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ABSTRACT

The Lasso is an optimization problem devoted to find a sparse rep-

resentation of some signal with respect to some predefined dictio-

nary. We propose an original and computationally efficient method

to solve the Lasso problem. Our method rests upon the idea of

dynamic screening test and allows us to accelerate first-order algo-

rithms. At each iteration we take advantage of the computation done

for the optimization process to reduce the size of the dictionary by

discarding elements that will surely not enter the sparse represen-

tation. As this screening step is not expensive, the computational

cost of the algorithm using the dynamically screened dictionary is

cheaper than the standard algorithm. Numerical simulations on syn-

thetic and real data support the relevance of our approach.

Index Terms— Optimization, LASSO, Screening test, Algo-

rithms, Sparsity

1. INTRODUCTION

The Lasso [10] is an optimization problem that consists in minimiz-

ing the sum of an ℓ2-fitting term and an ℓ1-regularization term aimed

at promoting a sparse solution. Given an observation y ∈ R
N and

some dictionary matrix D, this problem writes as

P(λ,D,y) : argmin
x

1

2
‖Dx− y‖22 + λ‖x‖1, (1)

where λ > 0 is a parameter that governs the sparsity of its solution x̃.

Many algorithms have been developed to solve this problem, and we

focus our study on first-order algorithms, which include primal algo-

rithms [1, 4, 6, 15] and some primal-dual algorithms [3, 8]. As they

rely on the Soft-Thresholding operator when applied to the Lasso,

they will be referred to as IST —for “Iterative Soft Thresholding”—

algorithms.

Accelerating these algorithms is yet a key challenge: even

though they provably have fast convergence, they remain captive

of the dictionary size due to the required multiplications by D and

DT over the optimization process. To overcome this limitation, ap-

proaches based on screening tests [5, 7, 11, 13, 17, 16] have recently

been proposed. They rely on a two-step strategy: i) they locate zeros

in x̃ and ii) they solve a reduced version P(λ,D0,y) of (1), where

D0 is the dictionary D trimmed off its columns that correspond to

the identified zeros of x̃ (see Algorithm 1).
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We propose a new principle called Dynamic Screening to re-

duce the computational cost of IST algorithms even more. We take

the aforementioned idea of screening one step further, and improve

the screening efficiency of existing static screening tests by embed-

ding them in the iterations of the IST algorithms. To our knowledge,

this is the first time such a screening mechanism is envisioned. We

perform screening at each iteration with a negligible computational

overhead, and we consequently dynamically reduce the size of D.

The opposing perspectives are depicted in the generic view of static

screening (Algorithm 1) vs. dynamic screening (Algorithm 2), where

Ξ (.) denotes an existing screening test and pk(.) denotes one itera-

tion of an IST algorithm. Experiments exhibit that the proposed dy-

namic screening method significantly lowers the computational cost

of the optimization in a large range of λ. The computational saving

reaches 90% with respect to the algorithm alone, or up to 60% with

respect to the algorithm run after existing screening tests.

Algorithm 1

Static screening

Initialize x0

- - - - Screening - - - -

D0 ← Ξ (D)
loop k

- - - - Iteration step - - - -

x̄k+1 ← pk(x̄k,D0)
end loop

Algorithm 2

Proposed Dynamic screening

Initialize x0

D0 ← D

loop k

- - - - Iteration step - - - -

x̄k+1 ← pk(x̄k,Dk)

- - - - Screening - - - -

Dk+1 ← Ξk (Dk)
end loop

Section 2 introduces the tools we build our work upon. The new

dynamic method is presented and analyzed in Section 3. Section 4 is

devoted to numerical simulations. Finally we discuss several exten-

sions that can emerge from this work in Section 5.

2. EXISTING SCREENING TESTS AND ALGORITHMS

In this section, we set the notation, introduce previous works on

screening tests for the Lasso and recall state-of-the-art algorithms

to solve this problem, pointing out their computational limitations.

