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Thread milling offers interesting possibilities for machining internal or external threads. This machining technique uses a mill with a triangular profile for metric threads and a helical interpolation strategy. Thus, the uncut chip thickness can not be easily evaluated from a simplified approach. The present study deals with a model for calculating uncut chip thickness during internal thread milling. This step is needed to understand and model the cutting forces. The model developed uses the geometrical definitions of the mill, and takes into account the milling mode and the cutting conditions. The link with the interferences between the tool and the thread is also established and corroborates a previous study. A full analytical formulation of the problem is proposed, and results from different milling settings are presented.

NOMENCLATURE

Introduction

Thread milling is becoming a more and more used method for producing internal and external threads [START_REF] Koelsch | Thread milling takes on tapping[END_REF][START_REF] Halas | Tapping vs thread milling[END_REF], which is especially interesting for producing high cost parts as mention in [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF][START_REF] Fromentin | Geometrical analysis of thread milling -Part 1: Evaluation of tool angles[END_REF]. This milling technique allow greater cutting speed compared to tapping and then could be adapted for machining difficult to cut materials. Thread milling cycle apply a helical interpolation and it is described in [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF].

Thread milling improvement, tool geometry optimization are needed for cutting force analysis. There exists many studies on cutting force modelling, but quite a few deal with mutli-edge form tools which is usually not the case in milling. Mutli-edge form tools is a specific aspect linked to threading techniques. The case of vee groove tools has been studied [START_REF] Armarego | Predictive models for machining with multi-edge form tools based on a generalised cutting approach[END_REF][START_REF] Armarego | The unified generalised mechanics of cutting approach -a step towards a house of predictive performance models for machining operations[END_REF], nevertheless threading tool also include a front cutting edge that should have a significant effect and then it can not be considered like vee groove tool. In tapping, only the front cutting edge is working [START_REF] Mezentsev | Use of radial forces for fault detection in tapping[END_REF][START_REF] Armarego | Predictive cutting models for the forces and torque in machine tapping with straight flute taps[END_REF]. As a consequence, there are two aspects to deal with the cutting force modelling in thread milling: cutting force model linked to edge form, and uncut chip thickness calculation. There are several difficulties to execute the calculation of the chip area in thread milling. It is because the mill has a triangular profile and also that a helical interpolation is required to machine the thread. It results in a complex 3D geometrical problem, and a simplified approach for that has been proposed [START_REF] Araujo | A model for thread milling cutting forces[END_REF].

The present study deals with the computation of uncut chip thickness (t c ). It takes into account likely considerations concerning the cutting edge (CE) [START_REF] Fromentin | Geometrical analysis of thread milling -Part 1: Evaluation of tool angles[END_REF] and a full analytical formulation is proposed to produce a more precise model than those which consider a sine function. Knowledge of the uncut chip thickness (t c ) is needed for process control and force modelling, and is useful to complete existing studies [START_REF] Araujo | A model for thread milling cutting forces[END_REF]. Moreover, it is necessary to analyse the effect of tool design parameters, such as the flute angle. Finally, the calculation of the uncut chip thickness (t c ) enables the effect of the milling mode to be evaluated.

This article is related to [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF][START_REF] Fromentin | Geometrical analysis of thread milling -Part 1: Evaluation of tool angles[END_REF] and the general context is identical. It also considers metric thread milling and the same notations are used. The milling machine moves the mill center (MC) along a circular helix. Equation (1) defines the mill axis rotation speed [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF]. Based on the milling mode (m m ) and the thread direction (t d ), the mill center trajectory (MC) is expressed by the equation ( 2) [START_REF] Koelsch | Thread milling takes on tapping[END_REF] in the R O referential.

Table 1 sums up the combinations of coefficients m m and t d . The sign of the mill axis rotation speed is the consequence of the chosen milling mode (m m ).The thread direction (t d ) conditions the sign of the mill axis speed of the mill center trajectory (MC).

