,, Har,, Hpy- Contrary to the two other ones, the Asymmetric logistic distri-
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Figure 8: Influence of hyper-parameter A on the number k of mixture components generated by the
reversible-jump sampler. From left to right, evolution of k& in the MCMC run, for A € {1, 3,12},
and a 100-points data set issues from four-components Dirichlet mixture.

bution has point masses at 0 and 1. For each H,, (m € {L,AL,DM}), 100 data
sets of size 1000 are simulated and the three Bayesian models are fitted. Following
Guillotte et al. (2011), for the non-parametric Bayesian model, a bi-variate thresh-
old u = (u, u) is chosen, with u equal to the theoretical 0.9 marginal quantile, and
the original algorithm is modified so that the marginal parameters are set to their
true values. The number of angular observations retained for fitting both versions
of the DM model is the same as the number of points in the upper square region
[u, 00) X [u, 00). In the bi-variate case, the cumulative distribution function (c¢.d.f.)
H itself is easily representable and we consider the point-wise posterior predictive
estimates H.

The number of MCMC steps is set to the conservative value of 5 x 10° for
the non-parametric model, and to 2 x 10° for both DM models. Figure 9 displays
three examples of fit with one data set generated respectively from a logistic, an
Asymmetric logistic and a DM distribution. The estimation errors H — H,, are
plotted. In this bi-variate setting, with this large number of iterations, the two
versions of the Dirichlet model produce very similar estimates, so that only the
ones from the re-parametrized version are displayed and compared to the non-
parametric counterpart. The possibility for point masses at the end points is an
advantage in favor of the non-parametric model, when the underlying distribution
presents such a feature (middle panel, Asymmetric logistic distribution). On the
other-hand, when the true distribution is continuous on [0, 1], this flexibility seems
to become a drawback: the posterior estimate grants some mass to {0} and {1},
whereas the true distribution does not.

For a more quantitative assessment, the performance of the posterior mean es-
timates H for a given ‘true’ H,, are compared in terms of mean integrated squared
error loss (MISE), which is MISE (H, H,,) = [/ [H(w) — Hy(w)]? dw, and the



Figure 9: Error of the predictive angular cdf (solid lines) on the segment [0,1]. From left to right:
data from a Logistic, an Asymmetric logistic and from a DM distribution. Solid line and gray
area: Dirichlet Mixture mean estimate and 0.1 — 0.9 posterior quantiles; dashed line and dashed
area: idem in the non-parametric model.

scores are averaged over the 100 data sets, for each underlying distribution. Ta-
ble 4 gathers the averaged MISE scores. For the sake of readability, the values
have been multiplied by 103. As could be expected, the non-parametric estimator
obtains the best score for the Asymmetric logistic model, because it allows point
masses at the segment end-points. In the two other cases (no mass on the bound-
ary), the converse is observed: the non-parametric estimate is outperformed by the
DM model, probably for the same reason that makes the non-parametric frame-
work preferable in the Asymmetric logistic case. As a conclusion for the bi-variate
case, there is no clear general advantage in favor of one model against the others,
and the original and re-parametrized versions of the DM model behave similarly,
provided that the number of MCMC steps is large enough.

Table 4: Averaged MISE scores for the three inferential schemes (standard error of the estimate)

True distribution Logistic =~ Asymmetric Logistic Dirichlet Mixture
Re-parametrized DM 0.57 (0.05) 3.45 (0.18) 1.17 (0.1)
Original DM 0.63 (0.04) 3.58 (0.17) 0.96 (0.07)

Non-parametric 1.28 (0.07) 1.07 (0.08) 2.25 (0.17)




8. Discussion

In this paper, we demonstrate that Boldi and Davison (2007)’s model, can,
after a suitable re-parametrization, be used in a Bayesian framework to infer the
dependence structure between the largest observations of a multivariate data set
of moderate dimension. For bi-variate problems, the DM model’s performance
is comparable to that of the fully non-parametric Bayesian model introduced by
Guillotte et al. (2011): their relative goodness-of-fit scores depends on the true
spectral distribution. The presence of point masses at the end points of the in-
terval [0,1] induces a better fit of Guillotte et al. (2011)’s model, whereas the
DM model obtains the best score when the true distribution is absolutely contin-
uous. In this bi-variate setting, the original and the re-parametrized versions of
the DM model produce very similar results, provided that the number of MCMC
iterations is large enough. In greater dimension, the main added value of the
re-parametrization is improved convergence of the reversible-jump algorithm, so
that the generated Markov chains correctly span the support of the posterior and
that estimated posterior credible sets are wider. Also, results for five-dimensional
simulated data sets of size 100 indicate a rather low sensitivity of mean estimates
to the specification of hyper-parameters: the mixing properties of the algorithm
are enhanced if some prior dependence is introduced between the location for the
mean vectors p and the weights, then the particular choice of hyper-parameters
within a reasonable range does not significantly influence neither goodness-of-fit
nor mixing properties.

