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Introduction

The Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] is an optimization problem that aims at finding a sparse solution to a least square problem by minimizing the sum of an ℓ 2 -fitting term and an ℓ 1 -regularization term. Given some observation/signal y ∈ R N and a dictionary matrix D ∈ R N ×K with N ≤ K, this problem writes P(λ, D, y) : x arg min

x 1 2 Dx -y 2 2 + λ x 1 , (1) 
where the parameter λ > 0 governs the sparsity of x. We would like to be able to handle [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF] when both N and K may be large, which occurs in many practical applications resorting to the Lasso: denoising, inpainting or classification. Algorithms relying on first-order information (e.g. gradient) only are particularly suited for these problems, as second-order based methods (e.g. using the Hessian) imply too computationally demanding iterations. These first-order algorithms include primal [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Daubechies | An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint[END_REF][START_REF] Wright | Sparse reconstruction by separable approximation[END_REF] and primal-dual [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Uzawa | Studies in linear and nonlinear programming, With contributions by Hollis B. Chenery[END_REF] algorithms.

Accelerating these algorithms is yet a key challenge: even though they provably have fast convergence, they remain captive of the dictionary size due to the required multiplications by D and D T over the optimization process. To overcome this limitation, strategies based on screening tests [START_REF] Dai | An ellipsoid based, two-stage screening test for bpdn[END_REF][START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF][START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF][START_REF] Wang | Lasso Screening Rules via Dual Polytope Projection[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF][START_REF] Xiang | Fast lasso screening tests based on correlations[END_REF] have recently been proposed. They implement two steps: i) locate zeros of x thanks to a screening test and construct the reduced or screened dictionary D 0 which is dictionary D trimmed off of its columns that correspond to the located zeros and ii) solve P(λ, D 0 , y) (see Algorithm 1).

We propose a new screening principle called dynamic screening in order to even more reduce the computational cost of first-order algorithms. We take the aforementioned concept of screening test one step further, and improve existing screening tests by embedding them in the iterations of first-order algorithms. We take advantage of the computation made during the optimization procedure to perform a screening at each iteration with a negligible computational overhead, and we consequently dynamically and iteratively reduce the size of D. To our knowledge, this is the first time such a screening mechanism is envisioned. Opposing perspectives of the proposed dynamic screening and existing static screening are schematized in Algorithms 1 and 2.

Experiments show that the dynamic screening principle significantly reduces the computational cost of the optimization in a large range of λ values. The computational saving reaches up to 90% with respect to the base algorithm, or up to 70% with respect to the algorithm with static screening.

Algorithm 1 Static screening strategy

D0 ← Screen D loop k x k+1 ←Update x k using D0 end loop Algorithm 2 Dynamic screening strategy D0 ← D loop k x k+1 ← Update x k using D k D k+1 ← Screen D k using x k+1 end loop
Section 2 introduces the tools we build our work upon. The dynamic screening principle is then presented and analyzed in Section 3. Section 4 is devoted to numerical experiments. Finally we discuss several extensions that can emerge from this work in Section 5.

In this section, we set the notation, introduce previous works on screening tests for the Lasso and recall state-of-the-art algorithms to solve this problem, pointing out their computational limitations.

Notation

D [d 1 , . . . , d K ] ∈ R N ×K
denotes a dictionary and Ω {1, . . . , K} denotes the set of integers indexing the columns, or atoms, of D. The i-th component of x is denoted x(i). The observation y ∈ R N is assumed to have a sparse representation x ∈ R K in D, i.e. Dxy 2 and x 0 are small. Without loss of generality, observation y and atoms d i are assumed to have unit ℓ 2 norm. The dual problem associated to (1) is [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF]:

θ arg max θ 1 2 y 2 2 - λ 2 2 θ - y λ 2 2 (2a) s.t. ∀i ∈ Ω, |θ T d i | ≤ 1. (2b) 
A dual point θ is said feasible if it complies with the constraints (2b). The solutions of the primal (1) and dual (2) problems, x and θ respectively, are linked by the relation:

y = Dx + λ θ, ∀i ∈ Ω, | θT d i | < 1 if x(i) = 0 | θT d i | = 1 if x(i) = 0 (3) 
We additionally define: d * = arg max d∈{±di} K i=1 d T y, and λ * = d T * y. To avoid the null solution: λ ∈ [0, λ * [.

