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Abstract

This article is the second part of a two articles series about a calcu-
lus with higher-order polymorphic functions, recursive types with
arrow and product type constructors and set-theoretic type connec-
tives (union, intersection, and negation). In the first part, presented
in a companion paper, we defined and studied the syntax, seman-
tics, and evaluation of the explicitly-typed version of the calculus,
in which type instantiation is driven by explicit instantiation anno-
tations. In this second part we present a local type inference system
that allows the programmer to omit explicit instantiation annota-
tions, and a type reconstruction system that allows the programmer
to omit explicit type annotations.

The work presented in the two articles provides the theoreti-
cal foundations and technical machinery needed to design and im-
plement higher- order polymorphic functional languages for semi-
structured data.

1. Introduction

Many recent XML processing languages, such as XDuce, CDuce,
XQuery, OcamlDuce, XHaskell, XAct, are statically-typed func-
tional languages. However, none of them provides full-fledged
parametric polymorphism even though this feature has been re-
peatedly requested in different standardization groups. A major
stumbling block to such an extension —ie, the definition of a sub-
typing relation for regular tree types with type variables— has been
recently lifted by Castagna and Xu [4]. In this work we present the
next logical step of that research, that is, the definition of a higher-
order functional language that takes full advantage of Castagna
and Xu’s system. To that end we define and study a calculus with
higher-order polymorphic functions and recursive types with union,
intersection, and negation connectives. The approach is thus gen-
eral and, as such, goes well beyond the simple application to XML
processing languages. As a matter of facts, our motivating example
developed all along this paper does not involve XML, but looks like
a rather classic display of functional programming specimens:

map :: (α -> β) -> [α] -> [β]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int -> Bool) ∧ ((α\Int) -> (α\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

The first function is the classic map function defined in Haskell (we
just used Greek letters to denote type variables). The second would
be an Haskell function were it not for two oddities: its type contains
type connectives (type intersection “∧” and type difference “\”);
and the pattern in the case expression is a type, meaning that it
matches all values returned by the matched expression that have
that type. So what does the even function do? It checks whether
its argument is an integer; if it is so it returns whether the integer
is even or not, otherwise it returns its argument as it received it

(although even may be considered as bad programming, it is a
perfect minimal example to illustrate all the aspects of our system).

The goal of this work is to define a calculus and a type system
that can pass three tests. The first test is that it can define the two
functions above. The second, harder, test is that the type system
must be able to verify that these functions have the types declared
in their signatures. That map has the declared type will come as no
surprise (in practice, we actually want the system to infer this type
even in the absence of a signature given by the programmer: see
Section 7). That even was given an intersection type means that
it must have all the types that form the intersection. So it must be
a function that when applied to an integer it returns a Boolean and
that when applied to an argument of a type that does not contain any
integer, it returns a result of the same type. In other terms, even is
a polymorphic (dynamically bounded) overloaded function.

The third test, the hardest one, is that the type system must be
able to infer the type of the partial application of map to even, and
the inferred type must be equivalent to the following one1

map even :: ([Int] -> [Bool]) ∧
([α\Int] -> [α\Int]) ∧ (1)
([α∨Int] -> [(α\Int)∨Bool])

since map even returns a function that when applied to a list of
integers it returns a list of Booleans, when applied to a list that
does not contain any integer then it returns a list of the same type
(actually, the same list), and when it is applied to a list that may
contain some integers (eg, a list of reals), then it returns a list of the
same type, without the integers but with some Booleans instead (in
the case of reals, a list with Booleans and reals that are not integers).

Technically speaking, the definition of such a calculus and its
type system is difficult for two distinct reasons. First, for the reasons
we explain in the next section, it demands to define an explicitly
typed λ-calculus with intersection types, a task that, despite many
attempts in the last 20 years, still lacked a satisfactory definition.
Second, even if working with an explicitly typed setting may seem
simpler, the system needs to solve “local type inference”2, namely,
the problem of checking whether the types of a function and of its
argument can be made compatible and, if so, of inferring the type
of their result as we did for (1). The presentation of our work is split
in two parts, accordingly: in the first part (the companion paper [3])
we showed how to solve the problem of defining an explicitly-typed
λ-calculus with intersection types and how to efficiently evaluate it.
In this paper, the second part of our work, we show how to solve
the problem of “local type inference” for a calculus with intersec-
tion types. In particular, we show how local type inference for our
system reduces to the problem of finding two sets of type substi-

1 This type is redundant since the first type of the intersection is an instance
(eg, for α=Int) of the third. We included it for the sake of the presentation.
2 There are different definitions for local type inference. Here we use it
with the meaning of finding the type of an expression in which not all
type annotations are specified. This is the acceptation used in Scala where
type parameters for polymorphic methods can be omitted. In our specific
problem, we will omit —and, thus, infer— the annotations that specify how
function and argument types can be made compatible.
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tutions {σi | i∈I} and {σ′
j | j∈J} such that for two given types

s and t the relation
∧

i∈I sσi ≤
∧

j∈J tσ′
j holds. Therefore, this

second part is mainly devoted to solving this problem. The paper is
accompanied by an appendix available on-line which contains all
detailed proofs and complete definitions.

Next section outlines the various problems we met and how
they were solved. The reader acquainted with the first part can skip
directly to Section 2.2.

2. Overview

The driver of this work is the definition an XML processing func-
tional language with high-order polymorphic functions, that is, in
particular, a polymorphic version of the language CDuce [2]. The
essence of CDuce is a λ-calculus with pairs, explicitly-typed recur-
sive functions, and a type-case expression. Its types can be recur-
sively defined and include the arrow and product type constructors
and the intersection, union, and negation type connectives.

In a nutshell we want to define the static and dynamic semantics
of the language whose types and expressions are defined as follows.

Definition 2.1 (Types). Types are the regular trees coinductively
generated by the following productions:

t ::= b | t → t | t ∧ t | t ∨ t | ¬t | 0 | 1 | α (2)

and such that every infinite branch contains infinitely many occur-
rences of type constructors. We use T to denote the set of all types.

In the definition, b ranges over basic types (eg, Int, Bool), α ranges
over type variables, and 0 and 1 respectively denote the empty (that
types no value) and top (that types all values) types. Coinduction
accounts for recursive types and the condition on infinite branches
bars out ill-formed types such as t = t∨t (which does not carry any
information about the set denoted by the type) or t = ¬t (which
cannot represent any set). It also ensures that the binary relation
⊲⊆ T

2 defined by t1∨t2 ⊲ ti, t1∧t2 ⊲ ti, ¬t ⊲ t is Noetherian.
This gives an induction principle on T that we will use without any
further explicit reference to the relation. We use var(t) to denote
the set of type variables occurring in a type t. A type t is said to
be ground or closed if and only if var(t) is empty. The subtyping
relation for these types was defined by Castagna and Xu [4]. For
this work it suffices to consider that ground types are interpreted
as sets of values (ie, either constants or λ-abstractions) that have
that type and subtyping is set containment (a ground type s is a
subtype of a ground type t if and only if it t contains all the values
of type s). In particular s→t contains all λ-abstractions that when
applied to a value of type s if they return a result, then this result is
of type t (eg, 0→1 is the set of all functions3 and 1→0 is the set
of functions that diverge on all their arguments). Type connectives
(union, intersection, negation) are interpreted as the corresponding
set-theoretic operators (eg, s∨t is the union of the values of the two
types) and subtyping is set containment. For what concerns non-
ground types (ie, types with variables occurring in them) all the
reader needs to know for this work is that the subtyping relation of
Castagna and Xu is preserved by substitution of the type variables.
Namely, if s ≤ t, then sσ ≤ tσ for every type-substitution σ (the
converse does not hold in general, while it holds for semantic type-
substitutions in convex models: see [4]). Two types are equivalent if
they are subtype one of each other (type equivalence is denoted by
≃). Finally, notice that in this system s ≤ t if and only if s∧¬t ≤ 0.

Definition 2.2 (Expressions). Expressions are the terms induc-
tively generated by the following grammar

e ::= c | x | ee | λ∧i∈Isi→tix.e | e∈t ? e : e (3)

3 Actually, for every type t all types of the form 0→t are equivalent and
each of them denotes the set of all functions.

and such that in every expression e∈t ? e1 : e2 the type t is closed.

In the definition c ranges over constants (eg, true, false, 1,
2, ...) which are values of basic types (we use bc to denote the
basic type of the constant c); x ranges over expression variables;
e∈t ? e1 : e2 denotes the type-case expression that evaluates either
e1 or to e2 according to whether the value returned by e (if any)
is of type t or not; λ∧i∈Isi→tix.e is a value of type ∧i∈Isi → ti
that denotes the function of parameter x and body e. An expression
has an intersection type, if it has all the types that compose the
intersection. Therefore, intuitively, λ∧i∈Isi→tix.e is a well-typed
value if for all i∈I the hypothesis that x is of type si implies that the
body e has type ti, that is to say, it is well typed if λ∧i∈Isi→tix.e
has type si → ti for all i ∈ I .

The core of monomorphic CDuce, dubbed “CoreCDuce”, has
exactly the same types and expressions as the above with two single
differences: (i) types do not contain type variables, that is, they are
as in Definition 2.1 but where the grammar (2) does not have the
last production for variables and (ii) it includes product types and
recursive functions, which we omitted here for brevity since our
results can be easily extended to them (as sketched in Section 5 and
shown in the appendixes).

From a strictly practical viewpoint recursive types, products,
and type connectives are used to encode regular tree types, which
subsume existing XML schema/types while, for what concerns
expressions, the type-case is an abstraction of CDuce pattern
matching (this uses regular expression patterns on types to de-
fine powerful capture primitives for XML data). The reasons why
in CoreCDuce (and in its polymorphic extension we study here)
there is a type-case expressions and why λ-expressions are explic-
itly annotated by their intersection types are explained in details in
the companion paper that presents the first part of this work [3] and
we invite the reader to refer to it.

The novelty of this work with respect to CoreCDuce, thus, is to al-
low type variables to occur in the types that annotate λ-abstractions.
It becomes thus possible to define the polymorphic identity func-
tion as λα→αx.x, while the classic “auto-application” term is writ-
ten as λ((α→β)∧α)→βx.xx. The intended meaning of using a type
variable, such as α, is that a (well-typed) λ-abstraction not only
has the type specified in its label (and by subsumption all its super-
types) but also all types obtained by instantiating the type variables
occurring in its label. So λα→αx.x has not only type α → α but
also, for instance, by subsumption the types 0→1 (the type of all
functions, which is a super-type of α→α) and ¬Int (the type of
all non integer values), and by instantiation the types Int→Int,
Bool→Bool, etc.. The addition of type variables and instantiation
makes the calculus a full-fledged intersection-type system (see Sec-
tion 3.5 in the first part of this work): for instance, by combining
intersections, instantiation and subtyping it is possible to deduce
that λα→αx.x has type (Int→Int) ∧ (Bool→Bool) ∧ ¬Int.

The first problem we have to solve then is to define an explicitly-
typed λ-calculus with intersection types. We outline in four points
why this problem is hard (it has been studied for over 20 years) and
summarize the solution we proposed in the first part of this work.

1. Polymorphism needs instantiation: To apply the polymor-
phic identity λα→αx.x to, say, 42, we must use the particular
instance of the identity obtained by applying the type substitu-
tion {Int/α} (denoting the replacement of every occurrence of α
by Int). Thus the application (λα→αx.x)42 implicitly stands for
(λα→αx.x){Int/α}42, that is, (λInt→Intx.x)42: we have virtually
“relabeled” λα→αx.x as λInt→Intx.x before applying it to 42.

2. Type-case needs explicit relabeling: because of the pres-
ence of type-case expressions, however, relabeling cannot re-
main just virtual but must be effectively performed. The label
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of a λ-abstraction determines its type: testing whether the result
of the application (λα→α→αx.λα→αy.x)e has type Int→Int
should succeed for e=42 and fail for e=true. In other words,
((λα→α→αx.λα→αy.x)42)∈Int→Int ? 0 : 1 must reduce to
(λInt→Inty.42)∈Int→Int ? 0 : 1 and thus to 0, while the ex-
pression ((λα→α→αx.λα→αy.x)true)∈Int→Int ? 0 : 1 must
reduce to (λBool→Booly.true)∈Int→Int ? 0 : 1 and thus to 1.

3. Relabeling must be propagated to function bodies: consider
the following “daffy” —though well-typed— definition of the iden-
tity function:4

(λα→αx.(λα→αy.x)x) (4)
If we want to apply this function to, say, 3, then we have first to
relabel it by applying the substitution {Int/α}. However, applying
the relabeling only to the outer “λ” does not suffice since the
application of (4) to 3 reduces to (λα→αy.3)3 which is not well-
typed (it is not possible to deduce the type α→α for λα→αy.3,
which is the constant function that always returns 3) although it
is the reductum of a well-typed application. So we have to relabel
also the body by applying the same type-substitution {Int/α} to the
body. This yields a reductum (λInt→Inty.3)3 which is well typed.

4. Relabeling the body is not always straightforward: Two differ-
ent problems may conjugate to make relabeling of function bodies
difficult: (i) it may be necessary to apply more than a single type-
substitution and (ii) the relabeling of the body may depend on the
dynamic type of the actual argument of the function (both problems
are better known as —or are instances of— the problem of deter-
mining expansions for intersection type systems [6]). Let us next
discuss each problem in detail.

First of all, recall that λα→αx.x has type (Int→Int) ∧
(Bool→Bool). If we have a second function that expects argu-
ments of this intersection type, then it is safe to pass the identity
function as argument to it. Before, however, we have to relabel
λα→αx.x into λ(Int→Int)∧(Bool→Bool)x.x, which corresponds to
apply two distinct type-substitutions {Int/α} and {Bool/α} to the
annotation of the λ-abstraction and replace it by the intersection of
the two instances. This explains why in the first part of this work
relabeling is performed by sets of type-substitutions —delimited
by square brackets—. The application of such a set (eg, in the
previous example [{Int/α}, {Bool/α}]) to a type t, returns the in-
tersection of all types obtained by applying each substitution in set
to t (eg, in the example t{Int/α} ∧ t{Bool/α}). The problem is
how to relabel function bodies by sets of type-substitutions: while
the naive solution consisting of propagating the substitution to the
body works for a single substitution, for sets of substitutions it is
unsound. This can be seen by trying to perform on the daffy iden-
tity function in (4) the same relabeling as we just did on the classic
identity λα→αx.x. In this case, the naive solution, consisting of
propagating [{Int/α}, {Bool/α}] also to the body yields

(λ(Int→Int)∧(Bool→Bool)x.(λ(Int→Int)∧(Bool→Bool)y.x)x) (5)

which is not well typed. That this term is not well typed is clear
if we try applying it to, say, 3: the application of a function of
type (Int→Int) ∧ (Bool→Bool) to an Int should have type
Int, but here it reduces to (λ(Int→Int)∧(Bool→Bool)y.3)3, and there
is no way to deduce the type (Int→Int) ∧ (Bool→Bool) for
the constant function λy.3. We can also directly verify that it is
not well typed, by trying to type the function in (5). This cor-
responds to prove that under the hypothesis x : Int the term

4 By convention a type variable is introduced by the outermost λ in which
it occurs and this λ implicitly binds all inner occurrences of the variable.
For instance, all the α’s in the term (4) are the same while in a term
such as (λα→αx.x)(λα→αx.x) the variables in the function are distinct
from those in its argument and, thus, can be α-converted separately, as
(λγ→γx.x)(λδ→δx.x).

(λ(Int→Int)∧(Bool→Bool)y.x)x has type Int, and that under the hy-
pothesis x : Bool this same term has type Bool. Both checks
fail because, in both cases, λ(Int→Int)∧(Bool→Bool)y.x is ill-typed
(it neither has type Int→Int when x:Bool, nor has it type
Bool→Bool when x:Int). This example shows that in order to
ensure that relabeling yields well-typed terms, the relabeling of the
body must change according to the type of the value the parameter
x is bound to. More precisely, (λα→αy.x) should be relabeled as
λInt→Inty.x when x is of type Int, and as λBool→Booly.x when x
is of type Bool.

2.1 Summary of Part 1

The last example suggests the key idea of the first part of this work:

The relabeling of the body of a function must change ac-
cording to the type of the argument of the function.

In the specific case, when we apply the daffy identity function to an
integer we must relabel its body by the type-substitution {Int/α},
while the type-substitution {Bool/α} must be used when the func-
tion argument is a Boolean value. To obtain this behavior, in the
first part of this work we proposed and studied the “lazy” relabel-
ing of function bodies. The relabeling is lazy since it delays the
propagation of the set of substitutions to the function body until the
precise type of the function argument is known. This is obtained
by decorating λ-abstractions by (sets of) type-substitutions. For ex-
ample, in order to pass our daffy identity function (4) to a function
that expects arguments of type (Int→Int) ∧ (Bool→Bool) we
first “lazily” relabel it as follows:

(λα→α
[{Int/α},{Bool/α}]x.(λ

α→αy.x)x). (6)

The annotation in the outer “λ” indicates that the function must be
relabeled and, therefore, that we are using the particular instance
whose type is the one in the “interface” (ie, α→α) to which we
apply the set of type-substitutions in the annotation. The relabeling
will be actually propagated to the body of the function at the
moment of the reduction, only if and when the function is applied
(relabeling is thus lazy). However, the new annotation is statically
used by the type system to check soundness.

Formally, this is obtained in Part 1 by adding explicit sets of
type-substitutions (ranged over by [σj ]j∈J ) to the grammar (3) of
Definition 2.2. Sets of type substitutions can be applied directly
to expressions (to produce a particular expansion/instantiation of
the type variables occurring in them) or, as in (6), annotate “λ’s
(to implement the lazy relabeling of the function body). We thus
defined a calculus whose syntax is

e ::= c | x | ee | λ
∧i∈Isi→ti
[σj ]j∈J

x.e | e∈t ? e : e | e[σj ]j∈J (7)

where types are those in Definition 2.1 and with the restriction
that the type tested in type-case expressions is closed. We call
this calculus and its expressions the explicitly-typed calculus and
expressions, respectively, in order to differentiate it from the one of
Definition 2.2 which does not have explicit type-substitutions and,
therefore, is called the implicitly-typed calculus.

Henceforth, given a λ-abstraction λ
∧i∈Isi→ti
[σj ]j∈J

x.e we call the

type
∧

i∈I si→ti the interface of the function and the set of type-
substitutions [σj ]j∈J the decoration of the function. We write
λ∧i∈I ti→six.e for short when the decoration is a singleton con-
taining just the empty substitution. We use v to range over values,
that is either constants or λ-abstractions. Let e be an expression: we
use fv(e) and bv(e) respectively to denote the sets of free expres-
sion variables and bound expressions variables of the expression
e; we use tv(e) to denote the set of type variables occurring in e.