The required computational effort is moderate; typical running times to issue
the posterior samples on a desktop machine range from less than three minutes
(for the three dimensional simulated data) to three hours (for the five dimensional
Leeds data set). We have not tested the model on greater dimensional data sets,
but much more than 100 data points would likely be needed to obtain reasonably
precise results, and the computational time would naturally increase.

Supplementary material

An R package implementing the algorithm and the convergence assessment
tools developed in this work has been prepared. It is available on demand to the
authors and is intended to be submitted to the CRAN package repository.

Appendix A. Re-parametrization of the Dirichlet Mixture model

Ezpression for Tp,. Recall that, from the definition, p. , = 7;_;, and that by
(3), we have ¢ = (1/d,...,1/d). Also, by associativity, for 1 <m <k — 1,



Pm—1 ’mel = Pm M-,m +pm 7m

Both weights defining the center of mass =,,_; are positive and, assuming (5),
Ym—1 is on the line segment joining =,, and u. ,, (see Figure 1 for the three-
dimensional case). Consequently,

3tTn > 07 Tm = Tm-1 +tm(7m—1 - ,Ll;’m)

With the notations of section 3, C,, = {z e {L,....d} © Yim—1— pim < O}.
Thus, for i ¢ Cp,, the map t — Yim + t(Vim — tim) is non decreasing. Thus,
Vi & Crn, Yt > 0,%im +t (Vim — fi;m) > 0, whence

T =sup{t>0: Vi€Cpn, Yim+t(Yim— pim) >0}

=supst>0: ¢< min _Yim
i€Cm /’%m - ’Yi,m

. < Yi,m >
= min | ——— | .
1€Cm \ Him — Vi,m
Proof of Proposition 1. The equivalence of the two parametrizations is immediate

from he argument preceding the proposition. Here, we derive the expression for
Pm, given the current center of mass <y, _;, mean vector p. ., and eccentricity

; _ em T,
€m, 1.€. Pm = pm%-

Let hg a Dirichlet mixture density with parameter § = (;L_J:k,l, €l:k—1, Vl:k) €
O. Let prg, p.  be the corresponding weights vector and the “last” mean vec-
tor in the original parametrization . Let m > 1 and suppose the pj‘s (j <
m) have been reconstructed, so that p,—1 = 1 — 2j<m pj. Since 7, ; =

qul_l {pm K. omt Pm '7m}7 with p;nl—l(pm + pm) = 1, we have

P 1P (B = Ym1) + (L= o 10 (Yn = Y1) =0,

whence

p;zl—lpm(“~,m - ’Ym) = TYm-1" TVm -
By assumption (5), p. ,, # ¥pm—1, s0 that v, # 7,,_; and necessarily p. ,, —



Ym 7 0. We thus have

o p = 1 m = Yl
[ Ym = 1.l
emLinll Ym—1— 1. mll
emTmll Ym—1 = B mll + [Vt — 2. mll
emIm
emTm +1°

Appendix B. Weak consistency of the posterior

The proof of Proposition 2 is an application of Schwartz’s theorem (Schwartz,
1965, Theorem 6.1, p.22). The latter requires that the sample space (5,S) be
a separable, complete metric space, which is obviously the case with the simplex
Sy endowed with the Fuclidean metric and the Lebesgue o-field . Let M be
the set of absolutely continuous probability measures on S w.r.t. to some reference
measure, which is in our case the Lebesgue measure on Sy = {(w1, ..., wg_1) : w; >
0,29 w; < 1}. A dominated statistical model is a subset Mg = {hg,0 € O}
of M, indexed by some parameter space ©. In a non parametric context, © is
any measurable space with o-field 7. The mapping 0 — hg defines a pre-image
o-algebra T’ on Mg, so that a prior 7 on 7 induces a prior 7’ on 7’. For the sake
of simplicity, we drop the ’, so that 7 and m will respectively be used to denote
the o-field and the prior both on © and on Mg.

For us, © = ©p (defined in (10) ) and 7 is the Borel o-field associated with
the topology induced by the Euclidean topology on the co-product space ®p.