Screening Tests

The sparsity inducing regularization λ • 1 entails an optimum x that may contain many zeros, and the goal of a screening test is precisely to locate them; an efficient screening test locates many zeros. From the located zeros a screened dictionary D 0 can be defined removing the corresponding atoms, called inactive atoms, from D. Finally the solution of P(λ, D 0 , y) can be readily reconstructed from that of P(λ, D, y). Any optimization procedure using the screened dictionary D 0 therefore computes the solution of P(λ, D, y) at lower computational cost.

Screening tests [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF][START_REF] Xiang | Fast lasso screening tests based on correlations[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF] are based on an idea emerging from the relation (3) between primal and dual optima, x and θ respectively. According to relation [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] 

i veri- fying max θ∈R |θ T d i | < 1.
Screening tests essentially differ from one another on the region R they consider, when R is a sphere [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF] max θ∈R |θ T d i | has a closed-form expression and gives the sphere test principle. Spheres that instantiate this principle are described below.

Lemma 1 (Sphere Test Principle [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF]). If the solution θ of (2)

satisfies ∃{r, c} ∈ R × R N , θ -c 2 ≤ r, then : |c T d i | < 1 -r ⇒ x (i) = 0.
In practice, once a sphere S(c, r) of center c and radius r has been defined, every atom i such that |τ (i)| < 1r are removed, where τ = D T c. The associated screening operator Π c,r (•) is the operator that, given a dictionary D, outputs the corresponding screened dictionary Π c,r (D)

d i s.t. i ∈ Ω, |c T d i | ≥ 1 -r . (4) 
The construction of such spheres [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF] is based on the following considerations. The dual optimum θ is closer to y/λ than any feasible point in R N . Then from any feasible dual point θ one can construct a sphere, centered on y/λ with radius θ-y/λ 2 , that contains θ. The SAFE method [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF], implements the feasible dual point θ = y/λ * .

First-order algorithms for the Lasso

The Lasso problem (1) may be solved with general-purpose first-order algorithms such as ISTA [START_REF] Daubechies | An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint[END_REF], TwIST [START_REF] Bioucas-Dias | A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF], FISTA [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF], SpaRSA [START_REF] Wright | Sparse reconstruction by separable approximation[END_REF], forward-backward splitting [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] or the Chambolle and Pock's primal-dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Uzawa | Studies in linear and nonlinear programming, With contributions by Hollis B. Chenery[END_REF]. For the sake of simplicity, ISTA is used as the archetype for first-order algorithms. The extension to all the aforementioned algorithms is described in section 3.

ISTA constructs a sequence of iterates {x k } k≥0 which converges to the optimal x by implementing the update:

x k+1 ← T λ/L k x k - 1 L k D T (Dx k -y) , (5) 
where x k is the k-th iterate computed by the procedure, L k is the step size (set according to a backtracking rule see [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF]), and T t (x) sign(x) max(0, |x|t) is the soft-thresholding operator. In the following update ( 5) is denoted x k+1 ← p k (x k , D) subsequently, in order to ease the notation and emphasize similarities in first-order algorithms. Due to the matrix-vector products involving D and D T , the cost of one update is O(N K), assuming that D has no associated fast transform. In many applications, the dimensions can be large, e.g., K ≥ N ≫ 100. This explains the major interest of reducing the size of the dictionary K without affecting the solution of the Lasso.