As customary, we assume bound expression variables to be pair-
wise distinct and distinct from any free expression variable occur-
ring in the expressions under consideration. Polymorphic variables
can be bound by interfaces, but also by decorations: for example, in
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(ALG-CONST)

∆ ;Γ ⊢A c : bc

(ALG-VAR)

∆ ;Γ ⊢A x : Γ(x)

(ALG-INST)
∆ ;Γ ⊢A e : t

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J

tσj

σj♯ ∆

(ALG-APPL)
∆ ;Γ ⊢A e1 : t ∆ ;Γ ⊢A e2 : s

∆ ;Γ ⊢A e1e2 : t · s
t ≤ 0 → 1

s ≤ dom(t)

(ALG-ABSTR)

∆ ∪∆′ ;Γ, (x : tiσj) ⊢A e@[σj ] : s
′
ij

∆ ;Γ ⊢A λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J

(tiσj → siσj)

∆′ = var(∧i∈I,j∈J tiσj→siσj)
s′ij ≤ siσj , i∈I, j∈J

(ALG-CASE-FST)

∆ ;Γ ⊢A e : t′ ∆ ;Γ ⊢A e1 : s1

∆ ;Γ ⊢A (e∈t ? e1 : e2) : s1
t′≤t

(ALG-CASE-SND)

∆ ;Γ ⊢A e : t′ ∆ ;Γ ⊢A e2 : s2

∆ ;Γ ⊢A (e∈t ? e1 : e2) : s2
t′≤¬t

(ALG-CASE-BOTH)

∆ ;Γ ⊢A e : t′ ∆ ;Γ ⊢A e1 : s1 ∆ ;Γ ⊢A e2 : s2

∆ ;Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2

t′ 6≤¬t
t′ 6≤t

Figure 1. Typing algorithm

λβ→β
[{α/β}]

x.(λα→αy.y)x, the α occurring in the interface of the in-

ner abstraction is “bound” by the decoration [{α/β}], and the whole

expression is α-equivalent to (λβ→β
[{γ/β}]

x.(λγ→γy.y)x). If a type

variable is bound by an outer abstraction, it cannot be instantiated;
such a variable is called monomorphic. We assume that polymor-
phic variables are pairwise distinct and distinct from any monomor-
phic variable in the expressions under consideration. In particular,
when substituting a value v for a variable x in an expression e, we
suppose the polymorphic type variables of e to be distinct from the
monomorphic and polymorphic type variables of v thus avoiding
unwanted capture.

Both static and dynamic semantics for the explicitly-typed ex-
pressions in (7) are defined in terms of a relabeling operation “@”
which takes an expression e and a set of type-substitutions [σj ]j∈J

and pushes [σj ]j∈J down to all outermost λ-abstractions occurring
in e (and collects and composes with the sets of type-substitutions
it meets). Precisely, e@[σj ]j∈J is defined for λ-abstractions and
(inductively) for applications of type-substitutions as:

(λ
∧i∈I ti→si
[σk]k∈K

x.e)@[σj ]j∈J
def
= λ

∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e

(e[σi]i∈I)@[σj ]j∈J
def
= e@([σj ]j∈J ◦ [σi]i∈I)

(where ◦ denotes the pairwise composition of all substitutions of
the two sets), it erases the set of type-substitutions when e is either
a variable or a constant, and it is homomorphically applied on the
remaining expressions (see Part 1 for comprehensive definitions).
The dynamic semantics is given by the following notions of reduc-
tion (where v is a value), applied by a leftmost-outermost strategy:

e[σj ]j∈J  e@[σj ]j∈J (8)

(λ
∧i∈I ti→si
[σj ]j∈J

x.e)v  (e@[σj ]j∈P ){v/x} (9)

v∈t ? e1 : e2  

{

e1 if ⊢ v : t
e2 otherwise (10)

where in (9) we have P
def
= {j∈J | ∃i∈I,⊢ v : tiσj}.

The first rule (8) performs relabeling, that is, it propagates the
sets of type substitutions down into the decorations of the outer-
most λ-abstractions. The second rule (9) states the semantics of ap-
plications: this is standard call-by-value β-reduction, with the dif-
ference that the substitution of the argument for the parameter is
performed on the relabeled body of the function. Notice that rela-
beling depends on the type of the argument and keeps only those
type-substitutions that make the type of the argument v match (at
least one of) the input types defined in the interface of the function
(ie, the set P which contains all substitutions σj such that the argu-
ment v has type tiσj for some i in I: the type system statically en-
sures that P will never be empty). For instance, take the daffy iden-
tity function (4), instantiate it as in (6) by both Int and Bool, and
apply it to 42 —ie, (λα→α

[{Int/α},{Bool/α}]x.(λ
α→αy.x)x)42—, then it

reduces to (λα→α
[{Int/α}]y.42)42, (which is observationally equivalent

to (λInt→Inty.42)42) since the reduction discards the {Bool/α}
substitution. Finally, the third rule (10) checks whether the value

returned by the expression in the type-case matches the specified
type and selects the branch accordingly.

The static semantics is given by the rules in Figure 1 which form
an algorithmic system (as stressed by ⊢A and the names of the
rules): in every case at most one rule applies, either because of the
syntax of the term or because of mutually exclusive side conditions.
We invite the reader to consult Part 1 for more details (there the
reader also will find a non-algorithmic —and far more readable—
system defined in terms of subsumption). Here we just comment
the rules (ALG-ABSTR), (ALG-INST), and (ALG-APP). First of all
notice the ∆ in judgements. This is the set of monomorphic type
variables, that is, the variables that occur in the type of some outer
λ-abstraction and, as such, cannot be instantiated; it must contain
all the type variables occurring in Γ. Rule (ALG-ABSTR) checks
that λ

∧i∈I ti→si
[σj ]j∈J

x.e has the type declared by (the combination of)

its interface and its decoration, that is, ∧i∈I,j∈J tiσj→siσj . To do
that it first adds all the variables occurring in this type to the set
∆, (in the function body these variables are monomorphic). Then,
it checks that for every possible input type —ie, for every possible
combination of ti and σj— the function body e relabeled with the
single type-substitution σj under consideration (ie, e@[σj ]), has (a
subtype of) the corresponding output type.

Rule (ALG-INST) infers for e[σj ]j∈J the type obtained by ap-
plying the set of type-substitutions to the type of e, provided that
the type-substitutions do not instatiate monomorphic variables (ie,
for all j∈J , var(σj) ∩∆ = ∅, noted as σj♯ ∆).

Rule (ALG-APPL) for applications checks that the type t of
the function is a functional type (ie, t ≤ 0→1). Then it checks
that the type of the argument is a subtype of the domain of t
(denoted by dom(t)). Finally, it infers for the application the type

t · s
def
= min{u | t ≤ s→u}, that is, the smallest result type that

can be obtained by subsuming t to an arrow type with domain s.5

Even if t ≤ 0→1, in general t does not have the form of an arrow
type (it could also be a union or an intersection or a negation of
types) and the definition of dom(t) is not immediate. Formally, if
t ≤ 0→1, then t ≃

∨

i∈I(
∧

p∈Pi
(sp→tp)∧

∧

n∈Ni
¬(sn→tn)∧

∧

q∈Qi
αq∧

∧

r∈Ri
¬βr) where all Pi’s are not empty (see Castagna

and Xu [4]), and, for such a t, the domain is defined as dom(t)
def
=

∧

i∈I

∨

p∈Pi
sp (see Part 1 [3]).

The type system is sound (it satisfies both subject reduction and
progress), it subsumes existing intersection type systems, and type
inference is decidable. Furthermore the calculus can be compiled
into an intermediate language which executes relabeling only by
need and, thus, can be efficiently evaluated (again, see Part 1 ibid.).

Before proceeding we stress again that in this calculus type-sub-
stitutions and, thus, instantiation are explicit: (λα→αx.x)[{Int/α}]
has type Int→Int, but (λα→αx.x) does not (contrary to ML, a
semantic subtyping relation ≤ does not account for instantiation).

5 For every type t such that t ≤ 0→1 and type s such that s ≤ dom(t),
the type t · s exists and can be effectively computed.
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2.2 Overview of Part 2
Recall that we want the programmer to use the implicitly-typed
expressions of grammar (3), and not those of grammar (7) which
would require the programmer to write explicit type-substitutions.
Therefore in Section 3 we define a local type inference system that,
given an implicitly-typed expression produced by the grammar (3),
checks whether and where some sets of type-substitutions can be
inserted in this expression so as to make it a well-typed explicitly-
typed expression of grammar (7). Thus, our local type inference
consists of a type-substitution reconstruction system, insofar as it
has to reconstruct the sets of type-substitutions that make an ex-
pression of grammar (3) a well-typed expression of grammar (7). In
order to avoid ambiguity we reserve the word “reconstruction” for
the problem of reconstructing type annotations (in particular, func-
tion interfaces) and speak of inference of type-substitutions for this
problem. In particular, we show that this problem can be reduced
to the problem of deciding whether for two types s and t there
exist two sets of type-substitutions [σi]i∈I and [σ′

j ]j∈J such that
s[σi]i∈I ≤ t[σ′

j ]j∈J . We prove that when the cardinalities of I and
J are given, the problem above is decidable and reduces to finding
all substitutions σ such that s′σ ≤ t′σ for two given types s′ and t′

(we dub this problem the tallying problem). We show how to pro-
duce a sound and complete set of solutions for the latter problem.
This is done by generating sets of constraint-sets that are then nor-
malized, merged, and solved. The solution of the tallying problem
immediately yields a semi-decision procedure (that tries all the car-
dinalities for I , J) for the local type inference system. Henceforth,
to enhance readability, we will systematically use the metavariable
“a” to denote expressions of the implicitly-typed calculus (ie, those
of grammar (3)) and reserve the metavariable “e” for expressions
of the explicitly-typed calculus (ie, those of grammar (7)).

Finally in Section 4 we show that the theory and algorithms de-
veloped in Section 3 can be reused to do ML-like type reconstruc-
tion, that is, to infer the interface of an unannotated λ-expression,
in a pure λ-calculus with type-case.

Let us summarize all these passages on the motivating example
of the introduction. First, note that the language defined in (7)
passes our first test since the even function can be defined as

λ(Int→Bool)∧(α\Int→α\Int)x . x∈Int ? (x mod 2) = 0 :x (11)

(where s\t is syntactic sugar for s∧¬t) while —with the products
and recursive function definitions of the Appendix— map is

µm(α→β)→[α]→[β] f =
λ[α]→[β]ℓ . ℓ∈nil ? nil : (f(π1ℓ),mf(π2ℓ))

(12)

where the type nil tested in the type case denotes the singleton
type that contains just the constant nil, and [α] denotes the regu-
lar type that is the (least) solution of X = (α,X) ∨ nil.

If we feed these two expressions to the type-checker (the rules
in Figure 1 suffice since no local type inference is needed to type
these two functions) it confirms that both are well typed and have
the types declared in their interfaces. To apply (the expression (12)
defining) map to (the expression (11) defining) even we need to in-
stantiate map, that is, to perform local type inference. The inference
system of Section 3 infers the following set of type-substitutions
[{(α\Int)/α, (α\Int)/β}, {α∨Int/α, (α\Int)∨Bool/β}] and textu-
ally inserts it between the two terms (so that the type susbstitutions
apply to the type variables of map) yielding a typing equivalent
to the one in (1). The expression with the inserted set of type-
substitutions is compiled into the intermediate language defined in
Section 5 of the companion paper and executed as efficiently as if
it were a monomorphic expression. Finally, in Section 4 we show
that if the programmer had omitted the type declaration for map —
ie, map :: (α -> β) -> [α] -> [β]—, then it is possible to reuse
the algorithms developed in Section 3 to reconstruct for map a type
slightly more precise than the one above.

Contributions: The overall contribution of this work is the defi-
nition of a statically-typed calculus with polymorphic higher-order
functions in a type system with recursive types and union, intersec-
tion, and negation type connectives and the definition of an effi-
cient evaluation model. The contributions of this second part are:
– the definition of an algorithm that for any pair of polymorphic

regular tree types t1 and t2 produces a sound and complete set
of solutions to the problem of deciding whether there exists a
substitution σ such that t1σ ≤ t2σ. This is obtained by using
the set-theoretic interpretation of types to reduce the problem to
a unification problem on regular tree types.

– the definition of a type-substitution inference system sound and
complete w.r.t. the type system of the explicitly-typed calculus.

– the definition an algorithm for local type inference for the cal-
culus. The algorithm yields a semi-decision procedure for the ty-
peability of a λ-calculus with intersection and recursive types and
with explicitly-typed λ-abstractions.

– the demonstration that the machinery developed for local type
inference can be reused to perform type reconstruction.

3. Inference of type-substitutions

Since we want the programmer to program in the implicitly-typed
calculus (3), then it is the task of the type-substitution inference sys-
tem to check whether it is possible to insert some type-substitutions
in appropriate places of the expression written by the programmer
so that the resulting expression is a well-typed explicitly-typed ex-
pression of grammar (7). To define the type-substitution inference
system we proceed in two steps.
1. The first step consists in defining a deduction system that

checks whether and where it is possible to insert sets of type-
substitutions into an implicitly-typed expression produced by the
grammar (3) to make it a well-typed explicitly-typed expression
of grammar (7). There will be a single exception: it will not try
to insert type-substitutions into decorations, since it assumes that
all λ-abstractions initially have empty decorations. There is no
technical problem to infer also type-substitutions in decorations.
Not doing so is just a design choice suggested by common sense
so as to match the programmer’s intuition: if we write an expres-
sion such as λα→αx.3 we want to infer that it is ill-typed; but if
we allowed the system to infer type-substitutions for decorations,
then the expression could be typed by inserting a decoration as in
λα→α
[{Int/α}]x.3.

The set of places where the insertion of sets of type-substitutions
must be tried is precisely given by the algorithm defined in
Figure 1 (they correspond to the places where a subtyping relation
is checked). This algorithm is used to define a deduction system
that infers the type of the “implicitly-typed” (ie, without explicit
type-substitutions) expressions: if a type is deduced for some
expression, then there exists an explicitly-typed version of the
expression that has that same type, and vice-versa.

2. The deduction system that will be given to solve the previous
step will be syntax directed but will not yield an algorithm,
yet, because it will use some operations that are not effective.
In particular, these operations will require to solve the problem
of whether there exist two sets of type-substitutions [σi]i∈I and
[σj ]j∈J such that s[σi]i∈I ≤ t[σj ]j∈J . If the cardinalities of I
and J are known, then this problem can be reduced to what we
dub the tallying problem: given two types s and t we say that s
tallies with t if there exists a type-substitution σ such as sσ ≤ tσ.
We show how to decide the tallying problem and devise a semi-
decision procedure for the more general problem with sets of
type-substitutions which essentially tries all possible cardinalities
of the two sets. We conjecture decidability also for this second
problem though we are not able to prove it, yet.
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(INF-ABSTR)

∆ ∪∆′ ;Γ, x : ti ⊢I a : s′i

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

(ti → si)

∆′ = var(∧i∈I ti→si)
s′i ⊑∆∪∆′ si, i∈I

(INF-CASE-BOTH)

∆ ;Γ ⊢I a : t′ ∆ ;Γ ⊢I a1 : s1 ∆ ;Γ ⊢I a2 : s2

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2

t′ 6⊑∆¬t
t′ 6⊑∆t

(INF-CASE-FST)

∆ ;Γ ⊢I a : t′ ∆ ;Γ ⊢I a1 : s1

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s1
t′⊑∆t

(INF-CASE-SND)

∆ ;Γ ⊢I a : t′ ∆ ;Γ ⊢I a2 : s2

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s2
t′⊑∆¬t

(INF-APPL)
∆ ;Γ ⊢I a1 : t ∆ ;Γ ⊢I a2 : s

∆ ;Γ ⊢I a1a2 : u
u∈(t •∆s)

Figure 2. Inference system for type-substitutions

Each of these steps is developed in one of the following subsections.

3.1 Type substitution assignment

In this section we define an inference system for the implicitly-
typed calculus of Definition 2.2. The system will be sound and
complete with respect to explicitly-typed one modulo the single re-
striction we already mentioned, namely, we will consider only ex-
pressions in the explicitly-typed calculus in which all decorations
are the singleton set that contains only the empty type-substitution.
Recall that the reason of this restriction is common sense rather
than technical. If the programmer specifies some interface for a
function it seems reasonable to think that she wants the system
to check whether the function conforms the interface rather than
knowing whether there exists a type substitution that makes it con-
forming. In other words, if the programmer specified the signature
map::(α->β)->γ, we expect the system to answer that the defini-
tion of map does not conform this signature, rather than it conforms
it by substituting [α]->[β] for γ (alternatively, we must omit the
signature altogether and let the system infer it: see Section 4).

We have to define a system that guesses where sets of type-
substitutions must be inserted so that an implicitly-typed expres-
sion is transformed into a well-typed explicitly-typed expression in
the system of Figure 1. The general role of type-substitutions is
to make the type of some expression satisfy some subtyping con-
straints. Examples of this are the type of the body of a function
which must match the result type declared in the interface, or the
type of the argument of a function which must be a subtype of
the domain of the function. Actually all the cases in which sub-
typing constraints must be satisfied are enumerated in Figure 1:
they coincide with the subtyping relation checks occurring in the
rules. Figure 1 is our Ariadne’s thread through the definition of
the type-substitution inference system: the rule (ALG-INST) must
be removed and wherever the type algorithm in Figure 1 checks
whether for some types s and t the relation s ≤ t holds, then the
type-substitution inference system must check whether there exists
a set of type-substitutions [σi]i∈I for the polymorphic variables (ie,
those not in ∆) that makes s[σi]i∈I ≤ t hold. The reader may won-
der why we apply the type-substitution only on the smaller type
and not on both types. The reason can be understood by looking at
the rules in Figure 1 and see that whenever a subtyping relation is
specified, the larger type cannot be instantiated: either because it is
a ground type (rules (ALG-CASE-*)) or because it is a type in an in-
terface and inferring a type-substitution for it would correspond to
inferring a type-substitution in a decoration (rule (ALG-ABSTR)).
The only exception to this is the rule (ALG-APPL) for application,
but for it we will introduce a specific operator.

The essence of the type-substitutions inference system is all
there. Things get slightly more complicated in the rule for appli-
cation since the algorithm must find two sets of substitutions (one
for the function and another for the argument) and the minimum
of a set (to compute the type operator “·”). In order to ease the
presentation it is handy to introduce a family of preorders ⊑∆ that
combine subtyping and instantiation:

Definition 3.1. Let s and t be two types, ∆ a set of type variables,
and [σi]i∈I a set of type-substitutions. We define:

[σi]i∈I  s ⊑∆ t
def

⇐⇒
∧

i∈I

sσi ≤ t and ∀i∈I. σi ♯ ∆

s ⊑∆ t
def

⇐⇒ ∃[σi]i∈I such that [σi]i∈I  s ⊑∆ t

Intuitively, it suffices to replace ≤ by ⊑∆ and 6≤ by 6⊑∆ in the al-
gorithmic rules of Figure 1 (where ∆ is the set of monomorphic
variables used in the premises) to obtain the corresponding rules
of type-substitution inference. This yields the system formed by the
rules in Figure 2 plus the rules for constants and variables (omitted:
they are the same as in Figure 1). Of particular interest is the rule
(INF-ABSTR) which has become simpler than in Figure 1 since it
works under the hypothesis that λ-abstractions have empty deco-
rations, and which uses the ∆∪∆′ set to compare the types of the
body with the result types specified in the interface (s′i ⊑∆∪∆′ si).
Notice that we do not require the sets of type-substitutions that
make s′i ⊑∆∪∆′ si satisfied to be the same for all i∈I: this is not
a problem since the case of different sets of type-substitutions cor-
responds to using their union as sets of type-substitutions (ie, to in-
tersecting them point-wise: see Definition A.9 and Corollary A.12
—hitherto, references starting with letters refer to appendixes).