In the following, it must be assumed that the function (w,0) — hy(w) is
(S x T)-measurable. This is the case when Mg is the DM model. As for random
variables, the infinite sequence (W)s = {Wj, j > 0} corresponds to (i.i.d.) ran-
dom vectors following the density hg € M and Wy, = (Wy,..., W,,) to a sample
of size n. Also, the same notation hg is used to refer to the distribution of W,
Wi., or W, (defined on the product o-fields). Finally, 7, denotes the posterior
m(+|Wi.) on T. The notion of uniformly consistent sequence of tests is key to
establishing weak consistency. Consider the two sided hypothesis

Ho: h=hg versus Hi: heU°,

where U C M and hg € U. Let (7,)n>1 be a sequence of tests (i.e.: 7, is a function
of Wy, ), with 0 < 7, < 1 aiming at testing Hg versus Hi. Then, (7,), is said



uniformly consistent if

Epo () =20, and hlenchh(Tn) — L

Throughout her paper, Schwartz assumes that the model is identifiable. However,
since we focus on weak consistency, we shall only need one of her results which we
restate below for convenience and does not require identifiability. A self contained
proof of this theorem may be found in Ghosh and Ramamoorthi (2003).

Theorem 1. (L. Schwartz, 1965)
Let m a prior on T and ho € M. Let U C M containing hg, such that U N Mg be
T -measurable. If

e The application (w,0) — hg(w) is (S X T )-measurable,
e hq is in the KL support of ,

o There is a uniformly consistent sequence of tests for

Ho: h=ho wversus Hi: he M\U,

Then
m™(U N Me) — 1, hg-almost surely. (B.1)

The identifiability assumption is used in Schwartz’s paper to exhibit a uniformly
consistent sequence of test for metric neighborhoods. As we shall see, this is
unnecessary for our purposes, because we consider only weak neighborhoods of
the true density, so that uniformly consistent sequences of tests can always be
constructed. Let M be endowed with the Borelian o-field B(M) generated by
the weak topology on M. When © = @p is the truncated parameter space for
the DM model, it is easily verified that the intersections of open sets in M with
Mg are T-measurable (if g is some bounded, continuous function on Sy, the map
0 — de g hg is continuous on all compact subset of ®p). Consequently, a prior
mon (@p,T) induces a prior © on (M, B(M)) defined by 7#(U) = 7(U N Me).
Again, the ~ is omitted and 7 denote both the prior on M and on ®p. As noted
e.g. in Ghosal et al. (1999), and shown in Ghosh and Ramamoorthi (2003), if U
is a weak neighborhood of hg in M, a uniformly consistent sequence of tests for
Ho versus H, is easily found. Indeed, any weak neighborhood may be obtained
as a finite intersection of U’s of the type {h : [gho — [gh < €}, for some g
bounded, continuous with 0 < ¢g < 1, so that, if 7, is chosen as the indicator
function of the set {W1, : 23 7"W, — [hog < €/2}, then (7,), is uniformly



consistent. Consequently, for such a U, the two first hypotheses in Theorem 1
imply the existence of a uniformly consistent sequence of tests, so that m,(U) — 1.
For general weak neighborhoods V = N, U,, where U, is as above, m,(V) — 1
as well.

Finally, since the sample space S is separable, the space of densities M is
separable for the weak topology (see Billingsley, 1999, Theorem 6.8, for a proof
that can easily be adapted to the case of absolutely continuous distributions). The
weak neighborhoods of hg in M thus have a countable basis and we can exhibit
aset Qo € SV | with ho(Q) = 1, on which convergence (B.1) occurs for all
neighborhoods of hy. We have shown (see also Ghosh and Ramamoorthi, 2003,
chapter 4):

Corollary 1. Let 7 be a prior on (©,7T), with the regularity assumption:
B(M)N{hg,0 € O} C T and (w,0) — hg(w) is (S x T)-measurable.
If hg is in the KL support of w, then the posterior is weakly consistent at hyg.

Proposition 2 can now be proven.

Proof of Proposition 2. The regularity requirements for the corollary to apply are
met. Thus, we only need to show that the KL closure of ®p is included in the KL
support of w. Let hg € M be in the KL support of @p5. In other words, for any
€ > 0, we assume the existence of a 6. € @p such that K L(hg, hg) < €.

Let € > 0 and K}, . a KL neighborhood of hg: Kpy e ={h € M : KL(hy,h) <
€}. We need to show that 7(Kp, ) > 0. By assumption (stated in the proposition),
if U is a non empty open set in ® g, then 7(U) > 0. Consequently, it is enough to
exhibit a non empty open set U¢ C ®p (for the co-product Euclidean topology on
©p), such that U C Kp, .

Let k < kmax such that 6. € ®p. Then there is a closed ball B, in (for the
Euclidean metric), centered at 0, such that B, C ©. Let

k:B. —> R
0 — KL(hg,hg) .