( )

m fm t mc m .n .f . 2 . p² R ² Ω = ω π + (1) 
T mc mc d (t) R .cos( .t), R .sin( .t), t .p. .t = Ω Ω Ω MC [ ] (2) 
The thread profile comes from standard [10] and the mill profile (MP) is resulting from it as explain in [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF]. To define cutting edges, it is necessary to have expressions of the mill profile (MP) and the rake face (RF). The formulations used are those defined in [START_REF] Fromentin | Geometrical analysis of thread milling -Part 1: Evaluation of tool angles[END_REF]. Thus the i th cutting edge (CE i ) can be expressed by equation ( 3) in the R o referential.
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Uncut chip thickness calculation

The surface generated by the i th cutting edge (SCE i ) is obtained from the mill rotation and the mill center trajectory (MC). It is expressed by equation ( 4) in the R O referential. Based on equation (2), equation ( 5) is deduced.
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It is intended to limit the surface generated by the i th cutting edge (SCE i ) to the work material. That may be done by considering the axial distance (AD SCE ) from this surface to the hole axis. This distance is simply expressed by equation [START_REF] Armarego | The unified generalised mechanics of cutting approach -a step towards a house of predictive performance models for machining operations[END_REF]. If the hole diameter is equal to the minor diameter of the thread (D 1 ), then equation ( 7) is the condition for the surface generated by the i th cutting edge (SCE i ) to be within in the limits of material. Fig. 2 represents these surfaces for the case under study.
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The uncut chip thickness (t c ) is considered as being the normal distance from the surface generated by the i th cutting edge (SCE i ) to the surface generated by the i-1 th cutting edge (SCE i-1 ), as shown in Fig. 3. The normal vector with respect to surface (SCE i ) can be evaluated by equation [START_REF] Armarego | Predictive cutting models for the forces and torque in machine tapping with straight flute taps[END_REF]. Consequently, the normal line with respect to the surface generated by the i th cutting edge (NL SCE ) can be expressed by equation [START_REF] Araujo | A model for thread milling cutting forces[END_REF]. Then, at a given point SCE i (t 1 ,z ce1 ), the uncut chip thickness (t c ) may be evaluated by solving equation (10) numerically, (t c ,t 2 ,z ce2 ) values are calculated. If a negative value is obtained for t c , it indicates that the CE i cutting edge extends further than the CE i-1 cutting edge.

Thus, the CE i cutting edge is clear of the work material because this was previously removed by the CE i-1 cutting edge. The maximum value of the uncut chip thickness (tc fce ) may be analytically approximated.
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The feed (f t12 ) projected onto plane (E 1 ,E 2 ) is expressed by equation [START_REF] Araujo | A model for thread milling cutting forces[END_REF]. The radial depth of cut (r doc ), if the hole diameter is equal to the minor diameter of the thread (D 1 ), is given by equation (10). Thus, the value of the uncut chip thickness (tc fce ) removed by the front cutting edge (fce) can be evaluated by equation [START_REF] Fang | Tool-chip friction in machining with a large negative rake angle tool[END_REF]. For the case studied, this is an approximation, with only 1% error, of the exact uncut chip thickness (t c ).

1 2 t12 t mc p f f 1 R - 7 8 7 8 = + 9 A 9 A 9 A B C B C (9) 
doc m 80 3D 75.P r P 256(D D )

- = - ( 10 
)
doc doc fce t12 m m r r tc 2.f . 1 D D 7 8 = - 9 A B C (11) 
Fig. 5 represents the thickness (t c ) along the cutting edge at a fixed time. Globally the front cutting edge (fce) cuts a greater thickness than the upper and lower cutting edges due to the different cutting edge angle. In the present case, with a right-hand thread and downmilling mode, the mill axis speed is positive, and the upper cutting edge (uce) is in this direction. As a consequence, the thickness (t c ) cut by the upper cutting edge (uce) is greater than that cut by the lower cutting edge (lce).

Locally, at the points where the front cutting edge (fce) and the flank cutting edges join, the uncut chip thickness (t c ) rises to higher values, which can easily be understood by observing the geometric construction in Fig. 3. This is due to the fact that the cutting edge is only a C 0 continuous parametric function. If a cutting edge with corner radii were considered, this result might not be observed or would not be so large. As a consequence, force modelling by a cutting edge discretization method can not be applied in this zone because the segments are not independent. However, this part of the chip area is negligible compared to the whole chip area, and may therefore be omitted from the model.