Optimizing with Dynamic Screening

Existing screening strategies for the Lasso are static in the sense that they first screen the dictionary and use the screened dictionary to solve the Lasso (see Algorithm 1). We show in this section that calculations made during the optimization procedure can be employed to dynamically and iteratively reduce the dictionary by performing dynamic screening at each iteration. Dynamic construction of better feasible points. Screening tests presented in Section 2.2 build on a feasible dual point. Therefore, producing at each iteration a feasible dual point that is cheap to compute and close to y/λ enable the iterative construction of new SAFE sphere with smaller radius, and thus the iterative construction of more efficient sphere tests.

ISTA directly computes potentially appropriate dual points. Indeed, each update requires the computation of the gradient ∇f

(x) = D T (Dx -y) of the ℓ 2 -fitting term f (x)
Dxy 2 2 . The dual points θ k Dx ky form a sequence {θ k } k≥0 that converges to λ θ. Since θ k is not necessarily feasible, the following dual scaling strategy may be resorted to, in order to give a second sequence of appropriate feasible dual points θk µ k θ k .

Lemma 2 (Dual Scaling [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF]). Among all feasible scaled versions of θ k , the closest to y/λ is θk = µ k θ k where:

µ k arg min µ∈R µθ k - y λ 2 s.t. D T µθ k ∞ ≤ 1 (6) = min max θ T k y λ θ k 2 2 , 1 D T θ k ∞ , -1 D T θ k ∞ .
Dynamic screening. Embedding this dual scaling strategy within ISTA permits to execute more efficient screening tests almost for free. Indeed, the center of all the spheres is the same, y/λ, hence the test vector D T c is computed only once. Since θ k and D T θ k are computed by the update of ISTA, computing θk requires O(K + N ) operations and computing the sphere radius θky/λ 2 requires O(N ) additional operations. Given that N ≤ K, the computational overhead of the screening test is in O(K). Finally, the total overhead is negligible compared with the O(KN ) operations required for an optimization update.

The resulting ISTA with dynamic screening is presented in Algorithm 3. The input of the algorithm defines: the problem of interest through D, y and λ; the initial state x 0 (set by default to 0); the center c and the function r(•), which compute the radius of the sphere from θ, parameterizing which sphere test is embedded in ISTA-more information on centers and radius functions r(•) are given below in [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF] and [START_REF] Uzawa | Studies in linear and nonlinear programming, With contributions by Hollis B. Chenery[END_REF]. The algorithm breaks up in two steps: the optimization update (see line 4) where p k (•) returns iterate x k as well as suitable computed vectors θ k and D T θ k ; and the screening step (see line 6-8): at line 6 the feasible dual point θk is computed with the dual scaling strategy, the radius is updated only when decreasing at line 7 and finally the screening operator is applied.

Generalization to other first-order algorithms. As announced in section 2.3, the dynamic screening principle Algorithm 3 ISTA with dynamic screening Require: D, y, λ, x 0 , c, r(.) 

1: D 0 ← D,
D k+1 ← Π c,r k+1 (D) ⊲ see (4) 9: 
k ← k + 1 10: end while applies to other first-order algorithms as well. Considering that the update does not only modify the iterate x k but some auxiliary variables as well, each first-order algorithm can be describe by its update xk+1 ← p k (x k , D) where xk represents the set of updated variables. Both p k and x are given in Table 1 for a few other representative algorithms.

Table 1 gives two important pieces of information: first all p k (•) have similar computational requirements as ISTA; second the expensive computations required for dynamic screening-computing a new θ k and D T θ k -are provided by these updates. Then dynamic screening applies to these algorithms in the exact same way as it applies to ISTA.