2.1. Notation

Let us denote by D , [d1, . . . ,dK ] ∈ R
N×K a dictionary. Ω =

{1, . . . ,K} denotes the set of integers indexing the atoms of D. The

observation y ∈ R
N is supposed to have a sparse representation in

D denoted by x ∈ R
K , i.e. Dx is aimed at approximating y. For

any vector v, the i-th component is v(i). Without loss of generality,



we assume that the observation y and the atoms dk have unit ℓ2
norm. The dual problem associated to (1) is [7, 17]:

argmax
θ

1

2
‖y‖2

2
− λ2

2

∥

∥

∥
θ − y

λ

∥

∥

∥

2

2

s.t. ∀i ∈ Ω, |θT
di| ≤ 1, (2)

The solutions of the primal (1) and dual (2) problems denoted by x̃

and θ̃ respectively, are linked by the relation:

y = Dx̃+ λθ̃ and ∀i ∈ Ω,

{

|θ̃T
di| < 1 if x̃(i) = 0

|θ̃T
di| = 1 if x̃(i) 6= 0

(3)

We additionally define d∗, λ∗ and δ:

d∗ = argmax
d∈{±di}Ki=1

d
T
y, λ∗ = d

T
∗ y, δ =

λ∗
λ
− 1

We assume afterwards that λ∗ > λ to avoid the trivial null solution.

2.2. Screening Tests

The sparsity inducing regularization λ‖.‖1 entails an optimum x̃ that

contains many zeros, and the goal of a screening test is precisely to

locate as many of them; we say a screening test sharpens when the

number of located zeros grows. The corresponding columns in D

can be removed consequently without changing the solution of the

problem, and the optimization procedure using the reduced dictio-

nary may be performed with a lower computational cost.

Screening tests [7, 16, 17] are based on a general idea emerging

from the relation (3) between x̃ and θ̃. From the knowledge of a

regionR ⊂ R
N containing θ̃, we have for all i ∈ Ω:

max
θ∈R
|θT

di| < 1⇒ |θ̃T
di| < 1⇒ x̃(i) = 0 (4)

When R is a sphere, the left-hand side of (4) has a closed-form

expression and it gives rise to the general sphere test principle:

Lemma 1 (General Sphere Test Principle [7]). If the solution θ̃

of (2) satisfies ‖θ̃ − c‖2 ≤ r, then |cTdi| < 1− r ⇒ x̃ (i) = 0.

We define the sphere test operator Ξc,r (·) associated to the

sphere S(c, r) of center c and radius r, the operator that, given a

dictionary D, outputs the corresponding screened dictionary

Ξc,r (D) ,
[

di s.t. i ∈ [1..N ], |cTdi| ≥ 1− r
]

. (5)

Figure 1a illustrates the general sphere test in two dimensions:

S(0, 1) is the unit sphere on which the atoms di live; if θ̃ is in

S(c, r), then every atom in the red area is removed by Ξc,r (·).
Two instances of this sphere test principle, SAFE/ST1 [7, 17]

and ST3 [17], are represented on Figure 1b. These screening tests are

constructed from the feasible dual point θ̂ = y/λ∗, where feasible

means that it complies with the constraints of (2). This point allows

one to construct the sphere test ST1 centered on the solution y/λ of

the unconstrained dual problem. ST3 refines it relying on an other

center but the same feasible point y/λ∗. Xiang [16] proposed an

alternative to refine ST3 whenR is a dome. Equations of the centers

and radius (seen as a function ρ of θ̂) are given for these tests in

Table 1.

A key idea of our method is to exhibit better feasible dual points

θ̂ to reduce the radius of the spheres as shown is Figure 1b. Spheres

constructed as ST1 or ST3 but from any feasible dual point θ̂ are

denoted by DST1 or DST3 respectively.

(a) General sphere

test principle
(b) Instances of sphere tests

Fig. 1: The sphere tests

c r = ρ(θ̂); θ̂ = y

λ∗

Screening Operator

ST1 y

λ
‖θ̂ − y

λ
‖2 Ξc,r (D)

ST3 y

λ
− δd∗

√

∥

∥

∥
θ̂ − y

λ

∥

∥

∥

2

2

− δ2 Ξc,r (D)

Dome y

λ
− δd∗

√

∥

∥

∥
θ̂ − y

λ

∥

∥

∥

2

2

− δ2 Dome [16]

Table 1: characterization of existing screening tests

2.3. Solving the Lasso with IST Algorithms

The Lasso problem (1) may be solved with general-purpose al-

gorithms such as ISTA [6], TwIST [2], FISTA [1], SpaRSA [15],

forward-backward splitting [4] or first-order primal-dual algorithm

e.g. [3, 8].