It still remains the most delicate rule, (INF-APPL), the one for
application. It is difficult because not only it must find two distinct
sets of type-substitutions (one for the function type the other for the
argument type) but also because the set of type-substitutions for the
function type must enforce two distinct constraints: that the type is
smaller than 0→1, and that its domain is compatible with the type
of the argument. In order to solve all these constraints we collapse
them into a unique definition which is the algorithmic counterpart
of the set of types used in Section 2.1 to define the operation t · s
occurring in rule (ALG-APPL). Precisely we define t •∆ s as the
set of types for which there exist two sets of type-substitutions (for
variables not in ∆) that make s compatible with the domain of t:

t •∆s
def
=







u
[σj ]j∈J  t ⊑∆ 0→1
[σi]i∈I  s ⊑∆ dom(t[σj ]j∈J)
u = t[σj ]j∈J · s[σi]i∈I







In practice this set takes all the pairs of sets of type-substitutions
that make t a function type, and s an argument type compatible
with t and collects all the possible result types. This set is closed
by intersection (see Lemma A.8) which is an important property
since it ensures that if we find two distinct solutions to type an
application, then we can also use their intersection. Unfortunately,
this property is not enough to ensure that this set has a minimum
type (for that we also need to prove that the intersection of all the
types in the set can be expressed as a finite intersection) which
would imply the existence of a principal type (which is still an open
problem). For the application of a function of type t to an argument
of type s the inference system deduces every type in t •∆ s. This
yields the inference rule (INF-APPL) of Figure 2.

These type-substitution inference rules are sound and complete
with respect to the typing algorithm, modulo the restriction that
all the decorations in the λ-abstractions are empty. Both these
properties are stated in terms of the erase(.) function that maps
expressions of the explicitly-typed calculus into expressions of the
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implicitly-typed one by erasing in the former all occurrences of sets
of type-substitutions.

Theorem 3.2 (Soundness of inference). Let a be an implicitly-
typed expression. If ∆ ;Γ ⊢I a : t, then there exists an explicitly-
typed expression e such that erase(e) = a and ∆ ;Γ ⊢A e : t.

The proof of the soundness property is constructive: it builds along
the derivation for the implicitly-typed expressions a an explicitly-
typed expression e that satisfies the statement of the theorem; this
expression is the one that is then compiled in the intermediate lan-
guage of Part 1 and evaluated. Notice that ⊑∆ gauges the generality
of the solutions found by the inference system: the smaller the type
found, the more general the solution is. As a matter of facts, adding
to the system in Figure 2 a subsumption rule that uses the relation
⊑∆ that is:

(subsumption)

∆ ;Γ ⊢I a : t1 t1⊑∆t2

∆ ;Γ ⊢I a : t2

is sound. This means that the set of solutions is upward closed with
respect to ⊑∆ and that from smaller solutions it is possible (by such
a subsumption rule) to deduce the larger ones. In that respect, the
completeness theorem that follows states that the inference system
can always deduce for the erasure of an expression a solution that is
at least as good as the one deduced for that expression by the type
system for the explicitly-typed calculus.

Theorem 3.3 (Completeness of inference). Let e be an (explicitly-
typed) expression in which all decorations are empty. If ∆ ;Γ ⊢A

e : t, then there exists a type t′ such that ∆ ;Γ ⊢I erase(e) : t′

and t′ ⊑∆ t.

The inference system is syntax directed and describes an algo-
rithm that is parametric in the decision procedures for ⊑∆ and •∆ .
The problem of deciding these two relations is tackled next.

3.2 Type tallying

We define the tallying problem as follows

Definition 3.4 (Tallying problem). Let C be a constraint-set, that
is, a finite set of pairs of types (these pairs are called constraints),
and ∆ a finite set of type variables. A type-substitution σ is a
solution for the tallying problem of C and ∆ (noted σ ∆ C) if
σ♯∆ and for all (s, t) ∈ C, sσ ≤ tσ holds.

The definition of the tallying problem is the cornerstone of our
type-substitution inference system, since every problem we have to
solve to “implement” the rules of Figure 2 is reduced to different
instances of this problem.

With the exception of (INF-APPL), it is not difficult to show that
the “implementation” of the rules of the type-substitution inference
system ⊢I corresponds to finding and solving a particular tallying
problem. First, notice that for the remaining rules the problem we
have to solve is to prove (or disprove) the relation s ⊑∆ t for
given s and t. By definition this corresponds to find a set of n
type-substitutions [σi]i≤n such that

∧

i≤n sσi ≤ t. We can split
each type-substitution σi in two: a renaming type-substitution ρi
that maps each variable of s not in ∆ into a fresh type variable
and a type substitution σ′

i such that σi = σ′
i ◦ ρi. Thus the

inequation becomes
∧

i≤n(sρi)σ
′
i ≤ t. The domains of σ′

i are by
construction pairwise disjoints (they are formed of distinct fresh
variables) and disjoint from the variables in t; thus we can merge
them into a single substitution σ =

⋃

i≤n σ′
i and apply it to t

with no effect, yielding the disequation (
∧

i≤n sρi)σ ≤ tσ. Let
un =

∧

i≤n sρi, we have just transformed the problem of proving
the relation s ⊑∆ t into the problem of finding a n for which there

exists a solution to the tallying problem for {un ≤ t} and ∆. The
way to proceed to find n is explained in Section 3.2.3.

The (INF-APPL) rule deserves to be dealt apart since it needs
to solve more a difficult problem. A “solution” for the (INF-APPL)
rule problem is a pair of sets of type-substitutions [σi]i∈I , [σj ]j∈J

for variables not in ∆ such that both
∧

i∈I tσi ≤ 0→1 and
∧

j∈J sσj ≤ dom(
∧

i∈I tσi) hold. In this section we give an
algorithm that produces a set of solutions for the (INF-APPL) rule
problem that is sound (it finds only correct solutions) and complete
(any other solution can be derived from those returned by the
algorithm). To this end we proceed in three steps: (i) given a
tallying problem, we show how to effectively produce a finite set
of solutions that is sound (it contains only correct solutions) and
complete (every other solution of the problem is less general—in
the usual sense of unification, ie, it is larger wrt ⊑— than some
solution in the set); (ii) we show that if we fix the cardinalities of I
and J , then it is possible to reduce the (INF-APPL) rule problem to
a tallying problem; (iii) from this we deduce a sound and complete
algorithm to semi-decide the general (INF-APPL) rule problem and
thus the whole inference system.

We solve each problem in one of the next subsections, but be-
fore we recall an important property of semantic subtyping sys-
tems [4, 12] which states that every type is equivalent to (and can
be effectively transformed into) a type in disjunctive normal form,
that is, a union of uniform intersections of literals. A literal is either
an arrow, or a basic type, or a type variable, or a negation thereof.
An intersection is uniform if it is composed by literals with the
same constructor, that is, either it is an intersection of arrows, type
variables, and their negations or it is an intersection of basic types,
type variables, and their negations. In summary, a disjunctive nor-
mal form is a union of summands whose form is either

∧

p∈P

bp ∧
∧

n∈N

¬bn ∧
∧

q∈P ′

αq ∧
∧

r∈N′

¬αr (13)

or
∧

p∈P

(sp→tp) ∧
∧

n∈N

¬(sn→tn) ∧
∧

q∈P ′

αq ∧
∧

r∈N′

¬αr (14)

When either P ′ or N ′ is non empty, we call the variables αq’s and
αr’s the top-level variables of the normal form.

3.2.1 Solution of the tallying problem.

In order to solve the tallying problem for given ∆ and C, we
first fix some total order 4 —any will do— on the type variables
occurring in C and not in ∆ (from now on, when speaking of type
variables we will mean type variables not in ∆). Next, we produce
sets of constraint-sets in a particular form by proceeding in four
steps: first, we normalize the constraint-sets (so that at least one
of the two types of every constraint is a type variable); second,
we merge constraints that are on the same variables; third, we
solve all these constraint-sets producing solvable sets of equations
equivalent to the original problem and solve it; fourth, we combine
these three steps into an algorithm that produces a sound and
complete set of solutions of the tallying problem. To this end we
define two operations on sets of constraint-sets:

Definition 3.5. Let S1,S2 ⊆ P(T × T ) be two sets of
constraint-sets. We define

S1 ⊓ S2
def
= {C1 ∪ C2 | C1 ∈ S1, C2 ∈ S2}

S1 ⊔ S2
def
= S1 ∪ S2

By convention the empty set of constraint-sets is unsolvable (it
denotes failure in finding a solution), while the set containing the
empty set is always satisfied.

We also define an auxiliary function single that singles out a
given toplevel variable of a normal form. More precisely, given
a type t which is a summand of a normal form, that is, t =
∧

p∈P tp∧
∧

n∈N ¬tn∧
∧

q∈P ′ αq∧
∧

r∈N′ ¬αr and k ∈ P ′∪N ′

we define single(αk, t) the constraint equivalent to t ≤ 0 in which
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0. norm(t,M) =

1. if t ∈ M then return {∅} else

2. if t =
∧

p∈P tp ∧
∧

n∈N ¬tn ∧
∧

q∈P ′ αq ∧
∧

r∈N′ ¬αr and αk is the smallest variable (wrt 4) in P ′∪N ′then return{single(α, t)} else

3. if t =
∧

p∈P bp ∧
∧

n∈N ¬bn then ( if
∧

p∈P bp ≤
∨

n∈N ¬bn then return {∅} else return ∅) else

4. if t =
∧

p∈P (sp→tp) ∧
∧

n∈N ¬(sn→tn) then return

5.

⊔

n∈N

(

( l

P ′⊂P

(

norm(sn ∧
∧

p∈P ′

¬sp,M ∪ {t}
)

⊔ norm(
∧

p∈P\P ′

tp ∧ ¬tn,M ∪ {t})
)

)

⊓ norm(sn ∧
∧

p∈P ′

¬sp,M ∪ {t})

)

else

6. if t =
∨

i∈I ti then return
d

i∈I norm(ti,M) else let t′ be the disjunctive normal form of t in return norm(t′,M)

Figure 3. Constraint normalization

αk is “singled-out”, that is,
∧

p∈P tp ∧
∧

n∈N ¬tn ∧
∧

q∈P ′ αq ∧
∧

r∈(N′\{k}) ¬αr ≤ αk

when k ∈ N ′ and
αk ≤

∨

p∈P ¬tp ∨
∨

n∈N tn ∨
∨

q∈(P ′\{k}) ¬αq ∧
∧

r∈N′ αr

when k ∈ P ′. Henceforth, to enhance readability we will often
write s ≤ t for the constraint (s, t).

EXAMPLE. We will show the various phases of the process by
solving the tallying problem for the following constraint-set:
C = {(α → Bool, β → β) , (Int∨Bool → Int , α → β)}

and assume that α 4 β.

1. Constraint normalization. We define a function norm that
takes a type t and generates a set of normalized constraint-sets —
ie, constraint-sets formed by constraints whose form is either α≤s
or s≤α— whose set of solutions is sound and complete w.r.t. the
constraint t ≤ 0. This function is parametric in a memoization
set M and the algorithm to compute it is given in Figure 3. If the
input type t is not in normal form, then the algorithm is applied
to the disjunctive normal form t′ of t (end of line 6). Since a
union is empty if and only if every summand that composes it is
empty, then the algorithm generates a new constraint-set for the
problem that equates all the summands to 0 (beginning of line 6).
If a summand contains a top-level variable, then the smallest (wrt
4) top-level variable is singled out (line 2). If there is no top-level
variable and there are only basic types, then the algorithm checks
the constraint by calling the subtyping algorithm and, accordingly,
it returns either the unsatisfiable set of constraint-sets (∅) or the
one that is always satisfied ({∅}) (line 3). Finally, if there are only
intersections of arrows and their negations, then the problem is
decomposed into a set of subproblems by using the decomposition
rule of the subtyping algorithm for semantic subtyping (see [12]
for details), after having added t to the set of memoized types. The
regularity of types ensures that the algorithm always terminates.
Notice that, in line 2 the algorithm always singles out the smallest
variable. Therefore, by construction, if norm generates a constraint
(α, t) or (t, α), then every variable smaller than or equal to α may
occur in t only under an arrow (equivalently, every toplevel variable
of t is strictly larger than α).

REMARK 3.1. There is the special case of (α, t) or (t, α) in which
t is itself a variable. In that case we give priority to the smallest
variable and consider the larger variable be a bound for the lower
one but not vice-versa. This point will be important for the merge.

A constraint-set in which all constraints satisfy this property is said
to be well ordered (cf. Definition B.16).

EXAMPLE (Cont’d). The function norm works on single con-
straints (actually, on a type t representing the constraint t ≤ 0),
so let us apply it on the first constraint of the example. We want
to normalize the constraint α→Bool ≤ β→β, thus we apply
norm to the type (α→Bool) ∧ ¬(β→β). Now, this constraint
has two distinct solutions: either (i) β is the empty set, in which
case the larger type becomes 0→0 that is the type of all func-
tions (see Footnote 3) which contains every arrow type, in par-

ticular α→Bool, or (ii) the types satisfy the usual covariant-
contravariant rule for arrows, that is, β ≤ α and Bool ≤ β.
Since there are two distinct solutions, then norm generates a set
of two constraint-sets. Precisely norm((α→Bool)∧¬(β→β),∅)
returns { { (β, 0) } , { (β, α) , (Bool, β) } }. Both constraint-sets
are normalized and are computed by Line 5 in Figure 3: the first
constraint-set is computed by the last recursive call of norm (notice
that P ′=∅, so it requires sn, that is β, to be empty), while the sec-
ond constraint-set is obtained by the union of the first two recursive
calls (which require sn ≤ sp and tp ≤ tn).

2. Constraint merging. Take a normalized constraint-set. Each
constraint of this set isolates one particular variable. However, the
same variable can be isolated by several distinct constraints in the
set. We next want to transform this constraint-set into an equivalent
one (ie, a constraint-set with exactly the same set of solutions) in
which every variable is isolated in at most two constraints, one with
the variable on the left of the constraint and one with it on the right.
In other words, we want to obtain a normalized constraint-set in
which each variable has at most one upper bound and at most one
lower bound. In practice, this set represents a set of constraints of
the form { si≤αi≤ti | i ∈ I } where the αi’s are pairwise distinct.
This is done by the function merge(C,M) where C is a normalized
constraint-set and M a memoization set containing types.
merge(C,M) =

1. Rewrite C by applying as long as possible the following rules accord-
ing to the order 4 on the variables (smallest first) :
– if (α, t1) and (α, t2) are in C, then replace them by (α, t1 ∧ t2);
– if (s1, α) and (s2, α) are in C, then replace them by (s1∨s2, α);

2. if there exist two constraints (s, α) and (α, t) in C s.t. s∧¬t 6∈ M ,
then let S = {C} ⊓ norm(s∧¬t,∅)

in return
⊔

C′∈S
merge(C′,M∪{s∧¬t})

else return {C}

The function above is a little more complicated than what we de-
scribed, since it returns a set of normalized constraint sets. The
reason of this is the use of norm in the second step of the func-
tion. But let us proceed in order. The function merge performs two
steps. In the first step it scans (using 4 so as to give priority to
smaller variables, cf. Remark 3.1) the variables isolated by the nor-
malized constraint-set C and for each such variable it merges all the
constraints by unioning all its lower bounds and intersecting all its
upper bounds. For instance, if C contains the following five con-
straints for α: (s1, α), (s2, α), (α, t1), (α, t2), (α, t3), then the
first step replaces them by (s1∨s2, α) and (α, t1∧t2∧t3), which
corresponds to having the constraint s1∨s2 ≤ α ≤ t1∧t2∧t3.
Such a constraint is satisfiable only if the constraint that the lower
bound of α is smaller than its upper bound is satisfiable. This is
checked in the second step, which looks for pairs of constraints of
the form (s, α) and (α, t) (thanks to the first step we know that
for each variable there is at most one such pair) and then adds the
constraint (s, t) to C. This constraint is equivalent to (s∧¬t, 0)
but neither it or (s, t) is normalized. Thus before adding it to C
we normalize it by calling norm(s∧¬t,∅). Recall that norm re-
turns a set of constraint-sets, each constraint-set corresponding to a
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distinct solution. So we add the constraints that are in C to all the
constraint-sets that are the result of norm(s∧¬t,∅) via the ⊓ op-
erator (this is why merge returns a set of constraint-sets rather than
a single one). The constraint-sets so obtained are normalized but
they may be not merged, yet. So we recursively apply merge to all
of them (via the operator ⊔) and memoize s∧¬t in M . Of course,
this step 2 is done only if the constraint (s, t) was not already em-
bedded in C before, that is, only if s∧¬t is not already in M . Note
that merge preserves the property that in every constraint (α, t) or
(t, α), every variable smaller than or equal to α may occur in t only
under an arrow.

EXAMPLE (Cont’d). If we apply norm also to the second con-
straint of our example we obtain a second set of constraint-sets:
{ { (α, 0) } , { (α, Int∨Bool) , (Int, β) } }. To obtain a sound
a complete set of solutions for our initial C we have to consider
all the possible combinations (see Step 1 of the constraint solving
algorithm later on) of the two sets obtained by normalizing C, that
is a set of four constraint-sets:

{ { (α, 0), (β, 0) } ,
{ (α, Int∨Bool) , (Int, β) , (β, 0) } ,
{ (Bool, β) , (β, α) , (α, 0) } ,
{ (Bool, β) , (Int, β) , (β, α) , (α, Int∨Bool) } }

The application of merge to the first set leaves it unchanged. Merge
on the second one returns an empty set of constraint-sets since at
the second steps it tries to solve Int ≤ 0. The same happens for the
third since it first adds β ≤ 0 and at the recursive call tries to solve
Bool ≤ 0. The fourth one is more interesting: in step 1 it replaces
(Bool, β) and (Int, β) by (Int∨Bool, β) and at the second step
adds (β, Int∨Bool) obtained from (β, α) and (α, Int∨Bool) (it
also checks (Int∨Bool, Int∨Bool) which is always satisfied). So
after merge we have { {(α,0) , (β,0)} , { (β, α) , (α, Int∨Bool) ,
(Int∨Bool, β) , (β, Int∨Bool) } }. Notice that we did not merge
(β, α) and (β, Int∨Bool) into (β, α∧(Int∨Bool): since α 4 β,
then α is not considered an upper bound of β (see Remark 3.1) and
thanks to that the resulting constraint-set is well ordered.

