
HAL Id: hal-00880765
https://hal.science/hal-00880765v1

Submitted on 6 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometrical analysis of thread milling - Part
2:Calculation of uncut chip thickness

Guillaume Fromentin, Gérard Poulachon

To cite this version:
Guillaume Fromentin, Gérard Poulachon. Geometrical analysis of thread milling - Part 2:Calculation
of uncut chip thickness. International Journal of Advanced Manufacturing Technology, 2010, 49 (1-4),
pp.81-87. �10.1007/s00170-009-2401-4�. �hal-00880765�

https://hal.science/hal-00880765v1
https://hal.archives-ouvertes.fr


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/7469

To cite this version :

Guillaume FROMENTIN, Gérard POULACHON - Geometrical analysis of thread milling – Part
2:Calculation of uncut chip thickness -  The International Journal of Advanced Manufacturing
Technology - Vol. 49, n°1-4, p.81-87 - 2010

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/7469
mailto:archiveouverte@ensam.eu


 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

 

Geometrical analysis of thread milling – Part 2: 

Calculation of uncut chip thickness 
 

G. Fromentin, G. Poulachon 

Arts et Metiers ParisTech, LaBoMaP, 71250 Cluny, France 
Email: guillaume.fromentin@cluny.ensam.fr 

Tel.: +33 3 85 59 53 30 

Fax: +33 3 85 59 53 70 

Keywords: thread milling, uncut chip thickness 

 

Abstract: Thread milling offers interesting possibilities for machining internal or external threads. This 

machining technique uses a mill with a triangular profile for metric threads and a helical interpolation 

strategy. Thus, the uncut chip thickness can not be easily evaluated from a simplified approach. The present 

study deals with a model for calculating uncut chip thickness during internal thread milling. This step is 

needed to understand and model the cutting forces. The model developed uses the geometrical definitions of 

the mill, and takes into account the milling mode and the cutting conditions. The link with the interferences 

between the tool and the thread is also established and corroborates a previous study. A full analytical 

formulation of the problem is proposed, and results from different milling settings are presented. 
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NOMENCLATURE 

Subscripts and abbreviations: 

 m relative to the mill 

 t relative to the thread 

 r,θ,z cylindrical coordinates 

 fce: front cutting edge 

 uce: upper cutting edge 

 lce: lower cutting edge 

Referentials and parameters: 

 RO = (O,E1,E2,E3) referential linked to the thread (O,E3): hole axis 

 Ro = (o, e1,e2,e3) referential linked to the mill with E3 = e3 and ( , )∠ = Θ1 11 11 11 1
E eE eE eE e

 

 t: time 

 θ: angular position of the mill  

 Θ: angular position of the mill axis 

 zce: altitude of a cutting edge point in the Ro referential  

 u: parameter 

Metric thread dimensions: 

 D: nominal diameter of the internal thread 

 D1: minor diameter of the internal thread 

 D2: pitch diameter of the internal thread 

 P: thread pitch (mm) 

 p: angular thread pitch (mm/rad) 

 td: thread direction (right-hand thread td = 1, left-hand thread td = -1) 

 kt: reduction coefficient of the thread profile height 

Mill dimensions: 

 Dm: maximum diameter (mm) 

 km: reduction coefficient of the mill profile height 

 nfm: flute number 

 pfm: pitch per radian of the helicoidal flute 

 

Mill cutting angle: 
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 γom: orthogonal rake angle  

 λsm: flute angle (or helix angle) on the Dm diameter 

Cutting parameters: 

 Vc: cutting speed (mm/min) 

 ft: feed rate (mm/rev/tooth) 

 rdoc: radial depth of cut (mm) 

 rp: radial penetration (mm) 

 Rmc: helix radius of the mill center trajectory (mm) 

 mm: milling mode (down-milling mm = 1, up-milling mm = -1) 

Geometrical objects: 

 MC(t): mill center trajectory 

 MP(zce): mill profile 

 RF(r,zce): mill rake face (flute surface) 

 CEi(zce): i
th mill cutting edge  

 SCEi(t,zce): surface generated by ith mill cutting edge  

 ADSCE(i,t,zce): distance from SCEi to the hole axis 

 NVSCE(i,t,zce): normal vector with respect to SCEi 

 NLSCE(i,u,t,zce): normal line with respect to SCEi 

 NTS(θ,z): nominal thread surface 

 