These algorithms construct a sequence {x̄k}k≥0, iterating the

step x̄k+1 = pk(x̄k,D). Each x̄k is a set of variables that con-

tains an iterate xk as well as auxiliary variables; the corresponding

sequence {xk}k≥0 converges to the optimal x̃.

The objective function in (1) is naturally split into a sum of a

convex and differentiable function f(x) = 1

2
‖Dx−y‖22 and a con-

vex non differentiable function g(x) = λ‖x‖1. To handle the non-

smoothness of g, IST algorithms use its proximal operator, which

reduces to the so called soft-thresholding operator Tt (·):

Tt (x)(i) , sign(x(i))max(0, |x(i)| − t) (6)

Table 2 details the step function pk(·) of various IST algorithms.

This table additionally describes the set x̄k. The step-size Lk is

set according to the backtracking rule in ISTA-FISTA and to the

Brazilai-Borwein rule in SpaRSA; the other parameters α, β and γ
are set according to the recommendations provided in the relevant

papers.

All pk(.) have similar computational requirements. In the gen-

eral case, their computational costs are in O(NK), and for dic-

tionaries associated with fast transforms, this may be lowered to

O(K log(N))1. In many applications, the dimensions can be very

large, e.g., K ≥ N ≫ 100, whence the major computational inter-

est in reducing the size of the dictionary.

3. OPTIMIZING WITH DYNAMIC SCREENING TESTS

As the computational cost of a step of the optimization procedure

is driven by the size of the dictionary, it is worth finding a way to

sharpen existing screening tests at low computational cost.

1When x is sparse, computing Dx may be done with fewer operations.



Algorithms Optimization Step x̄k+1 ← pk(x̄k,D)

ISTA x̄k = {xk} xk+1 ← Tλ/Lk

(

xk − 1

Lk

DT (Dxk − y)
)

TwIST xk+1 ← (1− α)xk−1 + (α− β)xk

x̄k = {xk,xk−1} +βTλ
(

xk −DT (Dxk − y)
)

SpaRSA idem as ISTA with a different Lk

FISTA xk+1 ← Tλ/Lk

(

zk − 1

Lk

DT (Dzk − y)
)

x̄k = {xk, zk, tk} tk+1 ← 1 +
√
1 + 4tk
2

zk+1 ← xk+1 + ( tk−1

tk+1
)(xk+1 − xk)

Chambolle-Pock θk+1 ← 1

1 + σk
(θk + σk(Dx̂k − y))

x̄k = {xk, x̂k, xk+1 ← Tλτk
(

xk − τkD
T
θk+1

)

θk, τk, σk} ϕk ← 1√
1+2γτk

; τk+1 ← ϕkτk;σk+1 ← σk

ϕk

x̂k+1 ← xk+1 + ϕk(xk+1 − xk)

Table 2: Steps for the algorithm describe in section 2.3.

The dynamic viewpoint. We can consider that existing screening

methods for the Lasso are static in the sense that they first screen the

dictionary and then fix it to solve the Lasso (see Algorithm 1). We

show in this section that calculations made during the optimization

procedure can be employed to dynamically screen the dictionary it-

eration after iteration as conveyed by lines 5 to 8 of Algorithm 3.

The Dynamically Screened version of an algorithm will be denoted

preceded by S e.g. S-ISTA.

Dynamic construction of better feasible points. Screenings tests

presented in Section 2.2 build on feasible dual points. We therefore

would like to be able to compute interesting feasible dual points θ̂

to refine the sphere tests, where interesting means cheap to compute

and close to y/λ. These θ̂ may enable the construction of spheres

DST1 or DST3 with smaller radius.