Algorithms

Optimization update xk+1 ← p k (x k , D) TwIST [START_REF] Bioucas-Dias | A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF] x k+1 ← (1 [START_REF] Wright | Sparse reconstruction by separable approximation[END_REF] same as ISTA except that L k is set with Brazilai-Borwein rule

-α)x k-1 + (α -β)x k xk = {x k , x k-1 } +βT λ x k -D T (Dx k -y) SpaRSA
FISTA [1] x k+1 ← T λ L k z k -1 L k D T (Dz k -y) xk = {x k , z k , t k } t k+1 ← 1 + √ 1 + 4t k 2 z k+1 ← x k+1 + ( t k -1 t k+1 )(x k+1 -x k ) Chambolle- Pock [3] θ k+1 ← 1 1 + σ k (θ k + σ k (Dx k -y)) xk = {x k , xk , x k+1 ← T λτ k x k -τ k D T θ k+1 θ k , τ k , σ k } ϕ k ← 1 √ 1+2γτ k ; τ k+1 ← ϕ k τ k σ k+1 ← σ k ϕ k xk+1 ← x k+1 + ϕ k (x k+1 -x k )
Table 1: Updates for first-order algorithms.

Direct extension to ST3. Section 2.2 presents SAFE spheres, another sphere called ST3 relying on the SAFE sphere have been proposed in [START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF]. Constructed from any feasible dual point θ, ST3 is the sphere centered on c = y/λδd * with radius r(θ) = θy/λ through parameters c and r(•):

SAFE: c = y λ , r(θ) = θ - y λ 2 (7) 
ST3: c = y/λ -δd * , r(θ) = θ -y/λ 2 2 -δ 2 (8)
Convergence analysis. First-order algorithms with dynamic screening do not necessarily provide the same iterates as their base version but still converge to the global optimum:

Theorem 3. If a first-order algorithm is proven to converge to the global optimum of the Lasso problem, then its version with dynamic screening converges to the global optimum too.

Proof. As explained in section 2.2, Lasso problems P(λ, D, y) and P(λ, D k , y) for all k ≥ 0 have the same solutions. Since the sequence {r k } k≥0 is non-increasing, Lemma 1 ensures that the set of located inactive atoms is non-decreasing, indeed:

r ≥ r ′ ⇒ (∀i ∈ Ω, |c T d i | < 1 -r ⇒ |c T d i | < 1 -r ′
). This set is upper bounded by the set of zeros in x the solution of P(λ, D, y), so the set of located zeros converges in a finite number of iterations k 0 . Then ∀k ≥ k 0 , D k0 = D k and usual convergence proofs apply.

Numerical Experiments

This section presents experiments used to assess the practical relevance of our approach. The code and data for numerical experiments are released for reproducible research purposes. 1 Runnning Times. We have claimed that, compared with static screening, dynamic screening significantly accelerates the computation of the solution of the Lasso with first-order algorithms. This section evaluates the performance of our method in terms of running times. Note that since each version of the algorithm (no-screening, static screening, dynamic screening) converges to the same optimal x (see Theorem 3), we do not report the value of the objective at convergence .

We measured running times of the algorithm without screening test, with static screening and with dynamic screening. To emphasize the gain, running times are normalized 1 http://pageperso.lif.univ-mrs.fr/~antoine.bonnefoy with respect to running times required by the algorithm without screening. Synthetic data. For experiments on synthetic data, we used two types of dictionaries. The first one is a Gaussian dictionary where observation y as well as all atoms d i are drawn i.i.d. uniformly on the unit sphere by normalizing realizations of N (0, I N ). The second one is the so-called Pnoise introduced in [START_REF] Xiang | Fast lasso screening tests based on correlations[END_REF], for which y and all d i are drawn i.i.d. from the distribution e 1 + 0.1κg and normalized, where g ∼ N (0, I N ), κ ∼ U(0, 1) and e 1 being the first natural basis vector. We set N = 2000 and K = 10000. Audio Data. For experiments on real data we performed the estimation of the sparse representation of audio signals in a redundant Discrete Cosine Transform (DCT) dictionary, which is known to be adapted for audio data. Observations y were taken from 30 music and speech recordings with length N = 1024 and sampling rate 16 kHz. Experiments were run for K = 3N . Experiments. Algorithms were run for several values of λ in order to compute the representation of the observation y in the dictionary D with different sparsity levels. The algorithm stops at iteration k when the ratio between the maximum variation of the functional in (1) and the average of the functional over the M = 10 previous iterations does not exceed the value of ǫ (ǫ = 10 -6 for Gaussian, ǫ = 10 -4 for Pnoise and ǫ = 10 -6 for audio signals).