Computing parameters: 

ft12: feed rate projected onto plane (e1,e2) (mm/rev/tooth) 

Ss: spindle speed (rpm) 

ω: mill rotation speed (rad/s) 

Ω: mill axis rotation speed (rad/s) 

Vf: feed rate (mm/min) 

tc: undeformed chip thickness (mm) 

Ea: axial error between nominal and generated thread (mm) 

Operators: 
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R(θ): rotating operator

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

θ θ� �
� �θ = − θ θ� �
� �� �

R  

N(V): normative operator 
1

( ) =N V V
V
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1 Introduction 

Thread milling is becoming a more and more used method for producing internal and 

external threads [1-2], which is especially interesting for producing high cost parts as 

mention in [3-4]. This milling technique allow greater cutting speed compared to tapping 

and then could be adapted for machining difficult to cut materials. Thread milling cycle 

apply a helical interpolation and it is described in [3]. 

Thread milling improvement, tool geometry optimization are needed for cutting force 

analysis. There exists many studies on cutting force modelling, but quite a few deal with 

mutli-edge form tools which is usually not the case in milling. Mutli-edge form tools is a 

specific aspect linked to threading techniques. The case of vee groove tools has been 

studied [5,6], nevertheless threading tool also include a front cutting edge that should have 

a significant effect and then it can not be considered like vee groove tool. In tapping, only 

the front cutting edge is working [7,8]. As a consequence, there are two aspects to deal 

with the cutting force modelling in thread milling: cutting force model linked to edge form, 

and uncut chip thickness calculation. There are several difficulties to execute the 

calculation of the chip area in thread milling. It is because the mill has a triangular profile 

and also that a helical interpolation is required to machine the thread. It results in a 

complex 3D geometrical problem, and a simplified approach for that has been proposed 

[9]. 

The present study deals with the computation of uncut chip thickness (tc). It takes into 

account likely considerations concerning the cutting edge (CE) [4] and a full analytical 

formulation is proposed to produce a more precise model than those which consider a sine 

function. Knowledge of the uncut chip thickness (tc) is needed for process control and 

force modelling, and is useful to complete existing studies [9]. Moreover, it is necessary to 

analyse the effect of tool design parameters, such as the flute angle. Finally, the 

calculation of the uncut chip thickness (tc) enables the effect of the milling mode to be 

evaluated. 

This article is related to [3-4] and the general context is identical. It also considers metric 

thread milling and the same notations are used. Fig. 1 defines the parameterization of an 

internal thread milling operation which is used. All calculations are computed using 

Mathematica software. For the different cases studied, the common model parameter 

values are: D = 16 mm, P = 2 mm, kt = 1/8, Dm = 12 mm, nfm = 5, km = 1/8, Rmc = 2 mm, 

ft = 0.15 mm/rev/tooth 
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2 Parameterization of thread milling 

The milling machine moves the mill center (MC) along a circular helix. Equation (1) defines 

the mill axis rotation speed [3]. Based on the milling mode (mm) and the thread direction 

(td), the mill center trajectory (MC) is expressed by the equation (2) [1] in the RO referential. 

Table 1 sums up the combinations of coefficients mm and td. The sign of the mill axis 

rotation speed is the consequence of the chosen milling mode (mm).The thread direction 

(td) conditions the sign of the mill axis speed of the mill center trajectory (MC). 

( )m fm t mcm .n .f . 2 . p² R ²Ω = ω π +       (1) 

T
mc mc d(t) R .cos( .t),R .sin( .t), t .p. .t= Ω Ω ΩMC [ ]     (2) 

The thread profile comes from standard [10] and the mill profile (MP) is resulting from it as 

explain in [3]. To define cutting edges, it is necessary to have expressions of the mill 

profile (MP) and the rake face (RF). The formulations used are those defined in [4]. Thus 

the ith cutting edge (CEi) can be expressed by equation (3) in the Ro referential. 

i ce fm ce r ce(z ) (2 .(i 1) / n ). (z ,MP (z ))= π −CE R RF     (3) 

 

3 Uncut chip thickness calculation 

The surface generated by the ith cutting edge (SCEi) is obtained from the mill rotation and 

the mill center trajectory (MC). It is expressed by equation (4) in the RO referential. Based 

on equation (2), equation (5) is deduced. 