If we can show that & is continuous on B, for the Euclidean topology, then we are
done. Indeed, continuity implies the existence a neighborhood V¢ C B, around 6,
where xk < €, i.e. such that V¢ € Kj .. Then one may choose U¢ = @ N V¢,
where the intersection is non empty (clearly, ® g has no isolated points in @). Let
us now prove the continuity of k. Let



g:BEXSd—>R

(0,w) — log <Z§Ez§> ho(w) ;

so that x(0) f g(0,w) dw. The function g is continuous in 6 for all w, and

measurable in w for all 6. By continuity of the Lebesgue integral, we only need to

show that ¢ is uniformly dominated on B, by some integrable function g : Sd —
R*. For such purpose, let us define

amin:min{uimym: m<k,i<d,(pe,v) EBE} >0,
amaX:max{ui,mum: m<k,i<d, (e, ) EBe},

I
Dmin:min{ ] (V) Sk,Z<d,(u,e,I/)€BE}>O,
H'L—l F(lu’%m Vm)
r
Dmax—maX{ p] () :m < k,i<d,(p,e, I/)GBE}
[Tz T(ttiym vm)

Note that, by compactness of B,, the extrema are reached, which ensures positivity
_ o
of the infima. Hence, V( u,e, v) € B,,Vw € Sy, Vm < k,

max — I min*1
0 < Dmin H w;' U < diri(w | K.y Vm) < Dimax H w;'
1<i<d 1<i<d

_ o
By convex combination, we also have, V0 € B.,Vw € S,

0 < Dl’l’lil’l H w?max_l S hQ(W) S Dmax H,LU’?miH_1
7 A

Whence, by monotonicity of the log function, 3D, Dy > 0,

Di + (amax — 1) Zlog(wi) <log (hg(w)) < D3 + (amin — Zlog (w;) .

Let Cq = max{ |D1], | D2] } and Cy = max{ |amin — 1], |@max — 1] }
We have: V(0,w) € B. x Sq ,



d
| log(hg(w)| < C1 + 02\ S log(w)] -
=1

Thus, V(0,w) € B x Sy,

d
9(6,w)| < (| log(ho(w)| + Ci + Ca| 3 log(w,)

) ho(W)

Using the fact that, for a > —1, w — w*log(w) is integrable on (0,1), with

= go(w) .

@

| a++1 ) as an anti derivative, go is integrable on Sy, so that
K is continuous on B, and the proof is complete. O

w — A (wot! log(g) —wetd

Appendix C. Ergodicity properties of the Markov chain generated by
the reversible jump algorithm.

In this section, 7 = 7, denotes the posterior distribution and K is the M-DM
kernel as defined in section 4 as a mixture kernel (one component corresponding
to a given move choice).

Proof of Proposition 3.

Aperiodicity

It is enough to verify that, if 6; € ®p, then the probability of rejecting the proposal
is positive, i.e. K(0:{6;}) > 0. This is true, e.g. because the probability of
proposing a regular move is positive (and independent from 6;) and the acceptance
probability of a regular move is obviously strictly less than one.

n-irreducibility.

Here, the irreducibility measure is the Lebesgue measure on ®p, so that the prior 7
(hence, the posterior) and 7 are equivalent. In the sequel, let ©® ), denote the index
set of k-mixtures of Dirichlet densities in the prior’s support: @p, = OpNOy. We
need to show that, if g € Op, and A C Op is such that 7(A) > 0, then there
is a4 > 0 such that K%(fsart, A) > 0. The idea of the proof is very simple: we
may choose A as a 'rectangular’ subset of @ gy, for some k' < kpax. If k =K, we
shall exhibit a finite sequence of regular move types (one move for each direction)



allowing to reach A from Ogq.4. If k # k', it is easily verified that @ gy is accessible
from ©p;. For the sake of completeness, we detail the proof.

For 6 = (p,e,v) € Opy, Let us organize the components of 6 into 3k — 2
blocks (61,...,6%72), so that §™ is respectively equal to B oy, (if1<m<k-1),
Cm—tmat1 (k< m <2k —2) or vpy—op..+2 (if 2k —1 < m < 3k — 2). Similarly,
we denote K} the factor of the product space ® g, corresponding to direction m,
so that Op, = Hf’,’f;f E* . Without loss of generality, take A as a ‘rectangle’
A=TPF2am Amc EP.

Assume first that Osar € Opy, and consider a sequence of move choices
C1.3k—2 = C1,...,C3k—2, made of all the possible regular move choices. The prob-
ability of such a sequence starting from Ogart, is non zero. If 2™ € E;”, let
0(0,zm) = (01,...,0m L 2™ ™1 . 60%%=2) be the element of ©p;, obtained
by replacing some ™ with 2™

Finally, the probability of reaching A starting from Og;art is

Sk 2
K3k 2(9 A‘Cl -3k— 2 / / t Tt («915 1,9(9t,1,$t)) dxl d$3k_2,
Ask—2 3 1

where 6° = O, and for 2 € EL, 6, = 0(6,—1,z"), q; and r, being the cor-
responding proposal density and acceptance probability, and, V1 < m < 3k — 2,
0™ € Ay x Ay xE¥ _ x---xEY . Since each term of the product in the inte-
grand is positive, we have K372 (0gart, A|cr.ar—2) > 0. Thus, K3*72(0gpart, A) > 0.
Assume now that Ogare ¢ Opg. In such a case, the probability of proposing
and accepting trans-dimensional moves until the chain reaches ®p,, is positive.
Consequently, ® ;. is accessible from Ogapt, which completes the proof.