Instead of discretizing the cutting edge into segments, a model with a global area approach can be considered, as proposed by Armarego [START_REF] Armarego | Predictive models for machining with multi-edge form tools based on a generalised cutting approach[END_REF][START_REF] Armarego | The unified generalised mechanics of cutting approach -a step towards a house of predictive performance models for machining operations[END_REF] with a full triangular cutting edge (vee groove tool). 

Effect of milling mode and thread direction

Other computations of uncut chip thickness (t c ) are made at different settings, by changing the thread direction (t d ) and milling mode (m m ). The results are presented in Fig. 7. In down-milling mode, the uncut chip thickness (t c ) decreases as a function of time; it is the opposite case for up-milling. Moreover, the flank cutting edges in the direction of axial speed (refer table 1), remove greater chip thickness. Thus, this cutting edge can be either the lower cutting edge (lce) or the upper cutting edge (uce), depending on both the milling mode and the thread direction.

There exists a practice to balance the wear on the two flank cutting edges. It consists of milling a thread in two passes and changing the milling mode between the two. This practice may be explained because the change in milling mode reverses the uncut chip thickness of the flank cutting edges.

It is demonstrated [START_REF] Fromentin | Geometrical analysis of thread milling -Part 1: Evaluation of tool angles[END_REF] that there is negative cutting on the upper cutting edge (uce) of mills having too high a flute angle. If the work material may be cut in both milling modes, in order to reduce cutting forces it would be interesting to mill the thread such that the uncut chip thickness is lower on this upper cutting edge (uce). Thus, with such a kind of mill, a right-hand thread should be up-milled and a left-hand thread should be down-milled.

Effect of milling geometry

In flank milling with a cylindrical mill, the flute angle induces an angular delay on the uncut chip thickness (t c ) at each point of the cutting edge. In thread milling, the flute angle (λ sm )

and the orthogonal rake angle (γ om ) both lead to an angular delay. As shown in Fig. 8, with a straight flute mill having no rake angle, a wider portion of the upper cutting edge (uce) is engaged compared to a helical flute mill. Furthermore, the uncut chip thickness is strictly constant along the flank cutting edges at a fixed time. The difference between these two mills may not appear as significant; nevertheless when the mill is completely engaged axially, the effect of the flute angle (λ sm ) participates significantly to reduce the chip area at a given time. It can not be concluded that flute angle may contribute to reduce cutting forces, because this angle also induces a negative rake angle [START_REF] Fromentin | Geometrical analysis of thread milling -Part 1: Evaluation of tool angles[END_REF]. Thus, there exists an optimized flute angle value to reduce cutting forces which may avoid effect of large negative rake angle [START_REF] Fang | Tool-chip friction in machining with a large negative rake angle tool[END_REF].

Interference analysis

It is usually that machining with form tools induces interference (overcut or undercut) and machined surfaces are not exactly as the nominally ones. It is concerned with many cases like: worm, grooves grinding or milling [START_REF] Bar | Curvatures of enveloped helicoids[END_REF][START_REF] Kang | A CAD approach to helical groove machining Part 1: Mathematical model and model solution[END_REF], threads grinding [START_REF] Chiang | Computerized simulation of thread form grinding process[END_REF], or flank milling of free form surfaces [START_REF] Redonnet | Side milling of ruled surfaces: Optimum positioning of the milling cutter and calculation of interference[END_REF].

The milling of threads also leads to interference. There is an overcut on the nominal thread surface (NTS), as presented in [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF]. The approach which was developed considered the mill envelope (ME). A second approach is now developed, directly based on the surface generated by the i th cutting edge (SCE i ).

It can be established from test equations whether the surface generated by the i th cutting edge (SCE i ) crosses over the nominal thread surface (NTS) or not. On the lower thread flank, this condition is expressed by equation ( 12), and for the upper one it is given by equation ( 13). Thus, from the solution parameters, the axial distance between the surface generated by the i th cutting edge (SCE i ) and the nominal thread surface (NTS) can be calculated. This axial distance is the axial error (E a ) linked to the interference. It is also possible to identify, on the cutting area, when and at which cutting edge point too much work material is cut. In Fig. 7, the yellow (light shaded) surface indicates the uncut chip thickness contributing to the interference phenomenon. 