Figure 1 shows the normalized running times for algorithms with dynamic screening (black squares) and for the corresponding algorithms with static screening (circle) as a function of λ/λ * . Low values account for fast computation. We used Gaussian (left), Pnoise (middle) and Audio (right) data with the ST3 screening test. We plotted the median values over 30 problems. The shaded area contains from 25% to 75% percentiles for plain curves only, in order to illustrate the typical distribution of the values. For all dictionaries, the dynamic screening performs significantly better and is effective in a larger range of λ than the static one. In the audio experiment savings could reach more than 90% over ISTA and up to 70% over ISTA with static ST3 (e.g. for λ/λ * ≈ 0.6). Both static and dynamic screening strategies tend to be more efficient when the dictionary redundancy K/N increases.

Note that due to the normalization of running times, Figure 1 cannot be used to draw any conclusion on which of ISTA, FISTA or SpaRSA is the fastest algorithm. Interpretation: Screening progression. To apprehend the effectiveness of the dynamic screening test, we represented how dynamic screening behaves along the iterations. Figure 2 shows on the same scale the evolution of two key values along the iterations: the radius r k (red dashed line); and the relative size of the dictionary K k /K (blue area)-where K k is the size of the screened dictionary at iteration kwhich represents the proportion of atoms remaining in the screened dictionary. Here dynamic ST3 was used in ISTA for a Gaussian dictionary with λ = 0.7λ * . The reduction of the radius induced a nice improvement in the screening. The screening test may be totally inefficient in the first iterations, which shows the advantage of the dynamic screening strategy over the static one.

Discussion and Future Directions

We have shown that the dynamic screening principle is relevant theoretically and practically. Dynamic screening accelerates more first-order algorithms than static screening in the proposed experiments on synthetic and real data, and in a larger range of λ.

Dynamic screening has been shown to work for several algorithms and screening tests, and the question is whether the concept of dynamic screening can be further generalized. The answer is positive: it can be applied to much more algorithms to other screening As far as an optimization process computes the gradient of the ℓ 2 -fitting term and the screening test rests upon the SAFE sphere, e.g. the dome test [START_REF] Xiang | Fast lasso screening tests based on correlations[END_REF], they can combine into a dynamic screening strategy.

The proposed method raises several questions we plan work on, some of them are addressed here as a conclusion. The SAFE test extends to the Group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], but can it be refined dynamically along the iterations of the optimization process in a similar fashion? As in [START_REF] Ghaoui | Safe Feature Elimination in Sparse Supervised Learning[END_REF], we are curious to see how dynamic screening may show up when other than an ℓ 2 fit-to-data is studied: for example, this situation naturally occurs when classification-based losses are considered. As sparsity is often a desired feature for both efficiency (in the prediction phase) and generalization purposes, being able to work out well-founded results allowing dynamic screening is of the utmost importance.
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 1 Fig. 1: Normalized running times on synthetic data (left, middle) and real data (right).
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 2 Fig. 2: Relative size K k /K and radius r k along the iterations.

  , atoms d i such that | θT d i | < 1 correspond to inactive atoms. If θ were known it would be easy to identify inactive atoms. It is obviously not the case then to locate inactive atoms screening tests build an upper-bound on | θT d i | by constructing a region R ⊂ R N that contains θ and hence satisfies | θT d i | < max θ∈R |θ T d i |. It allows one to remove every atom d
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4:

{x k+1 , θ k , D T θ k } ← p k (x k , D k ) ⊲ see

(5) 5:

.8:

  2 2δ 2 , where δ = λ * /λ -1. The corresponding screening operator is Π c,r (•) as defined in[START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. Both SAFE and ST3 can be embedded in Algorithm 3
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