Invariance of the posterior distribution under the M-DM kernel

Since the whole M-DM kernel K is a weighted average of partial kernels de-
fined in section 4, it is enough to show that the posterior is invariant under each
of them. The invariance under trans-dimensional moves is ensured by the fact
that the acceptance ratios rgpiit and Tcompine defined in section 4.2 satisfy Green
(1995)’s balance condition. Also, each ‘regular’ kernel K, (6, -) (i.e. affecting
one f. ,,, One vy, Or one e, corresponds to a Metropolis-within-Gibbs partial
kernel, as defined e.g. in Roberts and Rosenthal (2006), so that, if we denote
Im(K,,,0) C © the image of K,,,(6, -), nm the reference Lebesgue measure on
Im(K,,,0), gm the proposal density (w.r.t. n,) and r,, acceptance probability,
then, following Roberts and Rosenthal (2006, section 4), the so-called balance equa-
tion, 7(0)qm (0, 0%)rm(0,0%) = 7(0*)qm (6%, 0)r, (0%, 0), ensures the invariance of 7



under K.
We only need to show the invariance under the shuffle moves.

Let r(6) = rshuffie,m,,m, (8, 0*) denote the acceptance probability of the shuffle move
as described in section 4.3, for a transposition @m; m,, so that 8% = ©p m, (0) ==
©(0). Let K, be the corresponding transition kernel (i.e., the transition kernel
conditionally to proposing a shuffle move affecting m; and mg). We derive a
sufficient condition on r for the posterior distribution 7, to be invariant under K.
The proposal kernel @), conditionally to the acceptance of the shuffle move, is the
point mass Qs(6, A) = d,9)(A) = La(p(0)), for A C Op. The shuffle kernel K
may thus be written as

K(0, A) = r(0)14(0(0)) + (
= r(@)lw_l(A)(G) +

and the shifted measure of A is

Ko (A) = A g Or0) 40+ /A (1= 7(6))mn(8) d6

= [ mu () e O el oy 087+

/(1 —7(0))7,(0) db
A
= mp(A)+
. ./Aﬂ'n (1 (0") r(™1(6%) \Jac(gp)\[;l,l(e*)] —r(0)m,(6%) do™ .
A sufficient condition to have K.m,(A) = 7, (A) is thus that m, (9) r(0) |Jac(g0)|[_9}1 =
r(6*)m, (6%) , or

r(0) _ m(67)
r(0)  m (0)
Now, since ¢ is the transposition of two components of the U-parametrization, we
have ¢ = ¢!, and

Vo € Op,

[Jac(e) g (C.1)

[Jac(e) | \/ [Jac(e) |

Jac(p)| g = \/|Jac(90)|[9} [Jac(e)lg = \/ Pacle D@\ Pac(e)lg



so that (C.1) holds if we set r(6) to

() = min <1, 7;;((99? \Jac(go)\[e]>

Note that the above argument is not valid for general permutations of indices
Pmy,....my, unless the condition ¢ = ga_l holds.
O]

Appendix D. M-DM algorithm details

Appendiz D.1. Proposal distribution for pu-moves

The proposal density q,(p. ,,(t), -) is a Dirichlet mixture constructed from
the data Wy, = (Wy,... ,Wn).

Gu( . (2), ij diri(- | fewy,, 9)-
7j=1

The proposal parameters (P, ftw, ) are as follows: Let €, be a recentring param-
eter, typically set to 0.1. Then

Pw, = (1= €)W; +éuo,

where v, = (1/d,...,1/d). is the centroid of the simplex. The concentration
parameter is set to U = i So that each component diri(-| fiw,, 7) is bounded,
with mode at W, . The Welghts (P1,-..,Dn) are defined so as to penalize the
distance between p. ,,(t) and W; . Namely, p; is proportional to the density,
evaluated at W; , of a Dirichlet distribution with mode at . ,,(t) . Again, we
define &, € (0,1/2) (typically, €, = 0.1), then f1, = (1 — &) . (t) + €uvo and
v, = d/ €,- Now, the un-normalized weight for the j *" mean vector is

pj = diri(W; | fu,, 7).