IST algorithms directly calculate possibly interesting θ. Indeed,

iterates of the primal variables require the computation of the gra-

dient ∇f(x) = DT (Dx − y) of the fitting term to perform one

iteration. The points θk = Dxk − y form a sequence θk that con-

verges to λθ̃ (cf. (3)). The primal-dual algorithms as well directly

calculate a sequence of dual points. As these sequences converge

to the optimal of (2) they are likely to entail decreasing radius and

therefore sharper sphere test. Since θk is not always good and feasi-

ble, the dual scaling strategy may be resorted to, in order to give:

θ̂k , ŝθk where ŝ = argmin
s∈R

∥

∥

∥
sθk − y

λ

∥

∥

∥

2

s.t. ‖DT sθk‖∞ ≤ 1

(7)

The solution of this problem is given in the following lemma:

Lemma 2 (Dual Scaling [7]). Among all feasible scaled versions of

θk, the closest to y/λ, i.e. the optimum of (7), is given by :

θ̂k , Θ(θk) = µ
θk

λ0

, where λ0 = ‖DT
θk‖∞ (8)

and µ = min

(

max

(

λ0θ
T
k y

λ‖θk‖22
, 1

)

,−1
)

From θ̂k, the radius is computed in O(N) operations for the

tests described in Table 1. Furthermore most of the computation

required for the dual scaling —i.e. the computation of DT
θk— is

already done by the optimization procedures described in Table 2.

Thus the computational overhead is just O(2K) (see Equation (8)).

In addition, for a given initial sphere S(c, r0), the test vector DT c

in Lemma 1 is calculated only once, as one only requires a smaller

radius to sharpen the test at each iteration. Finally the total overhead

of the dynamic screening is negligible compared to the O(KN) or

O(K logN) operations made during the optimization step.

The resulting general screened algorithm is presented in Algo-

rithm 3. The optimization algorithm is parameterized by pk(.) and

the screening test (ST1,ST3 or Dome) by c, ρ(.),Ξ (.). The input of

the algorithm also specifies the problem of interest (D, y and λ).

Algorithm 3 General Dynamic Screening

Require: D,y, c, ρ(.),Ξ (.) , pk(.), x̄0

1: D0 ← D, r0 ← +∞
2: while stopping criteria on x̄k do

3: ........................... Optimization Step ........................

4: {x̄k+1,θk+1,D
T
θk+1} ← pk(x̄k,Dk)

5: .................................. Screening ................................

6: θ̂k+1 ← Θ(θk+1)

7: rk+1 ← min(ρ(θ̂k+1), rk)
8: Dk+1 ← Ξc,rk+1

(D)
9: k ← k + 1

10: end while

A dynamic screening test is at least as efficient as its correspond-

ing static screening test. Stated in Lemma 3 this result is qualitative,

but actually, dynamic screening has been designed to screen much

more atoms than the existing sphere tests and, in fine, to drastically

reduce the total computational cost. Such quantitative performance

is assessed experimentally in Section 4.

Lemma 3. For a given problem P(λ,y,D), any atom screened by

a given test based on SAFE is screened by its dynamic version at the

first iteration if x̄0 is initialized at 0.

Proof. Since variables in x̄0 are 0, we have θ1 = −y and θ̂1 = y

λ∗

for all the algorithm aforementioned. It is exactly the feasible dual

point upon which the static versions of ST1/ST3/Dome rest.

Need for convergence analysis. The screened algorithms do not

necessary provide the same iterates than their usual version, this ac-

counts for the need of a convergence analysis.

Theorem 4. If an algorithm is proven to converge to the optimal of

the problem, then its dynamically screened version converges too.

Proof. The convergence holds since the number of possible screened

dictionaries is finite. After finitely many iterations, the dictionary

Dk becomes stable and usual convergence proofs apply.

The proof of the convergence rate for ISTA given in [1] can be

extended to S-ISTA following the same progression. Empirically dy-

namic screening conserves the convergence rates as experimentally

S-ISTs converges in the same number of iterations than ISTs.

4. NUMERICAL SIMULATIONS

This section presents experiments used to assess the practical rele-

vance of our approach. The code and data for all numerical simula-

tions are released for reproducible research purposes.2

Synthetic data. For the experiments on synthetic data, we use two

types of dictionaries. The first one is a Gaussian dictionary where

the atoms di and the observation y are drawn i.i.d. uniformly on the

unit sphere by normalizing realizations of N (0, IN ). The second

2http://pageperso.lif.univ-mrs.fr/~antoine.bonnefoy
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Fig. 3: Normalized time complexity on synthetic data (left, middle) and real data (right).
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Fig. 2: Relative size Kk/K and radius rk along the iterations.

one is the so-called Pnoise introduced in [16], which is a kind of

correlated noise: di and y are drawn as e1+0.1κg and normalized.

g ∼ N (0, IN), κ ∼ U(0, 1), e1 being the first natural basis vector.