Fig. 9 shows the values of the axial error (E a ) in the cross section which leads to maximum interference on the lower flank of the thread. This axial error is between 31.4 µm and 33

µm. With the approach developed in [START_REF] Fromentin | Modeling of interferences during thread milling operation[END_REF], the computation of interference for this case, the axial error was between 31.5 µm and 33 µm. Thus, it can be concluded that considering the mill envelope or the surface generated by the i th cutting edge are coherent approaches.

The first approach needs far fewer computations, and is sufficient with respect to the slight gain in precision offered by the second approach.

Conclusion

The present study proposed an analytical formulation of the problem for modelling uncut chip thickness in single pass thread milling. It is based on a realistic cutting edge definition, and takes into consideration the real kinematic movement of the mill teeth. The proposed model takes into account thread geometry, mill geometry, and cutting conditions.

The results show the specific aspects of the chip area in thread milling. The uncut chip thickness along the cutting edge is clearly non-constant and the milling mode establishes the cutting conditions of the flank cutting edges. It is shown that milling strategy should be adapted to thread direction and mill geometry. The mill geometry and especially the flute angle have more effect on uncut chip thickness than in cylindrical milling. Even if the flute angle introduces a negative rake angle, it reduces the chip area at a given time. Thus, it is assumed that there is an optimum combination of flute angle and orthogonal rake angle to control the cutting forces and their variations.

Furthermore, the presented model enables interference and overcut to be evaluated directly from the surface generated by the cutting edge.
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  Subscripts and abbreviations: m relative to the mill t relative to the thread r,θ,z cylindrical coordinates fce: front cutting edge uce: upper cutting edge lce: lower cutting edge Referentials and parameters: R O = (O,E 1 ,E 2 ,E 3 ) referential linked to the thread (O,E 3 ): hole axis R o = (o, e 1 ,e 2 ,e 3 ) referential linked to the mill with E 3 = e 3 and ( , ) θ: angular position of the mill Θ: angular position of the mill axis z ce : altitude of a cutting edge point in the R o referential u: parameter Metric thread dimensions: D: nominal diameter of the internal thread D 1 : minor diameter of the internal thread D 2 : pitch diameter of the internal thread P: thread pitch (mm) p: angular thread pitch (mm/rad) t d : thread direction (right-hand thread t d = 1, left-hand thread t d = -1) k t : reduction coefficient of the thread profile height Mill dimensions: D m : maximum diameter (mm) k m : reduction coefficient of the mill profile height n fm : flute number p fm : pitch per radian of the helicoidal flute Mill cutting angle: γ om : orthogonal rake angle λ sm : flute angle (or helix angle) on the D m diameter Cutting parameters: V c : cutting speed (mm/min) f t : feed rate (mm/rev/tooth) r doc : radial depth of cut (mm) r p : radial penetration (mm) R mc : helix radius of the mill center trajectory (mm) m m : milling mode (down-milling m m = 1, up-milling m m = -1) Geometrical objects: MC(t): mill center trajectory MP(z ce ): mill profile RF(r,z ce ): mill rake face (flute surface) CE i (z ce ): i th mill cutting edge

Fig. 1

 1 defines the parameterization of an internal thread milling operation which is used. All calculations are computed using Mathematica software. For the different cases studied, the common model parameter values are: D = 16 mm, P = 2 mm, k t = 1/8, D m = 12 mm, n fm = 5, k m = 1/8, R mc = 2 mm, f t = 0.15 mm/rev/tooth 2 Parameterization of thread milling

  Fig.4represents the uncut chip thickness (t c ) during tooth engagement by cutting edge point P m0 . This point is the mid point of the front cutting edge (fce), i.e. z ce is equal to half the pitch. The uncut chip thickness (t c ) decreases from a maximum value of 0.139 to 0 mm when the tooth moves clear of the work material. This is expected, because at the considered point the result resembles cylindrical down milling, even if this result includes the fact that there is a helical interpolation.

Fig. 6

 6 Fig.6represents uncut chip thickness (t c ) as a function of the angular position of the tooth (θ) and the altitude (z ce ) of the cutting edge point. The two previous figures show cross section curves of the surface in Fig.6-A. The surface representing the uncut chip thickness (t c ) in Fig.6-B is corrected in order to suppress high local values produced at the points where the front cutting edge (fce) and the flank cutting edges join. In addition to the previous observations, it can be added that the upper cutting edge (uce) is engaged for a
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TABLE

Milling mode

Down-milling

Up-milling

Right-hand thread