Finally, we normalize the vector and set p; = p; / 2?21 -

In short, the proposal mean vector p” ,, has a good chance to be drawn in a
small neighborhood of one data point W}, which in turn should be located close
to the current mean vector . ().

Appendiz D.2. Proposal distribution for split moves

The proposal distribution for the new mean vector p* , is constructed similarly
to the p-moves distribution. Namely, the proposal density g, spii¢ is defined by



spht ~ ~
qpu,split Gta : E dlI’l ’ Hw V)

where the ,ZLWJ_7S and 7’s are the same as in the y-moves, and where the weights
@;pht are defined in a similar way as the p;’s, except that the recentring parameter

€, = 0.1 is replaced with € ~Spht = 0.5 (except for the fit on Leeds data where we

found that €M™ = 0.3 was better) and that the ‘current mean vector’ w. ,,(t)
is replaced with the last vector p. ,(t) in the W-parametrization. Compared to
the p-moves, the proposal distribution is thus less concentrated around p. (f).
The k" eccentricity parameter e, is generated, conditionally to the proposed mean
vector pﬁ; i.» according to the prior distribution:

QE,Split(9t7 ' | Pﬁj,k) = 7Te,k'( ' | B 1k—1s lﬁ,ka el:k) .

Finally, the last shape parameter vy, is generated according to the proposal dis-
tribution for regular v-moves, conditionally on v (t):

QU,split(Hta ) = qy(Vk(t)a ’ )

Appendiz D.3. Jacobian term in the acceptance ratio for shuffle moves

Here is derived the closed form of Jac(y) appearing in (12). The indices my, mo
are omitted, and we denote G the local diffeomorphism deduced from I':

G:0p, CR* 2 5 G(Op;) c R¥*2
(N., 1:k—1> 61:k717V1;k) — (H.,1:k—17p1:k71,1/1;k) .
Recall that ¢(f) = Tt o 70 I'(#), where 7 is the transposition of the directions
corresponding to m; and mao, so that
Jac(p)g = Jac(G™ ") or(p) Jac(T)r(g) Jac(G)g .
The determinant of 7 is —1, so that

Jac(G)g

e e

and we only need to compute Jac(G). The Jacobian matrix dG is of the form



1R @-1@E-1 0 0
dG = M, ,, M,. 0 ,

P
0 0 1gk
Where 1g-1-1) denotes the identity matrix on RE-DE-1) apnd M, . is the

Jacobian matrix <g§?)ij< relative to p and e. Hence, Jac(G) = |M, .|. Since py,

depends only on the {[,’l,,,j, ej 1 j < m}, we have

op1
Doy 0 0
|Mp,e’ = . . . 0 ’
Opr—1
* Oep—1
whence
k—1
0
|Mp e’ = D
’ ) Oem

From Proposition 1, we have

=5 |\ Pm-17—7FF1

66m 3em 1 + en Tm
_ Pm—1 Tm
(1 + en Tn)®

Note that this holds because p,,,—1 and T, do not depend on e,: they are functions
of the {p;,e; : j <m} only.
The desired Jacobian’s absolute value is thus

k-1

pcte)| = I (1”’“ tm > H (0t enTn) (D.1)
m=1

+emm pml

where the e}, p¥ _,, T are relative to the proposal parameter 6* = ().



Appendix E. Convergence assessment by integration against Dirichlet
test functions

Appendiz E.1. Random choice of Dirichlet test functions

This section details the procedure followed to construct a set of Dirichlet test
functions {gy = diri(-| py,ve), 1 < £ < L} that are used to monitor the chains
convergence in our simulation study.

Let Wy, = (W1,..., W,,) be an angular data set on which the model is to
be fitted. In this study, we fix L = 5 and the p,’s are chosen so that they cor-
respond to the dependence features of the data set (cf our remark preceding sec-
tion 6.2). Namely, the f1,’s are sampled among the angular data points as follows:
A maximum shape parameter .y 18 imposed, in order to exclude test functions
inducing too large a variance for the empirical estimator ¢"°". In this study, we
set Vmax = 20d, where d is the dimension of the sample space. The n’ angular
points W such that minj<;<q{W;;} > 1/Pmax are retained as candidate data
points, out of which L elements (w;j ,...,w;,) are drawn with equi-probability,
and we set ft, = w;,. Finally, a minimum value 7y, = 5 * d is imposed for the
test’s shape parameter (in order to avoid too flat test functions for points near the
center of simplex), as well as a multiplying constant yies; = 1.001, then the ¢t"
shape parameter is set to

- { Xtest ~ }
Vp=MmMaX§y ——— = 5 Vmin ¢ -
minjg <;<d Hie

Appendiz E.2. Theoretical standard deviation of the empirical estimate of Ep,(g),
for g a Dirichlet test function.