Screening progression. To appreciate the effectiveness of the dy-

namic screening, one may represent how the dynamic screening tests

act along the iterations. Figure 2 shows on the same scale the evo-

lution of two key values along the iterations: the relative size of the

dictionary Kk/K and the radius rk. The blue area, represents the

proportion of atoms remaining in the dictionary, it equals 1 when the

screening does not locate any zeros.

Here dynamic ST3 is used in S-ISTA for a Gaussian dictionary

with λ = 0.7λ∗. The reduction of the radius induces a nice im-

provement in the screening. We see here that the screening test may

be totally inefficient in the first iterations. This shows the advantage

of the dynamic screening strategy over the static one.

Time complexity with synthetic data. Algorithms are run for sev-

eral values of λ in order to decompose the observation y on the

dictionary D with different sparsity levels. The algorithm stops at

iteration k when the ratio between the maximum variation of the

functional and the mean of the functional in the M = 10 previous

iterations does not exceed the value of ǫ (10−6 for Gaussian, 10−6

for Pnoise).

The time complexity is measured in seconds and normalized by

the time complexity of the algorithm used without any screening.

Figure 3 (left and middle) shows the normalized time complexities

for S-ISTA, S-FISTA and S-SpaRSA (black squares) and for the cor-

responding algorithm with static screening (circle) as a function of

λ/λ∗, using 2000×10000 Gaussian (left) and Pnoise (middle) dic-

tionaries. The values are averaged over 30 runs. For both dictio-

naries the dynamic screening performs significantly better and is ef-

fective in a larger range of λ than the static one. Similar results are

observed when using the dynamic Dome test, and are not detailed

here.

Time complexity in audio coding. Finally a simple case of audio

coding/denoising is presented. It consists in testing the computa-

tional efficiency of the dynamic screening by estimating the sparse

representation of audio signals in a redundant Discrete Cosine Trans-

form (DCT) dictionary, which is known to be adapted for audio data.

30 observations are taken from music and speech recordings with

length at N = 1024. The experiments are run for two values K
with ǫ = 10−6.

The trends observed with synthetic data are confirmed with real

data: the dynamic screening is significantly faster than the static

screenings, and in a larger range of λ. Time savings can reach more

than 90% over ISTA and up to 50% over ISTA with static ST3 (e.g.

for λ/λ∗ ≈ 0.6). Both screening strategies are efficient when the

dictionary redundancy K/N increases.

5. DISCUSSION AND FUTURE DIRECTIONS

The idea of embedding screening tests within iterative optimization

procedures has been proposed for several algorithms. It can be ap-

plied to many more algorithms but raises several questions; we here

address some of these.

As it can be shown for ISTA, can we ensure that the dynamic

screening preserves the convergence rate of any first-order algo-

rithm? Answering this question would definitely anchor dynamic

screening in a theoretical context.

In a recent work [14] Wang et. al introduce a way to adapt the

static dome test in a continuation strategy. Seeing how the dome test

can dynamically be adapted in an optimization procedure might be

of great interest. The SAFE extends to the Group Lasso [18], but

can it be refined dynamically along the iteration of the optimization

process in similar fashion? This is another exciting subject that we

plan to work on in a near future.

Given the nice theoretical and practical behavior of Orthogonal

Matching Pursuit [9, 12], investigating how it can be paired with

dynamic screening is a pressing and exciting matter but poses the

problem of computing a value of λ that is consistent with the sparsity

targeted by orthogonal matching pursuit.

Lastly, as in [7], we are curious to see how dynamic screening

may show up when other than an ℓ2 fit-to-data is studied: for exam-

ple, this situation naturally occurs when classification-based losses

are considered. As sparsity is often a desired feature for both effi-

ciency (in the prediction phase) and generalization purposes, being

able to work out well-founded results allowing dynamic screening is

of the utmost importance.
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