i ce i ce(t, z ) (t) ( .t). (z )= + −ωSCE MC R CE      (4) 

T
i ce mc mc t i ce(t, z ) R .cos( .t),R .sin( .t), t .p. .t ( .t). (z )= Ω Ω Ω + −ωSCE [ ] R CE  (5) 

It is intended to limit the surface generated by the ith cutting edge (SCEi) to the work 

material. That may be done by considering the axial distance (ADSCE) from this surface to 

the hole axis. This distance is simply expressed by equation (6). If the hole diameter is 

equal to the minor diameter of the thread (D1), then equation (7) is the condition for the 

surface generated by the ith cutting edge (SCEi) to be within in the limits of material. Fig. 2 

represents these surfaces for the case under study. 
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( ) ( )2 2

SCE ce i ce 1 i ce 2AD (i, t, z ) (t, z ). (t, z ).= +SCE E SCE E    (6) 

SCE ce 1AD (i, t, z ) D / 2>        (7) 

The uncut chip thickness (tc) is considered as being the normal distance from the surface 

generated by the ith cutting edge (SCEi) to the surface generated by the i-1th cutting edge 

(SCEi-1), as shown in Fig. 3. The normal vector with respect to surface (SCEi) can be 

evaluated by equation (8). Consequently, the normal line with respect to the surface 

generated by the ith cutting edge (NLSCE) can be expressed by equation (9). Then, at a 

given point SCEi(t1,zce1), the uncut chip thickness (tc) may be evaluated by solving 

equation (10) numerically, (tc,t2,zce2) values are calculated. If a negative value is obtained 

for tc, it indicates that the CEi cutting edge extends further than the CEi-1 cutting edge. 

Thus, the CEi cutting edge is clear of the work material because this was previously 

removed by the CEi-1 cutting edge. 

SCE ce i ce i ce
ce

(i, t, z ) (t, z ) (t, z )
t z

∂ ∂� �= ×	 A∂ ∂B C
NV N SCE SCE    (8) 

SCE ce i ce SCE ce(i,u, t, z ) (t, z ) u. (i, t, z )= +NL SCE NV     (9) 

SCE c 1 ce1 i 1 2 ce2(i, t , t , z ) (t , z )−=NL SCE      (10) 

4 Analysis of the uncut chip thickness 

4.1 Case studied 

The previously explained method is applied to a particular case. It is shown that the uncut 

chip thickness (tc) is a function of both time (t) [the angular position of the tooth (θ)], and 

the altitude (zce) of the cutting edge point. 

Fig. 4 represents the uncut chip thickness (tc) during tooth engagement by cutting edge 

point Pm0. This point is the mid point of the front cutting edge (fce), i.e. zce is equal to half 

the pitch. The uncut chip thickness (tc) decreases from a maximum value of 0.139 to 0 mm 

when the tooth moves clear of the work material. This is expected, because at the 

considered point the result resembles cylindrical down milling, even if this result includes 

the fact that there is a helical interpolation. 

The maximum value of the uncut chip thickness (tcfce) may be analytically approximated. 

The feed (ft12) projected onto plane (E1,E2) is expressed by equation (9). The radial depth 
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of cut (rdoc), if the hole diameter is equal to the minor diameter of the thread (D1), is given 

by equation (10). Thus, the value of the uncut chip thickness (tcfce) removed by the front 

cutting edge (fce) can be evaluated by equation (11). For the case studied, this is an 

approximation, with only 1% error, of the exact uncut chip thickness (tc). 

12

t12 t
mc

p
f f 1

R

−
� �� �= +	 A	 A	 A

B CB C
       (9) 

doc
m

80 3D 75.P
r P

256(D D )

−=
−        (10) 

doc doc
fce t12

m m

r r
tc 2.f . 1

D D
� �= −	 A
B C        (11) 

Fig. 5 represents the thickness (tc) along the cutting edge at a fixed time. Globally the front 

cutting edge (fce) cuts a greater thickness than the upper and lower cutting edges due to 

the different cutting edge angle. In the present case, with a right-hand thread and down-

milling mode, the mill axis speed is positive, and the upper cutting edge (uce) is in this 

direction. As a consequence, the thickness (tc) cut by the upper cutting edge (uce) is 

greater than that cut by the lower cutting edge (lce). 

