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◦Inria

ABSTRACT

The Lasso is an optimization problem devoted to finding a

sparse representation of some signal with respect to a pre-

defined dictionary. An original and computationally-efficient

method is proposed here to solve this problem, based on a dy-

namic screening principle. It makes it possible to accelerate

a large class of optimization algorithms by iteratively reduc-

ing the size of the dictionary during the optimization process,

discarding elements that are provably known not to belong to

the solution of the Lasso. The iterative reduction of the dic-

tionary is what we call dynamic screening. As this screening

step is inexpensive, the computational cost of the algorithm

using our dynamic screening strategy is lower than that of the

base algorithm. Numerical experiments on synthetic and real

data support the relevance of this approach.

Index Terms— Screening test, Dynamic screening,

Lasso, First-order algorithms, ISTA.

1 Introduction

The Lasso [9] is an optimization problem that aims at finding

a sparse solution to a least square problem by minimizing the

sum of an ℓ2-fitting term and an ℓ1-regularization term. Given

some observation/signal y ∈ R
N and a dictionary matrix D ∈

R
N×K with N ≤ K, this problem writes

P(λ,D,y) : x̃ , argmin
x

1

2
‖Dx− y‖22 + λ‖x‖1, (1)

where the parameter λ > 0 governs the sparsity of x̃. We

would like to be able to handle (1) when both N and K may

be large, which occurs in many practical applications resort-

ing to the Lasso: denoising, inpainting or classification. Algo-

rithms relying on first-order information (e.g. gradient) only

are particularly suited for these problems, as second-order

based methods (e.g. using the Hessian) imply too compu-

tationally demanding iterations. These first-order algorithms

include primal [1, 4, 6, 12] and primal-dual [3, 8] algorithms.
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Accelerating these algorithms is yet a key challenge: even

though they provably have fast convergence, they remain cap-

tive of the dictionary size due to the required multiplications

by D and DT over the optimization process. To overcome

this limitation, strategies based on screening tests [5, 7, 10,

11, 14, 13] have recently been proposed. They implement

two steps: i) locate zeros of x̃ thanks to a screening test and

construct the reduced or screened dictionary D0 which is dic-

tionary D trimmed off of its columns that correspond to the

located zeros and ii) solve P(λ,D0,y) (see Algorithm 1).

We propose a new screening principle called dynamic

screening in order to even more reduce the computational

cost of first-order algorithms. We take the aforementioned

concept of screening test one step further, and improve ex-

isting screening tests by embedding them in the iterations

of first-order algorithms. We take advantage of the compu-

tation made during the optimization procedure to perform a

screening at each iteration with a negligible computational

overhead, and we consequently dynamically and iteratively

reduce the size of D. To our knowledge, this is the first

time such a screening mechanism is envisioned. Opposing

perspectives of the proposed dynamic screening and existing

static screening are schematized in Algorithms 1 and 2.

Experiments show that the dynamic screening principle

significantly reduces the computational cost of the optimiza-

tion in a large range of λ values. The computational saving

reaches up to 90% with respect to the base algorithm, or up to

70% with respect to the algorithm with static screening.

Algorithm 1

Static screening strategy

D0 ← Screen D

loop k

xk+1 ←Update xk using D0

end loop

Algorithm 2

Dynamic screening strategy

D0 ← D

loop k

xk+1 ← Update xk using Dk

Dk+1 ← Screen Dk using xk+1

end loop

Section 2 introduces the tools we build our work upon.

The dynamic screening principle is then presented and ana-

lyzed in Section 3. Section 4 is devoted to numerical experi-

ments. Finally we discuss several extensions that can emerge

from this work in Section 5.



2 Screening tests and algorithms

In this section, we set the notation, introduce previous works

on screening tests for the Lasso and recall state-of-the-art al-

gorithms to solve this problem, pointing out their computa-

tional limitations.