3. Constraint solving. norm and merge yield a set in which every
constraint-set is of the form C = {si≤αi≤ti | i ∈ I} where αi

are pairwise distinct variables and si and ti are respectively 0 or 1
whenever the corresponding constraint is absent. If there is a con-
straint on two variables, then again priority is given to the smaller
variable. For instance, if α 4 β, then {(α, β)} will be considered
to represent {(0≤α≤β), (0≤β≤1)}. Thanks to this assumption
the system so obtained is well ordered, that is, for every constraint
s≤α≤t in it, the top-level variables of s and t are strictly larger
than α. Notice that in doing that we do not lose any information:
the bounds for larger variables are still recorded in those of smaller
one and any bound for larger variables obtained by transitivity on
the smaller variable is already in the system by step 2 of merge. The
last step is to solve this constraint-set, that is to transform it into a
solvable set of equations that then we solve by a Unify algorithm
that exploits the particular form of the equations obtained from a
well-ordered constraint-set. Let C be a well-ordered constraint-set
of the above form, we define solve(C) as follows:

solve(C) = {α = (s ∨ β) ∧ t | (s ≤ α ≤ t) ∈ C, β fresh}

The function solve(C) takes every constraint s ≤ α ≤ t in C and
replaces it by α = (s ∨ β) ∧ t (with β fresh). It is clear that the
constraint-set C has a solution for every possible assignment of
α included between s and t if and only if the new constraint-set
has a solution for every possible (unconstrained) assignment of β.
At the end the constraint-set {si≤αi≤ti | i ∈ I} has become a
set of equations of the form {αi = ui | i ∈ I} where the αi’s
are pairwise distinct. By construction, this set of equations has the
property that every variable that is smaller than or equal to (wrt

4) αi may occur in ui only under an arrow (as for constraint-sets
we say that the set of equations is well ordered). This last property
ensures the contractivity of the equation defining the smallest type
variable. By Courcelle [8] (and Lemma B.44) there exists a solution
of this set, namely, a substitution from the type variables α1, ..., αn

into (possibly recursive regular) types t1, ..., tn whose variables
are contained in the fresh βi’s variables introduced by solve (all
universally quantified, ie, no upper or lower bound) and the type
variables in ∆. This solution is given by the following Unify proce-
dure in which we use µ-notation to denote regular types and where
E is a well-ordered set of equations.

Unify(E)=
if E = ∅ then return {} else

– select in E the equation α = tα for the smallest α (wrt 4)
– let E′ be the set of equations obtained by replacing in E\{α = tα}

every occurrence of α by µX.(tα{X/α}) (X fresh)

– let σ = Unify(E′) in return {α = (µX.tα{X/α})σ} ∪ σ

Thanks to the well-ordering of E, Unify generates a set of solu-
tions in which all types satisfy the contractivity condition on infi-
nite branches of Definition 2.1. It solves the (contractive) recursive
equation of the smallest variable α defined by E (if α does not
occur in tα, then the µ-abstraction can be omitted), replaces this
solution in the remaining equations, solves this set of equations,
and applies the solution so found to the solution of α so as to solve
the other variables occurring in its definition.

4. The complete algorithm. The algorithm to solve the tallying
problem for C and variables not in ∆, then, proceeds in three steps:

Step 1. Let N =
d

(s,t)∈C norm(s∧¬t,∅). If N = ∅ then fail

else proceed to the next step.

Step 2. Let M =
⊔

C∈N
merge(C,∅). If M = ∅ then fail else

proceed to the next step.

Step 3. Let S =
⊔

C∈M
solve(C). Return {Unify(E) | E∈S }.

Let Sol∆(C) denote the set of all substitutions obtained by
the previous algorithm. They form a sound and complete set of
solutions for the tallying problem:

Theorem 3.6 (Soundness and completeness).

σ ∈ Sol∆(C) ⇒ σ ∆ C

σ ∆ C ⇒ ∃σ′ ∈ Sol∆(C), σ′′, s.t. σ ≈ σ′′ ◦ σ′

where ≈ means that the two substitutions map the same variable
into equivalent types. Regularity of types ensures the termination
of the algorithm and, hence, the decidability of the tallying prob-
lem (the proof of these properties combines proofs of soundness,
completeness, and termination of each step: see Appendix B).

EXAMPLE (End). After Step 1 and 2 our initial tallying problem
{(α→Bool, β→β) , (Int∨Bool → Int , α→β)} has become
{ {(α,0) , (β,0)} , { (β, α) , (α, Int∨Bool) , (Int∨Bool, β) ,
(β, Int∨Bool) } }. Let us apply Step 3. The first constraint-set is
trivial and it is easy to see that it yields the solution {0/α, 0/β}. The

second constraint-set is { (β≤α≤Int∨Bool) , (Int∨Bool≤β ≤
Int∨Bool) }. We apply solve to the constraints for α obtaining
{α = (γ∨β)∧(Int∨Bool)}. We find the solution for β (no need
to substitute α since it does not occur in the constraints for β)
which is {β = Int∨Bool}. We replace β in the solution of α
obtaining {α = (γ∨Int∨Bool)∧(Int∨Bool)}. The solution for
this second constraint-set is then {Int∨Bool/α, Int∨Bool/β}, which

with {0/α, 0/β} forms a sound and complete set of solutions for our
initial tallying problem.

Finally, solve introduces several fresh polymorphic variables which
can be cleaned up when substitutions are applied: all variables
that occur only in covariant (resp. contravariant) position, can be
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replaced by 0 (resp. 1). This is what we implicitly did in our
example to solve β and eliminate γ from the constraint of α.

3.2.2 Solution for application with fixed cardinalities

It remains to solve the problem for the (INF-APPL) rule. We
recall that given two types s and t, a solution for this problem is a
pair of sets of type-substitutions (for variables not in ∆) that make
both these two inequations

∧

i∈I

tσi ≤ 0→1
∧

j∈J

sσj ≤ dom(
∧

i∈I

tσi) (15)

hold. Two complicacies are to be dealt with: (1) we must find sets
of type substitutions, rather than a single substitution as in the tal-
lying problem and (2) we have to get rid of the dom() function. If
I and J have fixed cardinalities, then both difficulties can be easily
surmounted and the whole problem be reduced to a tallying prob-
lem. To see how, consider the two inequations in (15). Since the two
sets of substitutions are independent, then without loss of generality
we can split each substitution σk (for k∈I∪J) in two substitutions:
a renaming substitution ρk that maps each variable in the domain
of σk into a different fresh variable, and a second substitution σ′

k

defined such that σk = σ′
k ◦ ρk. The two inequations thus become

∧

i∈I(tρi)σ
′
i ≤ 0→1 and

∧

j∈J(sρj)σ
′
j ≤ dom(

∧

i∈I(tρi)σ
′
i)

Since the various σ′
k have disjoint domains, then we can union

them into a single substitution σ =
⋃

k∈I∪J σ′
k, and the two

inequations become (
∧

i∈I tρi)σ ≤ 0→1 and (
∧

j∈J sρj)σ ≤
dom((

∧

i∈I tρi)σ). Now if we fix the cardinalities of I and J since
the ρk are generic renamings, we have just transformed the problem
in (15) into the problem of finding for two given types t1 and t2 all
substitutions σ such that6

t1σ ≤ 0→1 t2σ ≤ dom(t1σ) (16)

hold. Finally, we can prove (see Lemmas B.49 and B.50) that a
type-substitution σ solves (16) if and only if it solves

t1σ ≤ 0→1 t1σ ≤ (t2→γ)σ (17)

with γ fresh. We transformed the application problem (with fixed
cardinalities) into the tallying problem for {(t1, 0→1), (t1, t2→γ)},
whose set of solutions is a sound and complete set of solutions for
the (INF-APPL) rule problem when I and J have fixed cardinalities.

3.2.3 Solution of the application problem

The algorithm to solve the general problem for the (INF-APPL)
rule explores all the possible combinations of the cardinalities of I
and J by, say, a dove-tail order. More precisely we start with both
I and J at cardinality 1 and:

Step A: Generate the constraint-set {(t1, t2→γ)} as explained
in Subsection 3.2.2 (the constraint t1≤0→1 is implied by this
one since 0→1 contains every arrow type) and apply the tallying
algorithm described in Subsection 3.2.1, yielding either a solution
(a substitution for variables not in ∆) or a failure.

Step B: If all the constraint-sets failed at Step 1 of the algorithm
of Subsection 3.2.1, then fail (the expression is not typeable). If
they all failed but at least one did not fail in Step 1, then increase
the cardinalities of I and J to their successor in the dove-tail order
and start from Step A again. Otherwise all substitutions found by
the algorithm are solutions of the application problem.

Notice that the algorithm returns a failure only if all the constraint-
sets fail at Step 1 of the algorithm for the tallying problem. The
reason is that up to Step 1 all the constraints at issue are on distinct
occurrences of type variables: if they fail there is no possible
expansion that can make the constraint-set satisfiable. In Step 2
instead constraints of different occurrences of a same variable are
merged. Thus even if the constraints fail, it may be the case that

6 Precisely, we have t1 =
∧

i=1..|I| t
1
i and t2 =

∧

i=1..|J| t
2
i where for

h = 1, 2 each thi is obtained from th by renaming the variables not in ∆
into fresh variables.

they will be satisfied by expanding different occurrences of a same
variable into different variables. Therefore an expansion is tried.
Solving the problem for s ⊑∆ t is similar (there is just one set
whose cardinality has to be increased at each step instead of two).

This constitutes a sound and complete semi-decision procedure
for the application problem and, thus, for the type-substitution in-
ference system (Theorem B.54). We defined some heuristics (omit-
ted for space reasons: see Section B.2.3) to stop the algorithm
when a solution seems unlikely. Whether these (or some coarser)
halting conditions preserve completeness, that is, whether type-
substitutions inference is decidable, is an open problem. We believe
the system to be decidable. However, we fail to prove it when the
type of the argument of an application is a union: its expansion dis-
tributes the union over the intersections thus generating new combi-
nations of types. It comes as no surprise that the definitions of our
heuristics are based on the cardinalities and depths of the unions
occurring in the argument type.

Let us apply the algorithm to map even. We start with the
constraint set {(α1→β1)→[α1]→[β1] ≤ t→γ} where t =
(Int→Bool)∧(α\Int→α\Int) is the type of even (we just
renamed the variables of the type of map). After Step A the al-
gorithm generates a set of nine constraint-sets: one is unsatisfi-
able since it contains the constraint t ≤ 0 (an intersection of
arrows is never empty since it always contains 1→0 the type
of the diverging functions); four of these are less general than
some other (their solutions are included in the solutions of the
other) and the remaining four are obtained by adding the constraint
γ ≤ [α1]→[β1] respectively to {α1≤0}, {α1≤Int, Bool≤β1},
{α1≤α\Int, α\Int≤β1}, {α1≤α∨Int, (α\Int)∨Bool≤β1},
yielding the following four solutions for γ: {γ=[]→[]}, or
{γ = [Int]→[Bool]}, or {γ = [α\Int]→[α\Int]}, or
{γ = [α∨Int]→[(α\Int)∨Bool]}. Of these solutions only
the last two are minimal. Since both are valid we could stop here
and take their intersection, yielding the type expected in the intro-
duction. If instead we dully follow the algorithm, then we have to
perform a further iteration, expand the type of the function, yielding
{((α1→β1)→[α1]→[β1])∧((α2→β2)→[α2]→[β2])≤ t→γ}
for which the minimal solution is, as expected:
{γ = ([α\Int]→[α\Int]) ∧ ([α∨Int]→[(α\Int)∨Bool])}

A final word on completeness which states that for every solu-
tion of the inference problem, our algorithm finds a solution that is
more general. However this solution is not necessary the first one
found by the algorithm: even if we find a solution, continuing with
a further expansion may yield a more general solution. We have just
seen that in the case of map even the good solution is the second
one, although this solution could already have been deduced by in-
tersecting the first minimal solutions we found. A simple example
that shows that carrying on after a first solution may yield a better
solution is the application of a function of type (α×β) → (β×α)
to an argument of type (Int×Bool) ∨ (Bool×Int). For this ap-
plications our algorithm (extended with product types) returns after
one iteration the type (Int∨Bool)× (Int∨Bool) (since it unifies
α with β) while one further iteration allows the system to deduce
the more precise type (Int×Bool) ∨ (Bool×Int). Of course this
raises the problem of the existence of principal types: may an in-
finite sequence of increasingly general solutions exist? This is a
problem we did not tackle in this work, but if the answer to the
previous question were negative, then it would be easy to prove the
existence of a principal type: since at each iteration there are only
finitely many solutions, then the principal type would be the inter-
section of the minimal solutions of the last iteration.

Finally, notice that we did not give any reduction semantics for
the implicitly-typed calculus. The reason is that its semantics is
defined in terms of the semantics of the explicitly-typed calculus:
the relabeling at run-time is an essential feature —independently
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from the fact that we started from an explicitly-typed expression or
not— and we cannot avoid it. If we denote by erase−1(a) the set
of expressions e that satisfy the statement of Theorem 3.2, then the
(big-step) semantics for an implicitly-typed expression a is given
in terms of erase−1(a): if an expression in erase−1(a) reduces
to v, so does a. As we see the result of computing an implicitly-
typed expression is a value of the explicitly-typed calculus (so
λ-abstractions may contain non-empty decorations) and this is un-
avoidable since it may be the result of a partial application (this
can be made transparent by returning just the type and the “value”
<fun> as in OCaml’s toplevel). Also notice that the semantics is not
deterministic since different expressions in erase−1(a) may yield
different results. However this may happen only in one particular
case, namely, when an occurrence of a polymorphic function flows
into a type-case and its type is tested. For instance the application
(λ(Int→Int)→Boolf.f∈Bool→Bool ? true : false)(λα→αx.x)
results into true or false according to whether the polymor-
phic identity at the argument is instantiated by [{Int/α}] or by
[{Int/α}, {Bool/α}]. Once more this is unavoidable in a calculus
that can dynamically test the types of polymorphic functions that
admit several sound instantiations. This does not happen in practice
since the inference algorithm always choose one particular instan-
tiation (the existence of principal types would made this choice
canonical and remove non determinism). So in practice the seman-
tics is deterministic but implementation dependent.

In summary, programming in the implicitly-typed calculus cor-
responds to programming in the explicitly-typed one with the dif-
ference that we delegate to the system the task to write type-
substitutions for us and with the caveat that by doing that we make
the test of the type of a polymorphic function to be implementation
dependent.

3.3 Examples

We implemented a prototype for the constraint solver which in-
cludes a basic simplification algorithm (it also performs type in-
ference for implicitly-typed expressions). We use it to illustrate the
behavior of our type-substitution inference on typical function in-
terfaces.

1 map : (α → β) → [α] → [β]
2 pretty : Int → String
3 apply(map, pretty) >> ([] → []) ∧ ([Int] → [String])
4

5 even : (Int → Bool) ∧ (α\Int → α\Int)
6 apply(map, even) >> ([] → []) ∧
7 ([Int] → [Bool]) ∧
8 ([α\Int] → [α\Int]) ∧
9 ([Int∨α] → [(Bool∨α)\Int])

10

11 f : (Int → Int) → Int → Int
12 id : α → α
13 apply(f, id) >> Int → Int
14

15 g : ((Int → Int) → Int → Int) ∧
16 ((Bool → Bool) → Bool → Bool)
17 apply(g, id) >> (Int → Int) ∧ (Bool → Bool)
18

19 fold : (α → β → β) → [α] → β → β
20 h : (Int → Int → Int) ∧ (Bool → Int → Int)
21 apply(fold, h) >> ([Int∨Bool] → Int → Int) ∧
22 ([Int∨Bool] → Empty → Empty) ∧
23 ([] → β → β)

The first example is the typical map function (our implemen-
tation also features product types, and [α] stands for the type
µX.nil ∨ (α,X)). If we try to apply map to a pretty function
(which converts integers into strings), we obtain an intersection
type ([]→[])∧([Int]→[String]). While the latter part of the

Γ ⊢R c : bc  {∅}
(R-CONST)

Γ ⊢R x : Γ(x) {∅}
(R-VAR)

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R m1m2 : α S1 ⊓ S2 ⊓ {{(t1 ≤ t2 → α)}}
(R-APPL)

Γ, x : α ⊢R m : t S

Γ ⊢R λx.m : α → β  S ⊓ {{(t ≤ β)}}
(R-ABSTR)

(R-CASE) S = (S0 ⊓ {{(t0 ≤ 0)}})
⊔ (S0 ⊓ S1 ⊓ {{(t0 ≤ t), (t1 ≤ α)}})
⊔ (S0 ⊓ S2 ⊓ {{(t0 ≤ ¬t), (t2 ≤ α)}})
⊔ (S0 ⊓ S1 ⊓ S2 ⊓ {{(t1 ∨ t2 ≤ α)}})

Γ ⊢R m0 : t0 S0 Γ ⊢R m1 : t1 S1 Γ ⊢R m2 : t2 S2

Γ ⊢R (m0∈t ?m1 :m2) : α S

where α, αi and β in each rule are fresh type variables.

Figure 4. Type reconstruction rules

type is the one an ML programmer would expect, our inference
algorithm also deduces the special case []→[]. Interestingly, the
constraint solver does not need to know the body of map to deduce
that its output is empty when its input is; this is due to the particular
encoding we used for lists: since lists are encoded as union types
our system try to infer a result for every type in the union. The
second example, the application of map to even, was described in
details in the previous section (notice that, because of the naivety
of the simplification algorithm, the first two types of the intersec-
tion returned by the prototype are redundant). We also see (Lines
11 to 17) that passing a polymorphic argument to a function with
a monomorphic type (the other use of polymorphism) works as
expected. Function f shows that when both types are expressible
as ML types, our constraint solver behaves at least as well as ML
type inference, and likewise for each separate piece of code of an
overloaded function. Finally, in the last example (Lines 19 to 23)
we apply the function fold to an overloaded function. The system
returns quite a precise type for this application. Not only it returns
the expected type [Int∨Bool]→Int→Int (notice that the type
of h is equivalent to Int∨Bool→Int→Int) but it also states that
(Line 22) if the initial value for the accumulator is a diverging ex-
pression (only diverging expressions have the empty type 0), then
the whole application diverges and that (Line 23) if use as first ar-
gument the empty list, then the initial value of the accumulator is
returned unchanged, whatever its type is.

4. Type reconstruction

Finally, the theory of type tallying we developed in Section 3 can
be reused to perform type reconstruction, that is, to assign a type to
functions whose interface is not specified —quite a desirable fea-
ture, especially for local functions—. The idea is to type the body
of a function under the hypothesis that the function has the generic
type α→β and deduce the corresponding constraints. Formally, we
consider expressions produced by the following grammar:

m ::= c | x | mm | λx.m | m∈t ?m :m

together with the judgment Γ ⊢R m : t S that states that under
the typing environment Γ, m has type t under the constraints in S

(provided that S is satisfiable). These judgments are derived by
the rules in Figure 4. These are quite standard apart from the fact
that they derive multiple constraint-sets, rather than just one. This
is due to the type reconstruction rule for type-cases, which explores
four possible alternatives (m0 diverges, it can match only the first,
the second, or both cases). In this system the type of a well-typed
expression is a type and a set of type-substitutions (ie, the set of
all substitutions that are solution of the satisfiable constraint-sets in
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S ), thus, it is an intersection type obtained by applying this set of
type-substitutions to the type.