Here, it is assumed that hg = hg is itself a Dirichlet mixture density. We already
have the expression for Eg(g) = Ep,(g) when g = diri(- | &t, 7) and 6 = (p, p, v):

k
E9(9): mezp,_,m,ym(ﬂ,ﬂ) ) (El)
m=1
where the Z ., vm( 1, D)’s are given by (16). To compute Eg(g?), we note that

9*() = Cppdiri(- | w', V'),

with o/ =25 —d, g’ = (20— 1)/ and Cpp = @2 Hisica T00)

ngigd F(Dﬂi)Q F(u’) - The

analytic expression for (18) follows:



. N 271/2
gronP _ 5,=1/2 Cus Z PR s Ui (V) — (Z me[,lz_7m>Vm(/~*l’aﬂ>>
m=1 m=1

Appendix F. Bi-variate distributions used in the simulation study

In this section, expressions for multivariate extreme value distributions are
given for bi-variate vectors which uni-variate margins follow a unit-Fréchet dis-
tribution. For distributions of the logistic type, the angular density on (0,1) is
obtained using Theorem 1 from Coles and Tawn (1991) and the angular probabil-
ity measure H(w) follows by integration of the density between 0 and w € (0, 1).

The first multivariate extreme value distribution used to generate data is a

,
logistic one, with cdf of the type F1(z1,22) = exp [— (zl_l/r + 251/T> } , (r €
(0,1]),2; > 0. If r = 1, the two variable are independent, lower values correspond

to greater levels of dependence. For our simulation, we take r = 0.6.
The second distribution is an Asymmetric logistic one, characterized by the cdf

1-0 1—6 0 1/r 0 ak
puter ) e {5252 (0) T (3) ]}

The corresponding angular measure is

1 r — ' r—
Hy (w) = 7{1+91 Gy — [9}/ (1 — w)/r=1 — gL/ryl/ 1] X

2
(017 (1 = w)!/r 4 95/’“@”1”]“1 3

The logistic distribution corresponds to the special case §; = 62 = 1. Other-
wise, the angular measure grants non-zero mass to the boundary points, Hap,({0}) =
(1 —02)/2 and Har({1}) = (1 + 61)/2. In this study, we set r = 1/3, 6; = 0.45,
02 = 0.55. For the logistic and the Asymmetric logistic distributions, data can
easily be simulated using e.g. the R package evd. The marginal parameters are set
in order to have unit-Fréchet margins, and the threshold (u,u) retained for fitting
the models is the theoretical marginal 0.9 quantile, i.e. u ~ 9.49. Conditionally
on exceeding u, each marginal variable approximately follows a Generalized Pareto
distribution (GPD): P(X; > z | X; > u) = (1+&54) Y8 (2 > u,j € {1,2}), with



£ =1 and o = u, so that the marginal parameters to be specified in Guillotte et al.
(2011)’s model are ((, = 0.1,&; = 1,05 = u), where (; is the marginal probability
of an excess above uj, &; is the GPD shape parameter and o; is the scale parameter
for the GPD above u;. If n is the number of points belonging to the upper square
(u,00)?, then the Dirichlet mixture model is directly fitted on the angular data set
(Wi,l,Wi,2) = Ri_l(Xi,l,XiVQ),With R, = Xi,l + X@g, 1 < ¢ < n, corresponding to

the n points with largest radial component R.
The last angular distribution is a Dirichlet mixture Hpy with parameters

<0.8 0.5 0.1 0.3

09 05 09 07) , p=(0.25,0.5,0.125,0.125) , v = (20,0.9,1,50).

Angular data points W; = (W; 1, W;2) (1 < i < 1000) are easily simulated from
Hpy - To fit Guillotte et al. (2011)’s model, radial variables R; (1 < i < 1000)
such that P(R; > r) = 1/r (r > 1) are generated independently from the W,’s.
The bi-variate points Y; = R;W; have marginal survival function P(Y;; > y) =
1/(2y). Then, the marginal 0.9 quantile for Y;; is @ = 5, and n is the number
of Y;’s belonging to (%,00)2. Again, the n angular points with largest radial
component are retained to fit the Dirichlet mixture model. To fit Guillotte et al.
(2011)’s model, the Y; ;’s exceeding @ are re-normalized (using probability integral
transform) into Generalized Pareto variables X ;s with arbitrary threshold v = 10,
so that P(X;; >z | X;; >u) = (1 + (z —u)/u)~L. The Y;;’s below @ are treated
as left-censored data. Then, the marginal parameters for Guillotte et al. (2011)’s
model are (¢, =0.1,§; = 1,0; = 10), j € {1,2}.