2.1 Notation

D , [d1, . . . ,dK ] ∈ R
N×K denotes a dictionary and

Ω , {1, . . . ,K} denotes the set of integers indexing the

columns, or atoms, of D. The i-th component of x is denoted

x(i). The observation y ∈ R
N is assumed to have a sparse

representation x ∈ R
K in D, i.e. ‖Dx − y‖2 and ‖x‖0 are

small. Without loss of generality, observation y and atoms

di are assumed to have unit ℓ2 norm. The dual problem

associated to (1) is [7, 14]:

θ̃ , argmax
θ

1

2
‖y‖2

2
−

λ2

2

∥

∥

∥
θ −

y

λ

∥

∥

∥

2

2

(2a)

s.t. ∀i ∈ Ω, |θTdi| ≤ 1. (2b)

A dual point θ is said feasible if it complies with the con-

straints (2b). The solutions of the primal (1) and dual (2)

problems, x̃ and θ̃ respectively, are linked by the relation:

y = Dx̃+ λθ̃, ∀i ∈ Ω,

{

|θ̃
T
di| < 1 if x̃(i) = 0

|θ̃
T
di| = 1 if x̃(i) 6= 0

(3)

We additionally define: d∗ = argmaxd∈{±di}K

i=1
dTy,

and λ∗ = dT
∗ y. To avoid the null solution: λ ∈ [0, λ∗[.

2.2 Screening Tests

The sparsity inducing regularization λ‖ · ‖1 entails an op-

timum x̃ that may contain many zeros, and the goal of a

screening test is precisely to locate them; an efficient screen-

ing test locates many zeros. From the located zeros a screened

dictionary D0 can be defined removing the corresponding

atoms, called inactive atoms, from D. Finally the solution

of P(λ,D0,y) can be readily reconstructed from that of

P(λ,D,y). Any optimization procedure using the screened

dictionary D0 therefore computes the solution of P(λ,D,y)
at lower computational cost.

Screening tests [7, 13, 14] are based on an idea emerg-

ing from the relation (3) between primal and dual optima, x̃

and θ̃ respectively. According to relation (3), atoms di such

that |θ̃
T

di| < 1 correspond to inactive atoms. If θ̃ were

known it would be easy to identify inactive atoms. It is ob-

viously not the case then to locate inactive atoms screening

tests build an upper-bound on |θ̃
T

di| by constructing a re-

gion R ⊂ R
N that contains θ̃ and hence satisfies |θ̃

T

di| <
maxθ∈R |θ

Tdi|. It allows one to remove every atoms di ver-

ifying maxθ∈R |θ
Tdi| < 1.

Screening tests essentially differ from one another on

the region R they consider, when R is a sphere [7, 14]

maxθ∈R |θ
Tdi| has a closed-form expression and gives the

sphere test principle. Spheres that instantiate this principle

are described below.

Lemma 1 (Sphere Test Principle [7]). If the solution θ̃ of (2)

satisfies ∃{r, c} ∈ R× R
N , ‖θ̃ − c‖2 ≤ r, then :

|cTdi| < 1− r ⇒ x̃ (i) = 0.

In practice, once a sphere S(c, r) of center c and radius

r has been defined, every atom i such that |τ (i)| < 1 − r
are removed, where τ = DT c. The associated screening

operator Πc,r (·) is the operator that, given a dictionary D,

outputs the corresponding screened dictionary

Πc,r (D) ,
[

di s.t. i ∈ [1..N ], |cTdi| ≥ 1− r
]

. (4)

The construction of such spheres [7, 14] is based on the

following considerations. The dual optimum θ̃ is closer to

y/λ than any feasible point in R
N . Then from any feasible

dual point θ one can construct a sphere, centered on y/λ with

radius ‖θ−y/λ‖2, that contains θ̃. The SAFE method [7, 14],

implements the feasible dual point θ = y/λ∗.

2.3 First-order algorithms for the Lasso

The Lasso problem (1) may be solved with general-purpose

first-order algorithms such as ISTA [6], TwIST [2], FISTA [1],

SpaRSA [12], forward-backward splitting [4] or the Cham-

bolle and Pock’s primal-dual algorithm [3, 8]. For the sake of

simplicity, ISTA is used as the archetype for first-order algo-

rithms. The extension to all the aforementioned algorithms is

described in section 3.

ISTA constructs a sequence of iterates {xk}k≥0 which

converges to the optimal x̃ by implementing the update:

xk+1 ← Tλ/Lk

(

xk −
1

Lk
DT (Dxk − y)

)

, (5)

where xk is the k-th iterate computed by the procedure, Lk

is the step size (set according to a backtracking rule see [1]),

and Tt (x) , sign(x)max(0, |x| − t) is the soft-thresholding

operator. In the following update (5) is denoted xk+1 ←
pk(xk,D) subsequently, in order to ease the notation and em-

phasize similarities in first-order algorithms.