The soundness of this system is a consequence of the results on
the type-substitution inference of the previous sections. As a matter
of facts, this system is precisely the same system as the one in the
previous sections with the only difference that all interfaces are of
the form α→β and, to compensate that, we infer type-substitutions
in decorations (we also used a different and more standard presen-
tation to stress constraint generation). Of course, neither complete-
ness nor termination hold: far from that. For instance, it is impossi-
ble, in general, to deduce for a function without type annotations the
type 1→0 —the type of all diverging functions— since this would
correspond to decide the halting problem (though our algorithm re-
turns for µf x=f(x) the same type as in ML, that is, α→β which
in our system is equivalent to 0→1). Likewise, decidability of re-
construction would imply decidability for intersection type systems,
which are undecidable. Similarly, our reconstruction system cannot
type the paradoxical functions we pointed out in the first part of
this work (see Section 2 in [3]). However, if a function can be typed
in ML-like type systems, then our type reconstruction rules can de-
duce a type at least as good as the ML one. Indeed, if we restrict our
attention to the first four rules, the system produces a singleton set
of constraints that is the same as in ML system (cf. [19]) and when
constraint-sets are not circular (ie, their solution does not require re-
cursive types), then our constraint solving algorithm coincides with
unification (all fresh variables introduced by solve are simplified as
we described at the end of Section 3.2.1 and solve directly produces
a set of a equations that are, in Martelli and Montanari’s terminol-
ogy [17], in solved form). Furthermore, since the types considered
here are much richer than in ML (since they include unions, inter-
sections, and negations), then our reconstruction may infer slightly
better types. Type connectives alone bring, in particular, two advan-
tages for type reconstruction: (i) the system deduces sets of type-
substitutions (and thus deduces intersection types) and (ii) pattern
matching (which can be seen as a type-case with singleton types)
is typed more precisely (thanks in particular to intersections and
negations). For instance, and contrary to ML, our type reconstruc-
tion types auto-application λx.xx for which it returns the recursive
type t = µX.(α∧(X→β)) → β. This type is a subtype of —thus,
it is more precise than— the classic typing of autoapplication in in-
tersection type systems t ≤ (α∧(α→β)) → β (though it is not as
precise as its subtype µX.(α∨(X→β)) → β which can also type
autoapplication). As final example, if we apply our type reconstruc-
tion algorithm (extended with products and recursive functions) to
the type erasure of the map function defined in equation (12), then
we obtain the type ((α→β) → [α]→[β])∧((0→1) → []→[])
(see the complete unfolding of the algorithm in Appendix C).
Thanks to the precise typing of the type-case, our type is slightly
more accurate than the ML type, since it states that the application
of map to any function and the empty list returns the empty list.

Finally, the “type” returned by the type reconstruction algorithm
is not always very readable and often needs to be simplified. For in-
stance, the type we showed for map was obtained after some simpli-
fications, few of which were done by hand (they simplified the type
returned by the algorithm which is an intersection of eight arrow
types) and defining an algorithm that does the right simplifications
is not obvious (eg, how to detect that the type (α∧(α→β))→β
is much more readable than the type µX.(α∧(X→β))→β recon-
structed for auto-application by our algorithm?). The simplification
of types (or of type constraints) is a stand alone research topic that
deserves further investigation. Nevertheless our reconstruction al-
gorithm can already be used as is, to make type declaration of local
functions optional. Indeed for local functions the system is not re-
quired to return a “readable” type to the programmer, but just to

check whether there exists a typing for local functions that is com-
patible with their usage; and, for that, our system is enough.

5. Extensions

In this presentation we omitted two key features: pairs and recursive
functions. Recursive functions do not pose any particular problem
in the inference of type-substitutions while pairs are more chal-
lenging. The rule for pairs in inference system ⊢I is the same as
in the explicitly-typed calculus (this corresponds to disregarding
sets of type-substitutions applied inside a pair, as they can equiv-
alently be inferred outside the pair: ti 6≃ 0 and (t1×t2) ⊑∆

(s1×s2) ⇔ ti ⊑∆ si). Instead, as expected, the rule for projec-
tion πie needs some special care since if the type inferred for e
is, say, t, then we need to find a set of substitutions [σi]i∈I such
that

∧

i∈I tσi ≤ 1×1. This problem can be solved by using the
very same technique we introduced for •∆, namely by solving a se-
quence of tallying problems generated by increasing at each step
the cardinality of I . All the details can be found in the Appendix.

In the first part of this work we studied the extension of the
explicitly-typed calculus with let-polymorphism, in particular, its
typing and efficient execution (see Section 5.4 of [ANONYMIZED]).
There we distinguished let-bound variables by underlining them.
To extend our reconstruction to let we use a separate type envi-
ronment Φ for these variables (while we reserve Γ for λ-abstracted
variables). As in Damas-Milner W algorithm [9] we need to de-
fine Γ(t), the generalization (closure in [9]) of a type t wrt the type

environment Γ, that is, Γ(t)
def
= t[{γi/αi | αi ∈ var(t)\var(Γ)}]

where γi are fresh. Then the rules for type reconstruction are

(let-var)
Φ ;Γ ⊢R x : Γ(Φ(x)) {∅}

(let)
Φ ;Γ ⊢R e1 : t1  S Φ, (x : t1) ;Γ ⊢R e2 : t2  S

′

Φ ;Γ ⊢R let x = e1 in e2 : t2  S ⊓ S
′

Finally, we want to stress there is at least one case in which
we should have been more restrictive, that is, when an expression
that is tested in a type-case has a polymorphic type. Our inference
system may type it (by deducing a set of type-substitutions that
makes it closed), even if this seems to go against the intuition: we
are testing whether a polymorphic expression has a closed type.
Although completeness ensures that in some cases it can be done,
in practice it seems reasonable to consider ill-typed any type-case
in which the tested expression has an open type (see Section A.3).

6. Related work

This section discusses the work on constraint-based type inference
and inference for intersection type systems. Work on explicitly-
typed intersection type systems and on XML processing languages
is discussed in the first part.

Type inference in ML has essentially been considered as a
constraint solving problem [18, 19]. We use a similar approach to
solve the problem of type unification: finding a proper substitution
that makes the type of the domain of a function compatible with
the type of the argument it is applied to. Our type unification
problem is essentially a specific set constraint problem [1]. This is
applied in a much more complex setting with a complete set of type
connectives and a rich set-theoretic subtyping relation. In particular
because of the presence of intersection types to solve the problem
of application one has to find sets of substitutions rather than just
one substitution. This is reflected by the definition of our ⊑ relation
which is much more thorough than the corresponding relation used
in ML inference insofar as it encompasses instantiation, expansion,
and subtyping. The important novelty of our work comes from
the use of set-theoretic connectives, which allows us to turn sets
of constraints of the form s≤α≤t, into sets of equations of the
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form α = (β ∨ s) ∧ t. This set of equations is then solved
using the Courcelle’s work on infinite trees [8]. The use of type
connectives also implies that we solve multiple sets of constraints,
which account for different alternatives. Finally, it is worth noticing
that [18, 19] use a richer language of constraints that includes
binding. This allows separating constraint generation and constraint
solving without compromising efficiency. Therefore an interesting
direction of future research is either to re-frame our work into a
richer language of constraints or to extend the work in [18, 19] to
encompass our richer setting. This could be a first step towards the
study of efficient constraint solving algorithms for our system.

Finally we want to stress that works on type reconstruction for
intersection type systems are weakly related to our study. The rea-
son is that the core of our technique consists in solving type (dis-
)equations by recursive types. With recursive types pure interesec-
tion type systems are trivially decidable since all terms can be typed
by the type µX.X→X . The problem we tackle here, thus, is funda-
mentally different, namely, we check whether it is safe to apply to
each other expressions of two explicitly given (and possibly recur-
sive) types in which some basic types may occur. There are however
few similarities with some techniques developped for pure intersec-
tion type system that we discuss below.

Coppo and Giannini [7] presented a decidable type checking al-
gorithm for simple intersection type system where intersection is
used in the left-hand side of an arrow and only a term variable is
allowed to have different types in its different occurrences. They
introduced labeled intersections and labeled intersection schemes,
which are intended to represent potential intersections. During an
application M N , the labeled intersection schemes of M and N
would be unified to make them match successfully, yielding a trans-
formation, a combination of substitutions and expansions. An ex-
pansion expands a labeled intersection into an explicit intersection.
The intersection here acts like a variable binding similar to a quanti-
fier in logic. Our rule (ALG-INST) is similar to the transformation.
We instantiate a quantified type into several instances according
to different situations (ie, the argument types), and then combine
them as an intersection type. The difference is that we instantiate
a parametric polymorphic function into a function with intersec-
tion types, while Coppo and Giannini transform a potential inter-
section into an explicit intersection. Besides, as the general inter-
section type system is not decidable [5], to get a decidable type
checking algorithm, Coppo and Giannini used the intersection in a
limited way, while we give some explicit type annotations for func-
tions. Likewise, Jim [14] proposed a type inference algorithm for
a polar type system where intersection is allowed only in negative
positions and System F-like quantification only in positive ones.

Restricting intersection types to finite ranks (using Leivant’s no-
tion of rank [16]) also yields decidable systems. Van Bakel [20]
gave the first unification-based inference algorithm for a rank 2 in-
tersection type system. Jim [13] studied a decidable rank 2 intersec-
tion type system extended with recursion and parametric polymor-
phism. Kfoury and Wells proved decidability of type inference for
intersection type systems of arbitrary finite rank [15]. As a future
work, we want to investigate decidability of rank-restricted versions
of our calculus.

7. Conclusion

The work presented in this and in its companion paper [3] pro-
vides the theoretical basis and all the algorithmic tools needed to
design and implement polymorphic functional languages for semi-
structured data and, more generally, for functional languages with
recursive types and set-theoretic unions, intersections, and nega-
tions. In particular, our results pave the way to the polymorphic
extension of CDuce [2] and to the definition of a real type sys-
tem for XQuery 3.0 [10] (not just one in which all higher-order

functions have type “function()”). Thanks to type reconstruc-
tion these languages can have a syntax and semantics very close
to those of OCaml or Haskell, but will include primitives (in par-
ticular complex patterns) to exploit the great expressive power of
full-fledged set-theoretic types.

Some problems are still open, notably the decidability of type-
substitution inference, but these are of theoretical nature and should
not have any impact in practice (as a matter of facts people program
in Java and Scala even though the decidability of their type systems
is still an open problem). The only problem open in this second
part of the work, that is the non determinism of the implicitly typed
calculus, should have a negligible practical impact, insofar as it is
theoretical (in practice, the semantics is deterministic but imple-
mentation dependent) and it concerns only the case when the type
of (an instance of) a polymorphic function is tested at run-time: in
our programming experience with CDuce we never met a single
typecase for a function type. Nevertheless, it may be interesting to
study how to remove such a latitude either by defining a canonical
choice for the instances deduced by the inference system (a problem
related to the existence of principal types), or by imposing reason-
able restrictions, or by checking the flow of polymorphic functions
by a static analysis.

On the practical side the most interesting directions of research
are the study of heuristics to simplify types generated from con-
straints, so as to make type reconstruction for top-level functions
human friendly; the generation of meaningful type error messages;
the study of efficient implementation of constraint-solving; the def-
inition and implementation of the polymorphic version of CDuce.
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A. Implicitly-Typed Calculus

We want sets of type-substitutions to be inferred by the system, not written by the programmer. To this end,
we define a calculus without type substitutions (called implicitly-typed, in contrast to the calculus in (7) in
Section 2.1, which we henceforth call explicitly-typed), for which we define a type-substitutions inference
system. As explained in Section 3, we do not try to infer decorations in λ-abstractions, and we therefore
look for completeness of the type-substitutions inference system with respect to the expressions written
according to the following grammar:

e ::= c | x | (e, e) | πi(e) | e e | λ
∧i∈I ti→six.e | e∈t ? e : e | e[σj ]j∈J .

We write E0 for the set of such expressions. The implicitly-typed calculus defined in this section corresponds
to the type-substitution erasures of the expressions of E0. These are the terms generated by the grammar
above without using the last production, that is, without the application of sets of type-substitutions. We
then define the type-substitutions inference system by determining where the rule (ALG-INST) have to be
used in the typing derivations of explicitly-typed expressions. Finally, we propose an incomplete but more
tractable restriction of the type-substitutions inference system, which, we believe, is powerful enough to be
used in practice.

A.1 Implicitly-typed Calculus

Definition A.1. An implicitly-typed expression a is an expression without any type substitutions. It is
inductively generated by the following grammar:

a ::= c | x | (a, a) | πi(a) | a a | λ∧i∈I ti→six.a | a∈t ? a : a

where ti, si range over types and t ∈ T0 is a ground type. We write EA to denote the set of all implicitly-
typed expressions.

Clearly, EA is a proper subset of E0.
The erasure of explicitly-typed expressions to implicitly-typed expressions is defined as follows:

Definition A.2. The erasure is the mapping from E0 to EA defined as

erase(c) = c
erase(x) = x

erase((e1, e2)) = (erase(e1), erase(e2))
erase(πi(e)) = πi(erase(e))

erase(λ∧i∈I ti→six.e) = λ∧i∈I ti→six.erase(e)
erase(e1e2) = erase(e1)erase(e2)

erase(e∈t ? e1 : e2) = erase(e)∈t ? erase(e1) : erase(e2)
erase(e[σj ]j∈J) = erase(e)

Prior to introducing the type inference rules, we define a preorder on types, which is similar to the type
variable instantiation in ML but with respect to a set of type substitutions.

Definition A.3. Let s and t be two types and ∆ a set of type variables. We define the following relations:

[σi]i∈I  s ⊑∆ t
def

⇐⇒
∧

i∈I

sσi ≤ t and ∀i∈I. σi ♯ ∆

s ⊑∆ t
def

⇐⇒ ∃[σi]i∈I such that [σi]i∈I  s ⊑∆ t

We write s 6⊑∆ t if it does not exist a set of type substitutions [σi]i∈I such that [σi]i∈I  s ⊑∆ t. We
now prove some properties of the preorder ⊑∆.

Lemma A.4. Let t1 and t2 be two types and ∆ a set of type variables. If t1 ⊑∆ s1 and t2 ⊑∆ s2, then
(t1 ∧ t2) ⊑∆ (s1 ∧ s2) and (t1 × t2) ⊑∆ (s1 × s2).

Proof. Let [σi1 ]i1∈I1  t1 ⊑∆ s1 and [σi2 ]i2∈I2  t2 ⊑∆ s2. Then
∧

i∈I1∪I2
(t1 ∧ t2)σi ≃ (

∧

i∈I1∪I2
t1σi) ∧ (

∧

i∈I1∪I2
t2σi)

≤ (
∧

i1∈I1
t1σi1) ∧ (

∧

i2∈I2
t2σi2)

≤ s1 ∧ s2

and
∧

i∈I1∪I2
(t1 × t2)σi ≃ ((

∧

i∈I1∪I2
t1σi)× (

∧

i∈I1∪I2
t2σi))

≤ ((
∧

i1∈I1
t1σi1)× (

∧

i2∈I2
t2σi2))

≤ (s1 × s2)

Lemma A.5. Let t1 and t2 be two types and ∆ a set of type variables such that (var(t1) \∆) ∩ (var(t2) \
∆) = ∅. If t1 ⊑∆ s1 and t2 ⊑∆ s2, then t1 ∨ t2 ⊑∆ s1 ∨ s2.
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Proof. Let [σi1 ]i1∈I1  t1 ⊑∆ s1 and [σi2 ]i2∈I2  t2 ⊑∆ s2. Then we construct another set of type
substitutions [σi1,i2 ]i1∈I1,i2∈I2 such that

σi1,i2(α) =











σi1(α) if α ∈ (var(t1) \∆)

σi2(α) if α ∈ (var(t2) \∆)

α otherwise

So we have
∧

i1∈I1,i2∈I2
(t1 ∨ t2)σi1,i2 ≃

∧

i1∈I1
(
∧

i2∈I2
(t1 ∨ t2)σi1,i2)

≃
∧

i1∈I1
(
∧

i2∈I2
((t1σi1,i2) ∨ (t2σi1,i2)))

≃
∧

i1∈I1
(
∧

i2∈I2
(t1σi1 ∨ t2σi2))

≃
∧

i1∈I1
(t1σi1 ∨ (

∧

i2∈I2
t2σi2))

≃ (
∧

i1∈I1
t1σi1) ∨ (

∧

i2∈I2
t2σi2)

≤ s1 ∨ s2

Notice that two successive instantiations can be safely merged into one (see Lemma A.6). Henceforth,
we assume that there are no successive instantiations in a given derivation tree. In order to guess where
to insert sets of type-substitutions in an implicitly-typed expression, we consider each typing rule of the
explicitly-typed calculus used in conjunction with the instantiation rule (ALG-INST). If instantiation can be
moved through a given typing rule without affecting typability or changing the result type, then it is not
necessary to infer type substitutions at the level of this rule.

Lemma A.6. Let e be an explicitly-typed expression and [σi]i∈I , [σj ]j∈J two sets of type substitutions.
Then

∆ ;Γ ⊢A (e[σi]i∈I)[σj ]j∈J : t ⇐⇒ ∆ ;Γ ⊢A e([σj ]j∈J ◦ [σi]i∈I) : t

Proof. ⇒: consider the following derivation:
. . .

∆ ;Γ ⊢A e : s σi ♯ ∆

∆ ;Γ ⊢A e[σi]i∈I :
∧

i∈I sσi σj ♯ ∆

∆ ;Γ ⊢A (e[σi]i∈I)[σj ]j∈J :
∧

j∈J(
∧

i∈I sσi)σj

As σi ♯∆, σj ♯∆ and dom(σj ◦σi) = dom(σi)∪dom(σj), we have σj ◦σi ♯∆. Then by (ALG-INST),
we have ∆ ;Γ ⊢A e([σj ◦ σi]j∈J,i∈I) :

∧

j∈J,i∈I s(σj ◦ σi), that is ∆ ;Γ ⊢A e([σj ]j∈J ◦ [σi]i∈I) :
∧

j∈J(
∧

i∈I sσi)σj .

⇐: consider the following derivation:
. . .

∆ ;Γ ⊢A e : s σj ◦ σi ♯ ∆

∆ ;Γ ⊢A e([σj ]j∈J ◦ [σi]i∈I) :
∧

j∈J,i∈I s(σj ◦ σi)

As σj ◦ σi ♯ ∆ and dom(σj ◦ σi) = dom(σi) ∪ dom(σj), we have σi ♯ ∆ and σj ♯ ∆. Then
applying the rule (ALG-INST) twice, we have ∆ ;Γ ⊢A (e[σi]i∈I)[σj ]j∈J :

∧

j∈J(
∧

i∈I sσi)σj , that is
∆ ;Γ ⊢A (e[σi]i∈I)[σj ]j∈J :

∧

j∈J,i∈I s(σj ◦ σi).