Appendix G. Comparison with the original Dirichlet mixture model

Appendiz G.1. Erratum on the prior specification (Boldi and Davison, 2007)

In the original parametrization, the prior F}, on u is defined conditionally on
the number &k of mixture components and on the weights vector p, by successive
conditioning in the lexicographic order:

Fu(p qseees e glkp) = fra(pan) fre(paelpn) - fre—1(pag—1lpnme—2) -

)

Ja—1—1(d—1k—1]H1:d—1,1:6—2) ,

where f; ; is a uniform distribution on the largest interval I; ; (i <d—1, j < k—1)
allowing (3), and where the last column and the last line are deduced from the



others according to (3) and >, pim = 1. Boldi and Davison indicate zero as a
lower bound for I; ;. In fact, small values in the the first columns of p imply large
ones on the last column, which, in some cases, induce negative values on the last
line. It is left to the reader to verify that the correct lower bound for I; ; is

max O,pj_l - Z Pm Him — Z Pm (1 — Sz,m) )
m<j mej+1,..k

where S;;m =Y i tem (1 <m < E).

Appendiz G.2. Prior specification and MCMC tuning parameters used in the sim-
ulations

For comparison with the re-parametrized inferential scheme, the original version
of the Bayesian model and the reversible-jump algorithm were re-implemented, fol-
lowing Boldi and Davison (2007) and Boldi (2004). For the sake of reproducibility,
the numerical values for the hyper-parameters and the MCMC tuning parameters
that were used in our simulations are gathered in this section.

The prior on the parameter ¢ = (k, wu, p, v) is of the form

m() = mi(k) mp(p | k) Flu(pe | K, p) mo (v | K) -

7 is a truncated Poisson distribution, with truncation bounds (Kmin,kmax) =
(1,15) and intensity A = 3. m, is the uniform distribution on the simplex Sy,
i.e. the Dirichlet distribution with parameter o = v = (1,...,1). F}, is de-
scribed in the preceding subsection, with the original error corrected. Finally, m,
is a product of truncated log-normal distribution, with same bounds as in the re-
parametrized version, log(v,,) € (—2,log(5000)), Denoting (m,,,02) the mean and
variance for log(vy,), we set, following Boldi and Davison (2007) for the bi-variate
case (section 7.5), m, = log(2),0, = 50. However, for higher dimensional data,
we found that mixing properties and convergence were enhanced by setting these
hyper-parameters to the same value as in the re-parametrized version, so that m,
and o2 are respectively set to log(10 = (d + 1)) (where d is the dimension of the
data) and log(1 + 52) .

As for the MCMC scheme, we follow Boldi (2004), whose approach is sum-
marized in Boldi and Davison (2007), Appendix B. Three types of moves are al-
lowed, respectively called split, combine and MCMC. For the split and MCMC
moves, three typical move sizes are allowed: small, medium, big. The combine
moves are the simplest: a pair of mixture components (m1, msg) is randomly cho-
sen, and the two corresponding mean vectors are combined into a single fi. i,



which is the center of mass for ((t. my, Pmi), (K. mas Pms)), With weight pp, =
DPmy + Pmy- Then, log(vy,) is drawn as a normal distribution with mean equal to
(10g(Vim, ) + log(vim,))/2, and variance set to log(1 + (s)?), where s is respectively
equal to 0.1,0.3 and 0.5 for a small, a medium or a big move. During a split move,
one mixture component mg is split into two. For a big move, the proposal mean
vector fi. m, is uniformly distributed on Sg. For small (resp. medium) moves,
[t ms, follows a Dirichlet distribution with mode at jt. .,,, and recentring param-
eter €, = 0.05, (resp. €, = 0.3), i.e. the mean vector for the proposal Dirichlet
distribution is €,(1/d,...,1/d)+ (1 —1/€,) . m, and the concentration parameter
is v, = d/e,. The weight p,,, for the proposed component m; is determined by
drawing v € (0,1) and letting pym, = V Dmg, then pm, = pmy — Pm,. For a big
move, €, is uniformly distributed. Otherwise, it follows a Beta distribution, with
parameter (ai,as) = 2/¢e, [6,(1,1) + (1 — €,)(1,0))], with €, respectively equal to
0.05 and 0.3 for a small (resp. medium) move. The position of u. ,, is defined
so that the former mean vector . ,,, be the center of mass for the two proposals
[ m, and . m,. Finally, the shape parameters v,,,, vp,, are proposed in a similar
way as in the combine moves, with the mean of the log-transformed variables set
to log(vpm, ). During a MCMC move, a permutation {o(1),...,0(k)} of {1,...,k}
is randomly chosen (by sampling without replacement in {1,...,k}). Then, a com-
bine move followed by a split move is successively applied to each pair (o(i),0(7)),
forie{l,....k—1}and je {i+1,...,k}.
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