Due to the matrix-vector products involving D and DT ,

the cost of one update isO(NK), assuming that D has no as-

sociated fast transform. In many applications, the dimensions

can be large, e.g., K ≥ N ≫ 100. This explains the ma-

jor interest of reducing the size of the dictionary K without

affecting the solution of the Lasso.

3 Optimizing with Dynamic Screening

Existing screening strategies for the Lasso are static in the

sense that they first screen the dictionary and use the screened

dictionary to solve the Lasso (see Algorithm 1). We show



in this section that calculations made during the optimization

procedure can be employed to dynamically and iteratively re-

duce the dictionary by performing dynamic screening at each

iteration.

Dynamic construction of better feasible points. Screening

tests presented in Section 2.2 build on a feasible dual point.

Therefore, producing at each iteration a feasible dual point

that is cheap to compute and close to y/λ enable the iterative

construction of new SAFE sphere with smaller radius, and

thus the iterative construction of more efficient sphere tests.

ISTA directly computes potentially appropriate dual

points. Indeed, each update requires the computation of

the gradient ∇f(x) = DT (Dx− y) of the ℓ2-fitting term

f(x) , ‖Dx− y‖22. The dual points θk , Dxk − y form a

sequence {θk}k≥0 that converges to λθ̃. Since θk is not nec-

essarily feasible, the following dual scaling strategy may be

resorted to, in order to give a second sequence of appropriate

feasible dual points θ̂k , µkθk.

Lemma 2 (Dual Scaling [7]). Among all feasible scaled ver-

sions of θk, the closest to y/λ is θ̂k = µkθk where:

µk , argmin
µ∈R

∥

∥

∥
µθk −

y

λ

∥

∥

∥

2

s.t. ‖DTµθk‖∞ ≤ 1 (6)

= min

(

max

(

θ
T
k y

λ‖θk‖22
,

1

‖DTθk‖∞

)

,
−1

‖DTθk‖∞

)

.

Dynamic screening. Embedding this dual scaling strategy

within ISTA permits to execute more efficient screening tests

almost for free. Indeed, the center of all the spheres is the

same, namely y/λ, hence the test vector DT c is computed

only once. Since θk and DT
θk are computed by the update

of ISTA, computing θ̂k requires O(K + N) operations and

computing the sphere radius ‖θ̂k−y/λ‖2 requiresO(N) ad-

ditional operations. Given that N ≤ K, the computational

overhead of the screening test is in O(K). Finally, the total

overhead is negligible compared with theO(KN) operations

required for an optimization update.

The resulting ISTA with dynamic screening is presented

in Algorithm 3. The input of the algorithm defines: the prob-

lem of interest through D, y and λ; the initial state x0 (set by

default to 0); the center c and the function r(·), which com-

pute the radius of the sphere from θ, parameterizing which

sphere test is embedded in ISTA—more information on cen-

ters and radius functions r(·) are given below in (7) and (8).

The algorithm breaks up in two steps: the optimization update

(see line 4) where pk(·) returns iterate xk as well as suitable

computed vectors θk and DT
θk; and the screening step (see

line 6-8): at line 6 the feasible dual point θ̂k is computed with

the dual scaling strategy, the radius is updated only when de-

creasing at line 7 and finally the screening operator is applied.

Generalization to other first-order algorithms. As an-

nounced in section 2.3, the dynamic screening principle

Algorithm 3 ISTA with dynamic screening

Require: D,y, λ,x0, c, r(.)
1: D0 ← D, r0 ← +∞
2: while stopping criteria on xk do

3: ........................ Optimization Update ........................

4: {xk+1,θk+1,D
T
θk+1} ← pk(xk,Dk) ⊲ see (5)

5: ................................ Screening .................................