First of all, consider a typing derivation ending with (ALG-PAIR) where both of its sub-derivations end
with (ALG-INST)7:

. . .
∆ ;Γ ⊢A e1 : t1 ∀j1 ∈ J1. σj1 ♯ ∆

∆ ;Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
t1σj1

. . .
∆ ;Γ ⊢A e2 : t2 ∀j2 ∈ J2. σj2 ♯ ∆

∆ ;Γ ⊢A e2[σj2 ]j2∈J2 :
∧

j2∈J2
t1σj2

∆ ;Γ ⊢A (e1[σj1 ]j1∈J1 , e2[σj2 ]j2∈J2) : (
∧

j1∈J1
t1σj1)× (

∧

j2∈J2
t1σj2)

We rewrite such a derivation as follows:. . .
∆ ;Γ ⊢A e1 : t1

. . .
∆ ;Γ ⊢A e2 : t2

∆ ;Γ ⊢A (e1, e2) : t1 × t2 ∀j ∈ J1 ∪ J2. σj ♯ ∆

∆ ;Γ ⊢A (e1, e2)[σj ]j∈J1∪J2 :
∧

j∈J1∪J2
(t1 × t2)σj

Clearly,
∧

j∈J1∪J2
(t1 × t2)σj ≤ (

∧

j1∈J1
t1σj1)× (

∧

j2∈J2
t1σj2). Then by subsumption we can deduce

that (e1, e2)[σj ]j∈J1∪J2 also has the type (
∧

j1∈J1
t1σj1)× (

∧

j2∈J2
t1σj2). Therefore, we can disregard

the sets of type substitutions that are applied inside a pair, since inferring them outside the pair is equivalent.
Hence, we can use the following inference rule for pairs.

∆ ;Γ ⊢I a1 : t1 ∆ ;Γ ⊢I a2 : t2

∆ ;Γ ⊢I (a1, a2) : t1 × t2

7 If one of the sub-derivations does not end with (ALG-INST), we can apply a trivial instance of (ALG-INST) with an
identity substitution σid.
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Next, consider a derivation ending of (ALG-PROJ) whose premise is derived by (ALG-INST):
. . .

∆ ;Γ ⊢A e : t ∀j ∈ J. σj ♯ ∆

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J tσj (
∧

j∈J tσj) ≤ 1 × 1

∆ ;Γ ⊢A πi(e[σj ]j∈J) : πππi(
∧

j∈J tσj)

According to Lemma C.8 in the companion paper [3], we have πππi(
∧

j∈J tσj) ≤
∧

j∈J π
ππi(t)σj , but the

converse does not necessarily hold. For example, πππ1(((t1 × t2)∨ (s1 ×α \ s2)){s2/α}) = t1{s2/α} while
(πππ1((t1 × t2) ∨ (s1 × α \ s2))){s2/α} = (t1 ∨ s1){s2/α}. So we cannot exchange the instantiation and
projection rules without losing completeness. However, as (

∧

j∈J tσj) ≤ 1 × 1 and ∀j ∈ J. σj ♯ ∆, we
have t ⊑∆ 1 × 1. This indicates that for an implicitly-typed expression πi(a), if the inferred type for a is t
and there exists [σj ]j∈J such that [σj ]j∈J  t ⊑∆ 1 × 1, then we infer the type πππi(

∧

j∈J tσj) for πi(a).

Let ∐i
∆(t) denote the set of such result types, that is,

∐i
∆(t) = {u | [σj ]j∈J  t ⊑∆ 1 × 1, u = πππi(

∧

j∈J

tσj)}

Formally, we have the following inference rule for projections

∆ ;Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ ;Γ ⊢I πi(a) : u

The following lemma tells us that ∐i
∆(t) is “morally” closed by intersection, in the sense that if we take two

solutions in ∐i
∆(t), then we can take also their intersection as a solution, since there always exists in ∐i

∆(t)
a solution at least as precise as their intersection.

Lemma A.7. Let t be a type and ∆ a set of type variables. If u1 ∈ ∐i
∆(t) and u2 ∈ ∐i

∆(t), then

∃u0 ∈ ∐i
∆(t). u0 ≤ u1 ∧ u2.

Proof. Let [σjk ]jk∈Jk  t ⊑∆ 1× 1 and uk = πππi(
∧

jk∈Jk
tσjk ) for k = 1, 2. Then [σj ]j∈J1∪J2  t ⊑∆

1 × 1. So πππi(
∧

j∈J1∪J2
tσj) ∈ ∐i

∆(t). Moreover, by Lemma C.6 in the companion paper [3], we have

πππi(
∧

j∈J1∪J2

tσj) ≤ πππi(
∧

j1∈J1

tσj1) ∧πππi(
∧

j2∈J2

tσj2) = u1 ∧ u2

Since we only consider λ-abstractions with empty decorations, we can consider the following simplified
version of (ALG-ABSTR) that does not use relabeling

∀i ∈ I. ∆ ∪ var(
∧

i∈I

(ti → si)) ;Γ, x : ti ⊢A e : s′i and s′i ≤ si

∆ ;Γ ⊢A λ∧i∈I ti→six.e :
∧

i∈I

(ti → si)
(ALG-ABSTR0)

Suppose the last rule used in the sub-derivations is (ALG-INST).

∀i ∈ I.











. . .

∆′ ;Γ, x : ti ⊢A e : s′i ∀j ∈ J. σj ♯ ∆
′

∆′ ;Γ, x : ti ⊢A e[σj ]j∈J :
∧

j∈J s′iσj
∧

j∈J s′iσj ≤ si
∆′ = ∆ ∪ var(

∧

i∈I(ti → si))

∆ ;Γ ⊢A λ∧i∈I ti→six.e[σj ]j∈J :
∧

i∈I(ti → si)

From the side conditions, we deduce that s′i ⊑∆′ si for all i ∈ I . Instantiation may be necessary to bridge
the gap between the computed type s′i for e and the type si required by the interface, so inferring type
substitutions at this stage is mandatory. Therefore, we propose the following inference rule for abstractions.

∀i ∈ I.

{

∆ ∪ var(
∧

i∈I ti → si) ;Γ, (x : ti) ⊢I a : s′i
s′i ⊑∆∪var(

∧

i∈I ti→si) si

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I ti → si

In the application case, suppose both sub-derivations end with (ALG-INST):
. . .

∆ ;Γ ⊢A e1 : t ∀j1 ∈ J1. σj1 ♯ ∆

∆ ;Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
tσj1

. . .
∆ ;Γ ⊢A e2 : s ∀j2 ∈ J2. σj2 ♯ ∆

∆ ;Γ ⊢A e2[σj2 ]j2∈J2 :
∧

j2∈J2
sσj2

∧

j1∈J1
tσj1 ≤ 0 → 1

∧

j2∈J2
sσj2 ≤ dom(

∧

j1∈J1
tσj1)

∆ ;Γ ⊢A (e1[σj1 ]j1∈J1)(e2[σj2 ]j2∈J2) : (
∧

j1∈J1
tσj1) · (

∧

j2∈J2
sσj2)

Instantiation may be needed to bridge the gap between the (domain of the) function type and its argument
(e.g., to apply λα→αx.x to 42). The side conditions imply that [σj1 ]j1∈J1  t ⊑∆ 0 → 1 and
[σj2 ]j2∈J2  s ⊑∆ dom(

∧

j1∈J1
tσj1). Therefore, given an implicitly-typed application a1a2 where
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a1 and a2 are typed with t and s respectively, we have to find two sets of substitutions [σj1 ]j1∈J1

and [σj2 ]j2∈J2 verifying the above preorder relations to be able to type the application. If such sets of
substitutions exist, then we can type the application with (

∧

j1∈J1
tσj1) · (

∧

j2∈J2
sσj2). Let t •∆s denote

the set of such result types, that is,

t •∆s
def
=







u
[σi]i∈I  t ⊑∆ 0→1
[σj ]j∈J  s ⊑∆ dom(

∧

i∈I tσi)
u =

∧

i∈I tσi ·
∧

j∈J sσj







This set is closed under intersection (see Lemma A.8). Formally, we get the following inference rule for
applications

∆ ;Γ ⊢I a1 : t ∆ ;Γ ⊢I a2 : s u ∈ t •∆s

∆ ;Γ ⊢I a1a2 : u

Lemma A.8. Let t, s be two types and ∆ a set of type variables. If u1 ∈ t •∆ s and u2 ∈ t •∆ s, then
∃u0 ∈ t •∆s. u0 ≤ u1 ∧ u2.

Proof. Let uk = (
∧

ik∈Ik
tσik ) · (

∧

jk∈Jk
sσjk ) for k = 1, 2. According to Lemma C.18 in the companion

paper [3], we have (
∧

i∈I1∪I2
tσi) · (

∧

j∈J1∪J2
sσj) ∈ t •∆ s and (

∧

i∈I1∪I2
tσi) · (

∧

j∈J1∪J2
sσj) ≤

∧

k=1,2(
∧

ik∈Ik
tσik ) · (

∧

jk∈Jk
sσjk ) = u1 ∧ u2.

For type cases, we distinguish the four possible behaviours: (i) no branch is selected, (ii) the first branch
is selected, (iii) the second branch is selected, and (iv) both branches are selected. In all these cases, we
assume that the premises end with (ALG-INST). In case (i), we have the following derivation:

. . .

∆ ;Γ ⊢A e : t′ ∀j ∈ J. σj ♯ ∆

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J t′σj

∧

j∈J t′σj ≤ 0

∆ ;Γ ⊢A (e[σj ]j∈J)∈t ? e1 : e2 : 0

Clearly, the side conditions implies t′ ⊑∆ 0. The type inference rule for implicitly-typed expressions
corresponding to this case is then

∆ ;Γ ⊢I a : t′ t′ ⊑∆ 0

∆ ;Γ ⊢I (a∈t ? a1 : a2) : 0

For case (ii), consider the following derivation:
. . .

∆ ;Γ ⊢A e : t′ σj ♯ ∆

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J t′σj

∧

j∈J t′σj ≤ t

. . .
∆ ;Γ ⊢A e1 : s1 σj1 ♯ ∆

∆ ;Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
s1σj1

∆ ;Γ ⊢A (e[σj ]j∈J)∈t ? (e1[σj1 ]j1∈J1) : e2 :
∧

j1∈J1
s1σj1

First, such a derivation can be rewritten as
. . .

∆ ;Γ ⊢A e : t′ σj ♯ ∆

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J t′σj

∧

j∈J t′σj ≤ t
. . .

∆ ;Γ ⊢A e1 : s1

∆ ;Γ ⊢A (e[σj ]j∈J)∈t ? e1 : e2 : s1 σj1 ♯ ∆

∆ ;Γ ⊢A ((e[σj ]j∈J)∈t ? e1 : e2)[σj1 ]j1∈J1) :
∧

j1∈J1
s1σj1

This indicates that it is equivalent to apply the substitutions [σj1 ]j1∈J1 to e1 or to the whole type case
expression. Looking at the derivation for e, for the first branch to be selected we must have t′ ⊑∆ t. Note
that if t′ ⊑∆ ¬t, we would have t′ ⊑∆ 0 by Lemma A.4, and no branch would be selected. Consequently,
the type inference rule for a type case where the first branch is selected is as follows.

∆ ;Γ ⊢I a : t′ t′ ⊑∆ t t′ 6⊑∆ ¬t ∆ ;Γ ⊢I a1 : s

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s

Case (iii) is similar to case (ii) where t is replaced by ¬t.
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At last, consider a derivation of Case (iv):






























































. . .

∆ ;Γ ⊢A e : t′ ∀j ∈ J. σj ♯ ∆

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J t′σj

∧

j∈J t′σj 6≤ ¬t and

. . .
∆ ;Γ ⊢A e1 : s1 ∀j1 ∈ J1. σj1 ♯ ∆

∆ ;Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
s1σj1

∧

j∈J t′σj 6≤ t and

. . .
∆ ;Γ ⊢A e2 : s2 ∀j2 ∈ J2. σj2 ♯ ∆

∆ ;Γ ⊢A e2[σj2 ]j2∈J2 :
∧

j2∈J2
s2σj2

∆ ;Γ ⊢A (e[σj ]j∈J∈t ? (e1[σj1 ]j1∈J1) : (e2[σj2 ]j2∈J2)) :
∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2

Using α-conversion if necessary, we can assume that the polymorphic type variables of e1 and e2 are
distinct, and therefore we have (var(s1) \ ∆) ∩ (var(s2) \ ∆) = ∅. According to Lemma A.5, we get
s1∨s2 ⊑∆

∧

j1∈J1
s1σj1∨

∧

j2∈J2
s2σj2 . Let [σj12 ]j12∈J12  s1∨s2 ⊑∆

∧

j1∈J1
s1σj1∨

∧

j2∈J2
s2σj2 .

We can rewrite this derivation as










































. . .

∆ ;Γ ⊢A e : t′ ∀j ∈ J. σj ♯ ∆

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J t′σj

∧

j∈J t′σj 6≤ ¬t and
. . .

∆ ;Γ ⊢A e1 : s1

∧

j∈J t′σj 6≤ t and
. . .

∆ ;Γ ⊢A e2 : s2

∆ ;Γ ⊢A (e[σj ]j∈J∈t ? e1 : e2) : s1 ∨ s2 ∀j12 ∈ J12. σj12 ♯ ∆

∆ ;Γ ⊢A ((e[σj ]j∈J∈t ? e1 : e2)[σj12 ]j12∈J12) :
∧

j12∈J12
(s1 ∨ s2)σj12

As
∧

j12∈J12
(s1 ∨ s2)σj12 ≤

∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2 , by subsumption, we can deduce that

(e[σj ]j∈J∈t ? e1 : e2)[σj12 ]j12∈J12 has the type
∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2 . Hence, we eliminate the

substitutions that are applied to these two branches.
We now consider the part of the derivation tree which concerns e. With the specific set of substitutions

[σj ]j∈J , we have
∧

j∈J t′σj 6≤ ¬t and
∧

j∈J t′σj 6≤ t, but it does not mean that we have t′ 6⊑∆ t and

t′ 6⊑∆ ¬t in general. If t′ ⊑∆ t and/or t′ ⊑∆ ¬t hold, then we are in one of the previous cases (i)− (iii)
(i.e., we type-check at most one branch), and the inferred result type for the whole type case belongs to 0,
s1 or s2. We can then use subsumption to type the whole type-case expression with s1 ∨ s2. Otherwise,
both branches are type-checked, and we deduce the corresponding inference rule as follows.

∆ ;Γ ⊢I a : t′
{

t′ 6⊑∆ ¬t and ∆ ;Γ ⊢I a1 : s1
t′ 6⊑∆ t and ∆ ;Γ ⊢I a2 : s2

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2

From the study above, we deduce the type-substitution inference rules for implicitly-typed expressions
given in Figure 5, which are the same as those in Section 3 except for the rules for products.

A.2 Soundness and Completeness

We now prove that the inference rules of the implicitly-typed calculus given in Figure 5 are sound and
complete with respect to the type system of the explicitly-typed calculus (i.e., Figure 1 extended with the
standard rules for products).

To construct an explicitly-typed expression from an implicitly-typed one a, we have to insert sets of
substitutions in a each time a preorder check is performed in the rules of Figure 5. For an abstraction
λ∧i∈I ti→six.a, different sets of substitutions may be constructed when type checking the body under
the different hypotheses x : ti. For example, let a = λ(Int→Int)∧(Bool→Bool)x.(λα→αy.y)x. When a is
type-checked against Int → Int, that is, x is assumed to have type Int, we infer the type substitution
{Int/α} for (λα→αy.y). Similarly, we infer {Bool/α} for (λα→αy.y), when a is type-checked against
Bool → Bool. We have to collect these two different substitutions when constructing the explicitly-
typed expression e which corresponds to a. To this end, we introduce an intersection operator e ⊓ e′ of
expressions which is defined only for pair of expressions that have similar structure but different type
substitutions. For example, the intersection of (λα→αy.y)[{Int/α}]x and (λα→αy.y)[{Bool/α}]x will be
(λα→αy.y)[{Int/α}, {Bool/α}]x.
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∆ ;Γ ⊢I c : bc
(INF-CONST)

∆ ;Γ ⊢I x : Γ(x)
(INF-VAR)

∆ ;Γ ⊢I a1 : t1 ∆ ;Γ ⊢I a2 : t2

∆ ;Γ ⊢I (a1, a2) : t1 × t2
(INF-PAIR)

∆ ;Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ ;Γ ⊢I πi(a) : u
(INF-PROJ)

∆ ;Γ ⊢I a1 : t ∆ ;Γ ⊢I a2 : s u ∈ t •∆s

∆ ;Γ ⊢I a1a2 : u
(INF-APPL)

∀i ∈ I.







∆ ∪ var(
∧

i∈I

ti → si) ;Γ, (x : ti) ⊢I a : s′i

s′i ⊑∆∪var(
∧

i∈I ti→si) si

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si
(INF-ABSTR)

∆ ;Γ ⊢I a : t′ t′ ⊑∆ 0

∆ ;Γ ⊢I (a∈t ? a1 : a2) : 0
(INF-CASE-NONE)

∆ ;Γ ⊢I a : t′ t′ ⊑∆ t t′ 6⊑∆ ¬t ∆ ;Γ ⊢I a1 : s

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s
(INF-CASE-FST)

∆ ;Γ ⊢I a : t′ t′ ⊑∆ ¬t t′ 6⊑∆ t ∆ ;Γ ⊢I a2 : s

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s
(INF-CASE-SND)

∆ ;Γ ⊢I a : t′
{

t′ 6⊑∆ ¬t and ∆ ;Γ ⊢I a1 : s1
t′ 6⊑∆ t and ∆ ;Γ ⊢I a2 : s2

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2
(INF-CASE-BOTH)

Figure 5. Type-substitution inference rules

Definition A.9. Let e, e′ ∈ E0 be two expressions. Their intersection e ⊓ e′ is defined by induction as:

c ⊓ c = c
x ⊓ x = x

(e1, e2) ⊓ (e′1, e
′
2) = ((e1 ⊓ e′1), (e2 ⊓ e′2))

πi(e) ⊓ πi(e
′) = πi(e ⊓ e′)

e1e2 ⊓ e′1e
′
2 = (e1 ⊓ e′1)(e2 ⊓ e′2)

(λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′) = λ∧i∈I ti→six.(e ⊓ e′)
(e0∈t ? e1 : e2) ⊓ (e′0∈t ? e′1 : e′2) = e0 ⊓ e′0∈t ? e1 ⊓ e′1 : e2 ⊓ e′2

(e1[σj ]j∈J) ⊓ (e′1[σj ]j∈J′) = (e1 ⊓ e′1)[σj ]j∈J∪J′

e ⊓ (e′1[σj ]j∈J′) = (e[σid]) ⊓ (e′1[σj ]j∈J′) if e 6= e1[σj ]j∈J

(e1[σj ]j∈J) ⊓ e′ = (e1[σj ]j∈J) ⊓ (e′[σid]) if e′ 6= e′1[σj ]j∈J′

where σid is the identity type substitution and is undefined otherwise.