Locally, at the points where the front cutting edge (fce) and the flank cutting edges join, the 

uncut chip thickness (tc) rises to higher values, which can easily be understood by 

observing the geometric construction in Fig. 3. This is due to the fact that the cutting edge 

is only a C0 continuous parametric function. If a cutting edge with corner radii were 

considered, this result might not be observed or would not be so large. As a consequence, 

force modelling by a cutting edge discretization method can not be applied in this zone 

because the segments are not independent. However, this part of the chip area is 

negligible compared to the whole chip area, and may therefore be omitted from the model. 

Instead of discretizing the cutting edge into segments, a model with a global area 

approach can be considered, as proposed by Armarego [5-6] with a full triangular cutting 

edge (vee groove tool). 

Fig. 6 represents uncut chip thickness (tc) as a function of the angular position of the tooth 

(θ) and the altitude (zce) of the cutting edge point. The two previous figures show cross 

section curves of the surface in Fig. 6-A. The surface representing the uncut chip 

thickness (tc) in Fig. 6-B is corrected in order to suppress high local values produced at the 

points where the front cutting edge (fce) and the flank cutting edges join. In addition to the 

previous observations, it can be added that the upper cutting edge (uce) is engaged for a 
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longer time than the lower one (lce). Furthermore, over the time a wider portion of the 

cutting edge (CE) engages the workmaterial, while the uncut chip thickness (tc) decreases. 

4.2 Effect of milling mode and thread direction  

Other computations of uncut chip thickness (tc) are made at different settings, by changing 

the thread direction (td) and milling mode (mm). The results are presented in Fig. 7. In 

down-milling mode, the uncut chip thickness (tc) decreases as a function of time; it is the 

opposite case for up-milling. Moreover, the flank cutting edges in the direction of axial 

speed (refer table 1), remove greater chip thickness. Thus, this cutting edge can be either 

the lower cutting edge (lce) or the upper cutting edge (uce), depending on both the milling 

mode and the thread direction. 

There exists a practice to balance the wear on the two flank cutting edges. It consists of 

milling a thread in two passes and changing the milling mode between the two. This 

practice may be explained because the change in milling mode reverses the uncut chip 

thickness of the flank cutting edges. 

It is demonstrated [4] that there is negative cutting on the upper cutting edge (uce) of mills 

having too high a flute angle. If the work material may be cut in both milling modes, in 

order to reduce cutting forces it would be interesting to mill the thread such that the uncut 

chip thickness is lower on this upper cutting edge (uce). Thus, with such a kind of mill, a 

right-hand thread should be up-milled and a left-hand thread should be down-milled. 

4.3 Effect of milling geometry 

In flank milling with a cylindrical mill, the flute angle induces an angular delay on the uncut 

chip thickness (tc) at each point of the cutting edge. In thread milling, the flute angle (λsm) 

and the orthogonal rake angle (γom) both lead to an angular delay. As shown in Fig. 8, with 

a straight flute mill having no rake angle, a wider portion of the upper cutting edge (uce) is 

engaged compared to a helical flute mill. Furthermore, the uncut chip thickness is strictly 

constant along the flank cutting edges at a fixed time. The difference between these two 

mills may not appear as significant; nevertheless when the mill is completely engaged 

axially, the effect of the flute angle (λsm) participates significantly to reduce the chip area at 

a given time. It can not be concluded that flute angle may contribute to reduce cutting 

forces, because this angle also induces a negative rake angle [4]. Thus, there exists an 

optimized flute angle value to reduce cutting forces which may avoid effect of large 

negative rake angle [11]. 
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5 Interference analysis 

It is usually that machining with form tools induces interference (overcut or undercut) and 

machined surfaces are not exactly as the nominally ones. It is concerned with many cases 

like: worm, grooves grinding or milling [12-13], threads grinding [14], or flank milling of free 

form surfaces [15]. 

The milling of threads also leads to interference. There is an overcut on the nominal thread 

surface (NTS), as presented in [3]. The approach which was developed considered the mill 

envelope (ME). A second approach is now developed, directly based on the surface 

generated by the ith cutting edge (SCEi). 