6: θ̂k+1 ← µkθk ⊲ see (6)

7: rk+1 ← min(r(θ̂k+1), rk)
8: Dk+1 ← Πc,rk+1

(D) ⊲ see (4)

9: k ← k + 1
10: end while

applies to other first-order algorithms as well. Considering

that the update does not only modify the iterate xk but some

auxiliary variables as well, each first-order algorithm can be

describe by its update x̄k+1 ← pk(x̄k,D) where x̄k repre-

sents the set of updated variables. Both pk and x̄ are given in

Table 1 for a few other representative algorithms.

Table 1 gives two important pieces of information: first

all pk(·) have similar computational requirements as ISTA;

second the expensive computations required for dynamic

screening—computing a new θk and DT
θk—are provided

by these updates. Then dynamic screening applies to these

algorithms in the exact same way as it applies to ISTA.

Algorithms Optimization update x̄k+1 ← pk(x̄k,D)

TwIST [2] xk+1 ← (1− α)xk−1 + (α− β)xk

x̄k = {xk,xk−1} +βTλ
(

xk −DT (Dxk − y)
)

SpaRSA [12] same as ISTA except that Lk is set

with Brazilai-Borwein rule

FISTA [1] xk+1 ← T λ

Lk

(

zk − 1

Lk

DT (Dzk − y)
)

x̄k =
{xk, zk, tk} tk+1 ←

1 +
√
1 + 4tk
2

zk+1 ← xk+1 + ( tk−1

tk+1
)(xk+1 − xk)

Chambolle-

Pock [3]
θk+1 ←

1

1 + σk

(θk + σk(Dx̂k − y))

x̄k = {xk, x̂k, xk+1 ← Tλτk
(

xk − τkD
T
θk+1

)

θk, τk, σk} ϕk ← 1
√

1+2γτk
; τk+1 ← ϕkτk

σk+1 ← σk

ϕk

x̂k+1 ← xk+1 + ϕk(xk+1 − xk)

Table 1: Updates for first-order algorithms.

Direct extension to ST3. Section 2.2 presents SAFE spheres,

another sphere called ST3 relying on the SAFE sphere have

been proposed in [14]. Constructed from any feasible dual

point θ, ST3 is the sphere centered on c = y/λ − δd∗ with

radius r(θ) =
√

‖θ − y/λ‖22 − δ2, where δ = λ∗/λ − 1.

The corresponding screening operator is Πc,r (·) as defined

in (4). Both SAFE and ST3 can be embedded in Algorithm 3
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Fig. 1: Normalized running times on synthetic data (left, middle) and real data (right).

through parameters c and r(·):

SAFE: c =
y

λ
, r(θ) = ‖θ : −

y

λ
‖2 (7)

ST3: c = y/λ− δd∗, r(θ) =
√

‖θ − y/λ‖22 − δ2 (8)

Convergence analysis. First-order algorithms with dynamic

screening do not necessarily provide the same iterates as their

base version but still converge to the global optimum:

Theorem 3. If a first-order algorithm is proven to converge

to the global optimum of the Lasso problem, then its version

with dynamic screening converges to the global optimum too.

Proof. As explained in section 2.2, Lasso problemsP(λ,D,y)
and P(λ,Dk,y) for all k ≥ 0 have the same solutions. Since

the sequence {rk}k≥0 is non-increasing, Lemma 1 ensures

that the set of located inactive atoms is non-decreasing, in-

deed:

r ≥ r′ ⇒ (∀i ∈ Ω, |cTdi| < 1− r ⇒ |cTdi| < 1− r′).
This set is upper bounded by the set of zeros in x̃ the solution

of P(λ,D,y), so the set of located zeros converges in a finite

number of iterations k0. Then ∀k ≥ k0,Dk0
= Dk and usual

convergence proofs apply.

4 Numerical Experiments

This section presents experiments used to assess the practical

relevance of our approach. The code and data for numerical

experiments are released for reproducible research purposes.1

Runnning Times. We have claimed that, compared with

static screening, dynamic screening significantly accelerates

the computation of the solution of the Lasso with first-order

algorithms. This section evaluates the performance of our

method in terms of running times. Note that since each ver-

sion of the algorithm (no-screening, static screening, dynamic

screening) converges to the same optimal x̃ (see Theorem 3),

we do not report the value of the objective at convergence .

We measured running times of the algorithm without

screening test, with static screening and with dynamic screen-

ing. To emphasize the gain, running times are normalized

1http://pageperso.lif.univ-mrs.fr/~antoine.bonnefoy

with respect to running times required by the algorithm with-

out screening.