The intersection of a same constant or a same variable is the constant or the variable itself. If e and
e′ have the same form, then their intersection is defined if their intersections of the corresponding sub-
expressions are defined. In particular when e is form of e1[σj ]j∈J and e′ is form of e′1[σj ]j∈J′ , we merge
the sets of substitutions [σj ]j∈J and [σj ]j∈J′ into one set [σj ]j∈J∪J′ . Otherwise, e and e′ have different
forms. The only possible case for their intersection is they have similar structure but one with instantiations
and the other without (i.e., e = e1[σj ]j∈J , e

′ 6= e′1[σj ]j∈J′ or e 6= e1[σj ]j∈J , e
′ = e′1[σj ]j∈J′ ). To

keep the inferred information and reuse the defined cases above, we add the identity substitution σid to
the one without substitutions (i.e., e′[σid] or e[σid]) to make them have the same form. Note that σid is
important so as to keep the information we have inferred. Let us infer the substitutions for the abstraction
λ(t1→s1)∧(t2→s2)x.e. Assume that we have inferred some substitutions for the body e under t1 → s1
and t2 → s2 respectively, yielding two explicitly-typed expressions e1 and e2[σj ]j∈J . If we did not
add the identity substitution σid for the intersection of e1 and e2[σj ]j∈J , that is, e1 ⊓ (e2[σj ]j∈J) were
(e1 ⊓ e2)[σj ]j∈J rather than (e1 ⊓ e2)([σid] ∪ [σj ]j∈J), then the substitutions we inferred under t1 → s1
would be lost since they may be modified by [σj ]j∈J .
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Lemma A.10. Let e, e′ ∈ E0 be two expressions. If erase(e) = erase(e′), then e ⊓ e′ exists and
erase(e ⊓ e′) = erase(e) = erase(e′).

Proof. By induction on the structures of e and e′. Because erase(e) = erase(e′), the two expressions have
the same structure up to their sets of type substitutions.

c, c: straightforward.
x, x: straightforward.

(e1, e2), (e
′
1, e

′
2): we have erase(ei) = erase(e′i). By induction, ei ⊓ e′i exists and erase(ei ⊓ e′i) =

erase(ei) = erase(e′i). Therefore (e1, e2) ⊓ (e′1, e
′
2) exists and

erase((e1, e2) ⊓ (e′1, e
′
2)) = erase(((e1 ⊓ e′1), (e2 ⊓ e′2)))

= (erase(e1 ⊓ e′1), erase(e2 ⊓ e′2))
= (erase(e1), erase(e2))
= erase((e1, e2))

Similarly, we also have erase((e1, e2) ⊓ (e′1, e
′
2)) = erase((e′1, e

′
2)).

πi(e), πi(e
′): we have erase(e) = erase(e′). By induction, e ⊓ e′ exists and erase(e ⊓ e′) = erase(e) =

erase(e′). Therefore πi(e) ⊓ πi(e
′) exists and

erase(πi(e) ⊓ πi(e
′)) = erase(πi(e ⊓ e′))

= πi(erase(e ⊓ e′))
= πi(erase(e))
= erase(πi(e))

Similarly, we also have erase(πi(e) ⊓ πi(e
′)) = erase(πi(e

′)).
e1e2, e′1e

′
2: we have erase(ei) = erase(e′i). By induction, ei ⊓ e′i exists and erase(ei ⊓ e′i) = erase(ei) =

erase(e′i). Therefore e1e2 ⊓ e′1e
′
2 exists and

erase((e1e2) ⊓ (e′1e
′
2)) = erase((e1 ⊓ e′1)(e2 ⊓ e′2))

= erase(e1 ⊓ e′1)erase(e2 ⊓ e′2)
= erase(e1)erase(e2)
= erase(e1e2)

Similarly, we also have erase((e1e2) ⊓ (e′1e
′
2)) = erase(e′1e

′
2).

λ∧i∈I ti→six.e, λ∧i∈I ti→six.e′: we have erase(e) = erase(e′). By induction, e ⊓ e′ exists and erase(e ⊓
e′) = erase(e) = erase(e′). Therefore (λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′) exists and

erase((λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′)) = erase(λ∧i∈I ti→six.(e ⊓ e′))
= λ∧i∈I ti→six.erase((e ⊓ e′))
= λ∧i∈I ti→six.erase(e)
= erase(λ∧i∈I ti→six.e)

Similarly, we also have

erase((λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′)) = erase(λ∧i∈I ti→six.e′)

e0∈t ? e1 : e2, e′0∈t ? e′1 : e′2: we have erase(ei) = erase(e′i). By induction, ei ⊓ e′i exists and erase(ei ⊓
e′i) = erase(ei) = erase(e′i). Therefore (e0∈t ? e1 : e2) ⊓ (e′0∈t ? e′1 : e′2) exists and

erase((e0∈t ? e1 : e2) ⊓ (e′0∈t ? e′1 : e′2)) = erase((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2))
= erase(e0 ⊓ e′0)∈t ? erase(e1 ⊓ e′1) : erase(e2 ⊓ e′2)
= erase(e0)∈t ? erase(e1) : erase(e2)
= erase(e0∈t ? e1 : e2)

Similarly, we also have

erase((e0∈t ? e1 : e2) ⊓ (e′0∈t ? e′1 : e′2)) = erase(e′0∈t ? e′1 : e′2)

e[σj ]j∈J , e′[σj ]j∈J′ : we have erase(e) = erase(e′). By induction, e ⊓ e′ exists and erase(e ⊓ e′) =

erase(e) = erase(e′). Therefore (e[σj ]j∈J) ⊓ (e′[σj ]j∈J′) exists and

erase((e[σj ]j∈J) ⊓ (e′[σj ]j∈J′)) = erase((e ⊓ e′)[σj ]j∈J∪J′)
= erase(e ⊓ e′)
= erase(e)
= erase(e[σj ]j∈J)

Similarly, we also have erase((e[σj ]j∈J) ⊓ (e′[σj ]j∈J′)) = erase(e′[σj ]j∈J′).
e, e′[σj ]j∈J′ : a special case of e[σj ]j∈J and e′[σj ]j∈J′ where [σj ]j∈J = [σid].

e[σj ]j∈J , e′: a special case of e[σj ]j∈J and e′[σj ]j∈J′ where [σj ]j∈J′ = [σid].

Lemma A.11. Let e, e′ ∈ E0 be two expressions. If erase(e) = erase(e′), ∆ ;Γ ⊢ e : t, ∆′ ;Γ′ ⊢ e′ : t′,
e ♯ ∆′ and e′ ♯ ∆, then ∆ ;Γ ⊢ e ⊓ e′ : t and ∆′ ;Γ′ ⊢ e ⊓ e′ : t′ .
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Proof. According to Lemma A.10, e ⊓ e′ exists and erase(e ⊓ e′) = erase(e) = erase(e′). We only prove
∆ ;Γ ⊢ e ⊓ e′ : t as the other case is similar. For simplicity, we just consider one set of type substitutions.
For several sets of type substitutions, we can either compose them or apply (instinter) several times. The
proof proceeds by induction on ∆ ;Γ ⊢ e : t.

(const): ∆ ;Γ ⊢ c : bc. As erase(e′) = c, e′ is either c or c[σj ]j∈J . If e′ = c, then e⊓e′ = c, and the result
follows straightforwardly. Otherwise, we have e⊓ e′ = c[σid, σj ]j∈J . Since e′ ♯∆, we have σj ♯∆. By
(instinter), we have ∆ ;Γ ⊢ c[σid, σj ]j∈J : bc ∧

∧

j∈J bcσj , that is, ∆ ;Γ ⊢ c[σid, σj ]j∈J : bc.

(var): Γ ⊢ x : Γ(x). As erase(e′) = x, e′ is either x or x[σj ]j∈J . If e′ = x, then e⊓ e′ = x, and the result
follows straightforwardly. Otherwise, we have e⊓ e′ = x[σid, σj ]j∈J . Since e′ ♯∆, we have σj ♯∆. By
(instinter), we have ∆ ;Γ ⊢ x[σid, σj ]j∈J : Γ(x)∧

∧

j∈J Γ(x)σj , that is, ∆ ;Γ ⊢ x[σid, σj ]j∈J : Γ(x).

(pair): consider the following derivation:
. . .

∆ ;Γ ⊢ e1 : t1

. . .
∆ ;Γ ⊢ e2 : t2

∆ ;Γ ⊢ (e1, e2) : t1 × t2
(pair)

As erase(e′) = (erase(e1), erase(e2)), e
′ is either (e′1, e

′
2) or (e′1, e

′
2)[σj ]j∈J such that erase(e′i) =

erase(ei). By induction, we have ∆ ;Γ ⊢ ei⊓e′i : ti. Then by (pair), we have ∆ ;Γ ⊢ (e1⊓e′1, e2⊓e′2) :
(t1 × t2). If e′ = (e′1, e

′
2), then e ⊓ e′ = (e1 ⊓ e′1, e2 ⊓ e′2). So the result follows.

Otherwise, e ⊓ e′ = (e1 ⊓ e′1, e2 ⊓ e′2)[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By (instinter), we
have ∆ ;Γ ⊢ (e1 ⊓ e′1, e2 ⊓ e′2)[σid, σj ]j∈J : (t1 × t2) ∧

∧

j∈J(t1 × t2)σj . Finally, by (subsum), we

get ∆ ;Γ ⊢ (e1 ⊓ e′1, e2 ⊓ e′2)[σid, σj ]j∈J : (t1 × t2).
(proj): consider the following derivation:

. . .
∆ ;Γ ⊢ e0 : t1 × t2

∆ ;Γ ⊢ πi(e0) : ti
(proj)

As erase(e′) = πi(erase(e0)), e
′ is either πi(e

′
0) or πi(e

′
0)[σj ]j∈J such that erase(e′0) = erase(e0).

By induction, we have ∆ ;Γ ⊢ e0 ⊓ e′0 : (t1 × t2). Then by (proj), we have ∆ ;Γ ⊢ πi(e0 ⊓ e′0) : ti. If
e′ = πi(e

′
0), then e ⊓ e′ = πi(e0 ⊓ e′0). So the result follows.

Otherwise, e ⊓ e′ = πi(e0 ⊓ e′0)[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By (instinter), we
have ∆ ;Γ ⊢ πi(e0 ⊓ e′0)[σid, σj ]j∈J : ti ∧

∧

j∈J tiσj . Finally, by (subsum), we get ∆ ;Γ ⊢

πi(e0 ⊓ e′0)[σid, σj ]j∈J : ti.
(appl): consider the following derivation:

. . .
∆ ;Γ ⊢ e1 : t → s

. . .
∆ ;Γ ⊢ e2 : t

∆ ;Γ ⊢ e1e2 : s
(pair)

As erase(e′) = erase(e1)erase(e2), e
′ is either e′1e

′
2 or (e′1e

′
2)[σj ]j∈J such that erase(e′i) = erase(ei).

By induction, we have ∆ ;Γ ⊢ e1 ⊓ e′1 : t → s and ∆ ;Γ ⊢ e2 ⊓ e′2 : t. Then by (appl), we have
∆ ;Γ ⊢ (e1 ⊓ e′1)(e2 ⊓ e′2) : s. If e′ = e′1e

′
2, then e ⊓ e′ = (e1 ⊓ e′1)(e2 ⊓ e′2). So the result follows.

Otherwise, e ⊓ e′ = ((e1 ⊓ e′1)(e2 ⊓ e′2))[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By (instinter),
we have ∆ ;Γ ⊢ ((e1 ⊓ e′1)(e2 ⊓ e′2))[σid, σj ]j∈J : s ∧

∧

j∈J sσj . Finally, by (subsum), we get

∆ ;Γ ⊢ ((e1 ⊓ e′1)(e2 ⊓ e′2))[σid, σj ]j∈J : s.
(abstr): consider the following derivation:

∀i ∈ I.

. . .

∆′′ ;Γ, (x : ti) ⊢ e0 : si
∆′′ = ∆ ∪ var(

∧

i∈I ti → si)

∆ ;Γ ⊢ λ∧i∈I ti→six.e0 :
∧

i∈I ti → si
(abstr)

As erase(e′) = λ∧i∈I ti→six.erase(e0), e
′ is either λ∧i∈I ti→six.e′0 or

(λ∧i∈I ti→six.e′0)[σj ]j∈J such that erase(e′0) = erase(e0). As λ∧i∈I ti→six.e′0 is well-typed under ∆′

and Γ′, e′0 ♯ ∆′ ∪ var(
∧

i∈I ti → si). By induction, we have ∆′′ ;Γ, (x : ti) ⊢ e0 ⊓ e′0 : si. Then
by (abstr), we have ∆ ;Γ ⊢ λ∧i∈I ti→six.e0 ⊓ e′0 :

∧

i∈I ti → si. If e′ = λ∧i∈I ti→six.e′0, then
e ⊓ e′ = λ∧i∈I ti→six.e0 ⊓ e′0. So the result follows.
Otherwise, e ⊓ e′ = (λ∧i∈I ti→six.e0 ⊓ e′0)[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By (instinter),
we have ∆ ;Γ ⊢ (λ∧i∈I ti→six.e0 ⊓ e′0)[σid, σj ]j∈J : (

∧

i∈I ti → si) ∧
∧

j∈J(
∧

i∈I ti → si)σj .

Finally, by (subsum), we get ∆ ;Γ ⊢ (λ∧i∈I ti→six.e0 ⊓ e′0)[σid, σj ]j∈J :
∧

i∈I ti → si.
(case): consider the following derivation

. . .

∆ ;Γ ⊢ e0 : t′











t′ 6≤ ¬t ⇒
. . .

∆ ;Γ ⊢ e1 : s

t′ 6≤ t ⇒
. . .

∆ ;Γ ⊢ e2 : s

∆ ;Γ ⊢ (e0∈t ? e1 : e2) : s
(case)
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As erase(e′) = erase(e0)∈t ? erase(e1) : erase(e2), e
′ is either e′0∈t ? e′1 : e′2 or (e′0∈t ? e′1 : e′2)[σj ]j∈J

such that erase(e′i) = erase(ei). By induction, we have ∆ ;Γ ⊢ e0 ⊓ e′0 : t′ and ∆ ;Γ ⊢ ei ⊓ e′i : s.
Then by (case), we have ∆ ;Γ ⊢ ((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2)) : s. If e′ = e′0∈t ? e′1 : e′2, then
e ⊓ e′ = (e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2). So the result follows.
Otherwise, e⊓e′ = ((e0⊓e′0)∈t ? (e1⊓e′1) : (e2⊓e′2))[σid, σj ]j∈J . Since e′ ♯∆, we have σj ♯∆. By
(instinter), we have ∆ ;Γ ⊢ ((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2))[σid, σj ]j∈J : s ∧

∧

j∈J sσj . Finally,

by (subsum), we get ∆ ;Γ ⊢ ((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2))[σid, σj ]j∈J : s.
(instinter): consider the following derivation:

. . .
∆ ;Γ ⊢ e0 : t σj ♯ ∆

∆ ;Γ ⊢ e0[σj ]j∈J :
∧

j∈J tσj

(instinter)

As erase(e′) = erase(e0), e
′ is either e′0 or e′0[σj ]j∈J′ such that erase(e′0) = erase(e0). By induction,

we have ∆ ;Γ ⊢ e0 ⊓ e′0 : t. If e′ = e′0, then e ⊓ e′ = (e0 ⊓ e′0)[σj , σid]j∈J . By (instinter),
we have ∆ ;Γ ⊢ (e0 ⊓ e′0)[σj , σid]j∈J :

∧

j∈J tσj ∧ t. Finally, by (subsum), we get ∆ ;Γ ⊢

(e0 ⊓ e′0)[σj , σid]j∈J :
∧

j∈J tσj .

Otherwise, e ⊓ e′ = (e0 ⊓ e′0)[σj ]j∈J∪J′ . Since e′ ♯ ∆, we have σj ♯ ∆ for all j ∈ J ′. By
(instinter), we have ∆ ;Γ ⊢ (e0 ⊓ e′0)[σj ]j∈J∪J′ :

∧

j∈J∪J′ tσj . Finally, by (subsum), we get

∆ ;Γ ⊢ (e0 ⊓ e′0)[σj ]j∈J∪J′ :
∧

j∈J tσj .

(subsum): there exists a type s such that
. . .

∆ ;Γ ⊢ e : s s ≤ t

∆ ;Γ ⊢ e : t
(subsum)

By induction, we have ∆ ;Γ ⊢ e ⊓ e′ : s. Then the rule (subsum) gives us ∆ ;Γ ⊢ e ⊓ e′ : t.

Corollary A.12. Let e, e′ ∈ E0 be two expressions. If erase(e) = erase(e′), ∆ ;Γ ⊢A e : t, ∆′ ;Γ′ ⊢A

e′ : t′, e ♯ ∆′ and e′ ♯ ∆, then

1. there exists s such that ∆ ;Γ ⊢A e ⊓ e′ : s and s ≤ t .

2. there exists s′ such that ∆′ ;Γ′ ⊢A e ⊓ e′ : s′ and s′ ≤ t′ .

Proof. Immediate consequence of Lemma A.11 and Theorems C.22 and C.23 in the companion paper
[3].

These type-substitution inference rules are sound and complete with respect to the typing algorithm in
Section C.2 in the companion paper [3], modulo the restriction that all the decorations in the λ-abstractions
are empty.

Theorem A.13 (Soundness). If ∆ ;Γ ⊢I a : t, then there exists an explicitly-typed expression e ∈ E0

such that erase(e) = a and ∆ ;Γ ⊢A e : t.

Proof. By induction on the derivation of ∆ ;Γ ⊢I a : t. We proceed by a case analysis of the last rule used
in the derivation.

(INF-CONST): straightforward (take e as c).
(INF-VAR): straightforward (take e as x).
(INF-PAIR): consider the derivation

. . .
∆ ;Γ ⊢I a1 : t1

. . .
∆ ;Γ ⊢I a2 : t2

∆ ;Γ ⊢I (a1, a2) : t1 × t2

Applying the induction hypothesis, there exists an expression ei such that erase(ei) = ai and ∆ ;Γ ⊢A

ei : ti. Then by (ALG-PAIR), we have ∆ ;Γ ⊢A (e1, e2) : t1 × t2. Moreover, according to Definition
A.2, we have erase((e1, e2)) = (erase(e1), erase(e2)) = (a1, a2).

(INF-PROJ): consider the derivation
. . .

∆ ;Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ ;Γ ⊢I πi(a) : u

By induction, there exists an expression e such that erase(e) = a and ∆ ;Γ ⊢A e : t. Let u =
πππi(

∧

i∈I tσi). As σi ♯ ∆, by (ALG-INST), we have ∆ ;Γ ⊢A e[σi]i∈I :
∧

i∈I tσi. Moreover, since
∧

i∈I tσi ≤ 1 × 1, by (ALG-PROJ), we get ∆ ;Γ ⊢A πi(e[σi]i∈I) : πππi(
∧

i∈I tσi). Finally, according
to Definition A.2, we have erase(πi(e[σi]i∈I)) = πi(erase(e[σi]i∈I)) = πi(erase(e)) = πi(a).

24 Πoλνδεν́κης



(INF-APPL): consider the derivation
. . .

∆ ;Γ ⊢I a1 : t
. . .

∆ ;Γ ⊢I a2 : s u ∈ t •∆s

∆ ;Γ ⊢I a1a2 : u

By induction, we have that (i) there exists an expression e1 such that erase(e1) = a1 and ∆ ;Γ ⊢A

e1 : t and (ii) there exists an expression e2 such that erase(e2) = a2 and ∆ ;Γ ⊢A e2 : s.
Let u = (

∧

i∈I tσi) · (
∧

j∈J sσj). As σh ♯ ∆ for h ∈ I ∪ J , applying (ALG-INST), we get
∆ ;Γ ⊢A e1[σi]i∈I :

∧

i∈I tσi and ∆ ;Γ ⊢A e2[σj ]j∈J :
∧

j∈J sσj . Then by (ALG-APPL), we have
∆ ;Γ ⊢A (e1[σi]i∈I)(e2[σj ]j∈J) : (

∧

i∈I tσi) · (
∧

j∈J sσj). Furthermore, according to Definition
A.2, we have erase((e1[σi]i∈I)(e2[σj ]j∈J)) = erase(e1)erase(e2) = a1a2.