It can be established from test equations whether the surface generated by the ith cutting 

edge (SCEi) crosses over the nominal thread surface (NTS) or not. On the lower thread 

flank, this condition is expressed by equation (12), and for the upper one it is given by 

equation (13). Thus, from the solution parameters, the axial distance between the surface 

generated by the ith cutting edge (SCEi) and the nominal thread surface (NTS) can be 

calculated. This axial distance is the axial error (Ea) linked to the interference. It is also 

possible to identify, on the cutting area, when and at which cutting edge point too much 

work material is cut. In Fig. 7, the yellow (light shaded) surface indicates the uncut chip 

thickness contributing to the interference phenomenon. 

i ce ce inf .lim. ce m3z( , z). (t, z ). if z z Pθ < < <NTS E SCE E3 33 33 33 3    (12) 

i ce m4z ce ce sup.lim.( , z). (t, z ). if P z zθ > < <NTS E SCE E3 33 33 33 3    (13) 

Fig. 9 shows the values of the axial error (Ea) in the cross section which leads to maximum 

interference on the lower flank of the thread. This axial error is between 31.4 µm and 33 

µm. With the approach developed in [3], the computation of interference for this case, the 

axial error was between 31.5 µm and 33 µm. Thus, it can be concluded that considering 

the mill envelope or the surface generated by the ith cutting edge are coherent approaches.  

The first approach needs far fewer computations, and is sufficient with respect to the slight 

gain in precision offered by the second approach. 

 

6 Conclusion 

The present study proposed an analytical formulation of the problem for modelling uncut 

chip thickness in single pass thread milling. It is based on a realistic cutting edge definition, 
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and takes into consideration the real kinematic movement of the mill teeth. The proposed 

model takes into account thread geometry, mill geometry, and cutting conditions.  

The results show the specific aspects of the chip area in thread milling. The uncut chip 

thickness along the cutting edge is clearly non-constant and the milling mode establishes 

the cutting conditions of the flank cutting edges. It is shown that milling strategy should be 

adapted to thread direction and mill geometry. The mill geometry and especially the flute 

angle have more effect on uncut chip thickness than in cylindrical milling. Even if the flute 

angle introduces a negative rake angle, it reduces the chip area at a given time. Thus, it is 

assumed that there is an optimum combination of flute angle and orthogonal rake angle to 

control the cutting forces and their variations. 

Furthermore, the presented model enables interference and overcut to be evaluated 

directly from the surface generated by the cutting edge. 
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Fig. 1 Parameterization of thread milling operation 

 

Fig. 2 SCE1 and SCE2 surfaces generated by cutting edges - td = 1, omα = 10 °, 

smλ = 30 °, m m = 1 
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Fig. 3 Cross sections of surfaces generated by cutting edges - td = 1, omα = 10 °, 

smλ = 30 °, m m = 1 
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Fig. 4 Uncut chip thickness at the cutting edge mid point - td = 1, omα = 10 °, smλ = 30 °, 

mm = 1 
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Fig. 5 Uncut chip thickness in cross section - td = 1, omα = 10 °, smλ = 30 °, m m = 1 

6.5 7.0 7.5 8.0
0.0

0.5

1.0

1.5

2.0

r�mm�

z�mm�

SCE2 

SCE1 

NL 

tc 

NTP 
MP 



3 

 

Fig. 6 Uncut chip thickness and its correction (tc in mm, θ in °, z ce in mm) - td = 1, 

omα = 10 °, smλ = 30 °, m m = 1 

 

 

 

 

 

Down-milling (mm = 1) Up-milling (mm = -1) 

R
ig

ht
-h

an
d 

th
re

ad
 

(t
t =

 1
) 

  

Le
ft-

ha
nd

 th
re

ad
 (

t t 
=

 -
1)

   

Fig. 7 Uncut chip thickness depending milling mode and thread direction (tc in mm, θ in °, 
zce in mm) - omα = 10 °, smλ = 30 ° 
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Fig. 8 Uncut chip thickness at a fixed time for three mill geometries 

 

 

Fig. 9 Axial error linked to overcut - td = 1, omα = 10 °, smλ = 30 °, m m = 1 
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TABLE 

 Milling mode 

 Down-milling Up-milling 

Thread type mm = 1  mm = -1 

Right-hand 
thread 

td = 1 0 ; 

 3

d
(t). 0

dt
MC E  

0 ; 

 3

d
(t). 0

dt
MC E  

Left-hand 
thread 

td = -1 0 ; 

 3

d
(t). 0

dt
MC E  

0 ; 

 3

d
(t). 0

dt
MC E  

Table 1: Properties of mill center trajectory (MC) 
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