Synthetic data. For experiments on synthetic data, we used

two types of dictionaries. The first one is a Gaussian dictio-

nary where observation y as well as all atoms di are drawn

i.i.d. uniformly on the unit sphere by normalizing realiza-

tions of N (0, IN ). The second one is the so-called Pnoise

introduced in [13], for which y and all di are drawn i.i.d.

from the distribution e1 + 0.1κg and normalized, where g ∼
N (0, IN), κ ∼ U(0, 1) and e1 being the first natural basis

vector. We set N = 2000 and K = 10000.

Audio Data. For experiments on real data we performed

the estimation of the sparse representation of audio signals

in a redundant Discrete Cosine Transform (DCT) dictionary,

which is known to be adapted for audio data. Observations y

were taken from 30 music and speech recordings with length

N = 1024 and sampling rate 16 kHz. Experiments were run

for K = 2N and K = 6N .

Experiments. Algorithms were run for several values of λ
in order to compute the representation of the observation y

in the dictionary D with different sparsity levels. The algo-

rithm stops at iteration k when the ratio between the maxi-

mum variation of the functional in (1) and the average of the

functional over the M = 10 previous iterations does not ex-

ceed the value of ǫ (ǫ = 10−6 for Gaussian, ǫ = 10−4 for

Pnoise and ǫ = 10−6 for audio signals).

Figure 1 shows the normalized running times for algo-

rithms with dynamic screening (black squares) and for the

corresponding algorithms with static screening (circle) as a

function of λ/λ∗. Low values account for fast computation.

We used Gaussian (left), Pnoise (middle) and Audio (right)

data with the ST3 screening test. The values were averaged

over 30 problems. For all dictionaries, the dynamic screening

performs significantly better and is effective in a larger range

of λ than the static one. In the audio experiment savings could

reach more than 90% over ISTA and up to 70% over ISTA

with static ST3 (e.g. for λ/λ∗ ≈ 0.6). Both static and dy-

namic screening strategies tend to be more efficient when the

dictionary redundancy K/N increases.

Note that due to the normalization of running times, Fig-



Fig. 2: Relative size Kk/K and radius rk along the iterations.

ure 1 cannot be used to draw any conclusion on which of

ISTA, FISTA or SpaRSA is the fastest algorithm.

Interpretation: Screening progression. To apprehend the

effectiveness of the dynamic screening test, we represented

how dynamic screening behaves along the iterations. Fig-

ure 2 shows on the same scale the evolution of two key values

along the iterations: the radius rk (red dashed line); and the

relative size of the dictionary Kk/K (blue area)—where Kk

is the size of the screened dictionary at iteration k— which

represents the proportion of atoms remaining in the screened

dictionary. Here dynamic ST3 was used in ISTA for a Gaus-

sian dictionary with λ = 0.7λ∗. The reduction of the radius

induced a nice improvement in the screening. The screen-

ing test may be totally inefficient in the first iterations, which

shows the advantage of the dynamic screening strategy over

the static one.

5 Discussion and Future Directions

We have shown that the dynamic screening principle is rel-

evant theoretically and practically. Dynamic screening ac-

celerates more first-order algorithms than static screening in

the proposed experiments on synthetic and real data, and in a

larger range of λ.

Dynamic screening has been shown to work for several

algorithms and screening tests, and the question is whether the

concept of dynamic screening can be further generalized. The

answer is positive: it can be applied to much more algorithms

and to other screening tests. As far as an optimization process

computes the gradient of the ℓ2-fitting term and the screening

test rests upon the SAFE sphere, e.g. the dome test [13], they

can combine into a dynamic screening strategy.

The proposed method raises several questions we plan to

work on, some of them are addressed here as a conclusion.

The SAFE test extends to the Group Lasso [15], but can it be

refined dynamically along the iterations of the optimization

process in a similar fashion? As in [7], we are curious to

see how dynamic screening may show up when other than an

ℓ2 fit-to-data is studied: for example, this situation naturally

occurs when classification-based losses are considered. As

sparsity is often a desired feature for both efficiency (in the

prediction phase) and generalization purposes, being able to

work out well-founded results allowing dynamic screening is

of the utmost importance.
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