(INF-ABSTR): consider the derivation

∀i ∈ I.

{ . . .

∆ ∪ var(
∧

i∈I ti → si) ;Γ, (x : ti) ⊢I a : s′i
s′i ⊑∆∪var(

∧

i∈I ti→si) si

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I ti → si

Let ∆′ = ∆∪ var(
∧

i∈I ti → si) and [σji ]ji∈Ji  s′i ⊑∆′ si. By induction, there exists an expression
ei such that erase(ei) = a and ∆′ ;Γ, (x : ti) ⊢A ei : s′i for all i ∈ I . Since σji ♯ ∆′, by
(ALG-INST), we have ∆′ ;Γ, (x : ti) ⊢A ei[σji ]ji∈Ji :

∧

ji∈Ji
s′iσji . Clearly, ei[σji ]ji∈Ji ♯ ∆′ and

erase(ei[σji ]ji∈Ji) = erase(ei) = a. Then by Lemma A.10, the intersection
d

i∈I(ei[σji ]ji∈Ji) exists
and we have erase(

d
i∈I′(ei[σji ]ji∈Ji)) = a for any non-empty I ′ ⊆ I . Let e =

d
i∈I(ei[σji ]ji∈Ji).

According to Corollary A.12, there exists a type t′i such that ∆′ ;Γ, (x : ti) ⊢A e : t′i and
t′i ≤

∧

ji∈Ji
s′iσji for all i ∈ I . Moreover, since t′i ≤

∧

ji∈Ji
s′iσji ≤ si, by (ALG-ABSTR), we

have ∆ ;Γ ⊢A λ∧i∈I ti→six.e :
∧

i∈I(ti → si). Finally, according to Definition A.2, we have

erase(λ∧i∈I ti→six.e) = λ∧i∈I ti→six.erase(e) = λ∧i∈I ti→six.a.

(INF-CASE-NONE): consider the derivation
. . .

∆ ;Γ ⊢I a : t′ t′ ⊑∆ 0

∆ ;Γ ⊢I (a∈t ? a1 : a2) : 0

By induction, there exists an expression e such that erase(e) = a and ∆ ;Γ ⊢A e : t′. Let
[σi]i∈I  t′ ⊑∆ 0. Since σi ♯ ∆, by (ALG-INST), we have ∆ ;Γ ⊢A e[σi]i∈I :

∧

i∈I t
′σi. Let e1

and e2 be two expressions such that erase(e1) = a1 and erase(e2) = a2. Then we have

erase((e[σi]i∈I)∈t ? e1 : e2) = (a∈t ? a1 : a2).

Moreover, since
∧

i∈I t
′σi ≤ 0, by (ALG-CASE-NONE), we have

∆ ;Γ ⊢A ((e[σi]i∈I)∈t ? e1 : e2) : 0.

(INF-CASE-FST): consider the derivation
. . .

∆ ;Γ ⊢I a : t′ t′ ⊑∆ t t′ 6⊑∆ ¬t
. . .

∆ ;Γ ⊢I a1 : s

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s

By induction, there exist e, e1 such that erase(e) = a, erase(e1) = a1, ∆ ;Γ ⊢A e : t′, and
∆ ;Γ ⊢A e1 : s. Let [σi1 ]i1∈I1  t′ ⊑∆ t. Since σi1 ♯ ∆, applying (ALG-INST), we get
∆ ;Γ ⊢A e[σi1 ]i1∈I1 :

∧

i1∈I1
t′σi1 . Let e2 be an expression such that erase(e2) = a2. Then we

have

erase((e[σi1 ]i1∈I1)∈t ? e1 : e2) = (a∈t ? a1 : a2).

Finally, since
∧

i1∈I1
t′σi1 ≤ t, by (ALG-CASE-FST), we have

∆ ;Γ ⊢A ((e[σi1 ]i1∈I1)∈t ? e1 : e2) : s.

(INF-CASE-SND): similar to the case of (INF-CASE-FST).
(INF-CASE-BOTH): consider the derivation

. . .

∆ ;Γ ⊢I a : t′











t′ 6⊑∆ ¬t and
. . .

∆ ;Γ ⊢I a1 : s1

t′ 6⊑∆ t and
. . .

∆ ;Γ ⊢I a2 : s2

∆ ;Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2

By induction, there exist e, ei such that erase(e) = a, erase(ei) = ai, ∆ ;Γ ⊢A e : t′, and
∆ ;Γ ⊢A ei : si. According to Definition A.2, we have erase((e∈t ? e1 : e2)) = (a∈t ? a1 : a2).
Clearly t′ 6≃ 0. We claim that t′ � ¬t. Let σid be any identity type substitution. If t′ ≤ ¬t, then
t′σid ≃ t′ ≤ ¬t, i.e., t′ ⊑∆ ¬t, which is in contradiction with t′ 6⊑∆ ¬t. Similarly we have t′ � t.
Therefore, by (ALG-CASE-SND), we have ∆ ;Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2.
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The proof of the soundness property constructs along the derivation for a some expression e that satisfies
the statement of the theorem. We denote by erase−1(a) the set of expressions e that satisfy the statement.

Theorem A.14 (Completeness). Let e ∈ E0 be an explicitly-typed expression. If ∆ ;Γ ⊢A e : t, then there
exists a type t′ such that ∆ ;Γ ⊢I erase(e) : t′ and t′ ⊑∆ t.

Proof. By induction on the typing derivation of ∆ ;Γ ⊢A e : t. We proceed by a case analysis on the last
rule used in the derivation.

(ALG-CONST): take t′ as bc.

(ALG-VAR): take t′ as Γ(x).
(ALG-PAIR): consider the derivation

. . .
∆ ;Γ ⊢A e1 : t1

. . .
∆ ;Γ ⊢A e2 : t2

∆ ;Γ ⊢A (e1, e2) : t1 × t2

Applying the induction hypothesis twice, we have

∃t′1. ∆ ;Γ ⊢I erase(e1) : t
′
1 and t′1 ⊑∆ t1,

∃t′2. ∆ ;Γ ⊢I erase(e2) : t
′
2 and t′2 ⊑∆ t2.

Then by (INF-PAIR), we have ∆ ;Γ ⊢I (erase(e1), erase(e2)) : t′1 × t′2, that is, ∆ ;Γ ⊢I

erase((e1, e2)) : t
′
1 × t′2. Finally, Applying Lemma A.4, we have (t′1 × t′2) ⊑∆ (t1 × t2).

(ALG-PROJ): consider the derivation
. . .

∆ ;Γ ⊢A e : t t ≤ 1 × 1

∆ ;Γ ⊢A πi(e) : πππi(t)

By induction, we have

∃t′, [σk]k∈K . ∆ ;Γ ⊢I erase(e) : t′ and [σk]k∈K  t′ ⊑∆ t.

It is clear that
∧

k∈K t′σk ≤ 1 × 1. So πππi(
∧

k∈K t′σk) ∈ ∐i
∆(t′). Then by (INF-PROJ), we have

∆ ;Γ ⊢I πi(erase(e)) : πππi(
∧

k∈K t′σk), that is, ∆ ;Γ ⊢I erase(πi(e)) : πππi(
∧

k∈K t′σk). According
to Lemma C.5 in the companion paper [3], t ≤ (πππ1(t),πππ2(t)). Then

∧

k∈K t′σk ≤ (πππ1(t),πππ2(t)).
Finally, applying Lemma C.5 again, we getπππi(

∧

k∈K t′σk) ≤ πππi(t) and a fortioriπππi(
∧

k∈K t′σk) ⊑∆

πππi(t).
(ALG-APPL): consider the derivation

. . .
∆ ;Γ ⊢A e1 : t

. . .
∆ ;Γ ⊢A e2 : s t ≤ 0 → 1 s ≤ dom(t)

∆ ;Γ ⊢A e1e2 : t · s

Applying the induction hypothesis twice, we have

∃t′1, [σ
1
k]k∈K1 . ∆ ;Γ ⊢I erase(e1) : t

′
1 and [σ1

k]k∈K1  t′1 ⊑∆ t,
∃t′2, [σ

2
k]k∈K2 . ∆ ;Γ ⊢I erase(e2) : t

′
2 and [σ2

k]k∈K2  t′2 ⊑∆ s.

It is clear that
∧

k∈K1
t′1σ

1
k ≤ 0 → 1, that is,

∧

k∈K1
t′1σ

1
k is a function type. So we get dom(t) ≤

dom(
∧

k∈K1
t′1σ

1
k). Then we have

∧

k∈K2
t′2σ

2
k ≤ s ≤ dom(t) ≤ dom(

∧

k∈K1
t′1σ

1
k). Therefore,

(
∧

k∈K1
t′1σ

1
k) · (

∧

k∈K2
t′2σ

2
k) ∈ t′2 •∆ t′1. Then applying (INF-APPL), we have

∆ ;Γ ⊢I erase(e1)erase(e2) : (
∧

k∈K1

t′1σ
1
k) · (

∧

k∈K2

t′2σ
2
k),

that is, ∆ ;Γ ⊢I erase(e1e2) : (
∧

k∈K1
t′1σ

1
k) · (

∧

k∈K2
t′2σ

2
k). Moreover, as

∧

k∈K2
t′2σ

2
k ≤ dom(t),

t · (
∧

k∈K2
t′2σ

2
k) exists. According to Lemma C.14 in the companion paper [3], we have

(
∧

k∈K1

t′1σ
1
k) · (

∧

k∈K2

t′2σ
2
k) ≤ t · (

∧

k∈K2

t′2σ
2
k) ≤ t · s.

Thus, (
∧

k∈K1
t′1σ

1
k) · (

∧

k∈K2
t′2σ

2
k) ⊑∆ t · s.

(ALG-ABSTR0): consider the derivation

∀i ∈ I.

. . .

∆ ∪ var(
∧

i∈I ti → si) ;Γ, (x : ti) ⊢A e : s′i and s′i ≤ si

∆ ;Γ ⊢A λ∧i∈I ti→six.e :
∧

i∈I ti → si

Let ∆′ = ∆ ∪ var(
∧

i∈I ti → si). By induction, for each i ∈ I , we have

∃t′i. ∆
′ ;Γ, (x : ti) ⊢I erase(e) : t′i and t′i ⊑∆′ s′i.

Clearly, we have t′i ⊑∆′ si. By (INF-ABSTR), we have

∆ ;Γ ⊢I λ∧i∈I ti→six.erase(e) :
∧

i∈I

ti → si,

that is, ∆ ;Γ ⊢I erase(λ∧i∈I ti→six.e) :
∧

i∈I ti → si.
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(ALG-CASE-NONE): consider the derivation
. . .

∆ ;Γ ⊢A e : 0

∆ ;Γ ⊢A (e∈t ? e1 : e2) : 0

By induction, we have

∃t′0. ∆ ;Γ ⊢I erase(e) : t′0 and t′0 ⊑∆ 0.

By (INF-CASE-NONE), we have ∆ ;Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : 0, that is, ∆ ;Γ ⊢I

erase(e∈t ? e1 : e2) : 0.
(ALG-CASE-FST): consider the derivation

. . .

∆ ;Γ ⊢A e : t′ t′ ≤ t
. . .

∆ ;Γ ⊢A e1 : s1

∆ ;Γ ⊢A (e∈t ? e1 : e2) : s1

Applying the induction hypothesis twice, we have

∃t′0. ∆ ;Γ ⊢I erase(e) : t′0 and t′0 ⊑∆ t′,
∃t′1. ∆ ;Γ ⊢I erase(e1) : t

′
1 and t′1 ⊑∆ s1.

Clearly, we have t′0 ⊑∆ t. If t′0 ⊑∆ ¬t, then by Lemma A.4, we have t′0 ≤∆ 0. By (INF-CASE-NONE),
we get

∆ ;Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : 0,

that is, ∆ ;Γ ⊢I erase(e∈t ? e1 : e2) : 0. Clearly, we have 0 ⊑∆ s1.
Otherwise, by (INF-CASE-FST), we have

∆ ;Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : t
′
1,

that is, ∆ ;Γ ⊢I erase(e∈t ? e1 : e2) : t
′
1. The result follows as well.

(ALG-CASE-SND): similar to the case of (ALG-CASE-FST).
(ALG-CASE-BOTH): consider the derivation

. . .

∆ ;Γ ⊢A e : t′











t′ 6≤ ¬t and
. . .

∆ ;Γ ⊢A e1 : s1

t′ 6≤ t and
. . .

∆ ;Γ ⊢A e2 : s2

∆ ;Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2

By induction, we have
∃t′0. ∆ ;Γ ⊢I erase(e) : t′0 and t′0 ⊑∆ t′,
∃t′1. ∆ ;Γ ⊢I erase(e1) : t

′
1 and t′1 ⊑∆ s1,

∃t′2. ∆ ;Γ ⊢I erase(e2) : t
′
2 and t′2 ⊑∆ s2.

If t′0 ⊑∆ 0, then by (INF-CASE-NONE), we get

∆ ;Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : 0,

that is, ∆ ;Γ ⊢I erase(e∈t ? e1 : e2) : 0. Clearly, we have 0 ⊑∆ s1 ∨ s2.
If t′0 ⊑∆ t, then by (INF-CASE-FST), we get

∆ ;Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : t
′
1,

that is, ∆ ;Γ ⊢I erase(e∈t ? e1 : e2) : t
′
1. Moreover, it is clear that t′1 ⊑∆ s1 ∨ s2, the result follows

as well. Similarly for t′0 ⊑∆ ¬t.
Otherwise, by (INF-CASE-BOTH), we have

∆ ;Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : t
′
1 ∨ t′2,

that is, ∆ ;Γ ⊢I erase(e∈t ? e1 : e2) : t′1 ∨ t′2. Using α-conversion, we can assume that the
polymorphic type variables of t′1 and t′2 (and of e1 and e2) are distinct, i.e., (var(t′1) \∆) ∩ (var(t′1) \
∆) = ∅. Then applying Lemma A.5, we have t′1 ∨ t′2 ⊑∆ t1 ∨ t2.

(ALG-INST): consider the derivation
. . .

∆ ;Γ ⊢A e : t ∀j ∈ J. σj ♯ ∆ |J | > 0

∆ ;Γ ⊢A e[σj ]j∈J :
∧

j∈J tσj

By induction, we have

∃t′, [σk]k∈K . ∆ ;Γ ⊢I erase(e) : t′ and [σk]k∈K  t′ ⊑∆ t.

Since erase(e[σj ]j∈J) = erase(e), we have ∆ ;Γ ⊢I erase(e[σj ]j∈J) : t′. As
∧

k∈K t′σk ≤ t, we
have

∧

j∈J(
∧

k∈K t′σk)σj ≤
∧

j∈J tσj , that is
∧

k∈K,j∈J t′(σj ◦ σk) ≤
∧

j∈J tσj . Moreover, it is

clear that σj ◦ σk ♯ ∆. Therefore, we get t′ ⊑∆

∧

j∈J tσj .

The inference system is syntax directed and describes an algorithm that is parametric in the decision
procedures for ⊑∆, ∐i

∆(t) and t •∆s. The problem of deciding them is tackled in Section B.2.
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Finally, notice that we did not give any reduction semantics for the implicitly typed calculus. The
reason is that its semantics is defined in terms of the semantics of the explicitly-typed calculus: the
relabeling at run-time is an essential feature —independently from the fact that we started from an
explicitly typed expression or not— and we cannot avoid it. The (big-step) semantics for a is then given
in expressions of erase−1(a): if an expression in erase−1(a) reduces to v, so does a. As we see the result of
computing an implicitly-typed expression is a value of the explicitly typed calculus (so λ-abstractions may
contain non-empty decorations) and this is unavoidable since it may be the result of a partial application.
Also notice that the semantics is not deterministic since different expressions in erase−1(a) may yield
different results. However this may happen only in one particular case, namely, when an occurrence
of a polymorphic function flows into a type-case and its type is tested. For instance the application
(λ(Int→Int)→Boolf.f∈Bool→Bool ? true : false)(λα→αx.x) results into true or false according to
whether the polymorphic identity at the argument is instantiated by [{Int/α}] or by [{Int/α}, {Bool/α}].
Once more this is unavoidable in a calculus that can dynamically test the types of polymorphic functions
that admit several sound instantiations.

A.3 A More Tractable Type Inference System

With the rules of Figure 5, when type-checking an implicitly-typed expression, we have to compute sets
of type substitutions for projections, applications, abstractions and type cases. Because type substitutions
inference is a costly operation, we would like to perform it as less as possible. To this end, we give in this
section a restricted version of the inference system, which is not complete but still sound and powerful
enough to be used in practice.

First, we want to simplify the type inference rule for projections:

∆ ;Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ ;Γ ⊢I πi(a) : u

where ∐i
∆(t) = {u | [σj ]j∈J  t ⊑∆ 1 × 1, u = πππi(

∧

j∈J tσj)}. Instead of picking any type in

∐i
∆(t), we would like to simply project t, i.e., assign the type πππi(t) to πi(a). By doing so, we lose

completeness on pair types that contain top-level variables. For example, if t = (Int × Int) ∧ α, then
Int ∧ Bool ∈ ∐i

∆(t) (because α can be instantiated with (Bool × Bool)), but πππt(t) = Int. We also
lose typability if t is not a pair type, but can be instantiated in a pair type. For example, the type of
(λα→(α∨((β→β)\(Int→Int)))x.x)(42, 3) is (Int × Int) ∨ ((β → β) \ (Int → Int)), which is not a
pair type, but can be instantiated in (Int × Int) by taking β = Int. We believe these kinds of types will
not be written by programmers, and it is safe to use the following projection rule in practice.

∆ ;Γ ⊢I a : t t ≤ 1 × 1

∆ ;Γ ⊢I πi(a) : πππi(t)
(INF-PROJ’)

We now look at the type inference rules for the type case a∈t ? a1 : a2. The four different rules consider
the different possible instantiations that make the type t′ inferred for a fit t or not. For the sake of
simplicity, we decide not to infer type substitutions for polymorphic arguments of type cases. Indeed, in
the expression (λα→αx.x) ∈ Int → Int ? true : false, we assume the programmer wants to do a
type case on the polymorphic identity, and not on one of its instance (otherwise, he would have written the
instantiated interface directly), so we do not try to instantiate it. And in any case there is no real reason
for which the inference system should choose to instantiate the identity by Int→Int (and thus make the
test succeed) rather than Bool→Bool (and thus make the test fail). If we decide not to infer types for
polymorphic arguments of type-case expression, then since α → α is not a subtype of Int → Int (we
have α → α ⊑∅ Int → Int but α → α 6≤ Int → Int) the expression evaluates to false. With this
choice, we can merge the different inference rules into the following one.

∆ ;Γ ⊢I a : t′ t1 = t′ ∧ t t2 = t′ ∧ ¬t
ti 6≃ 0 ⇒ ∆ ;Γ ⊢I ai : si

∆ ;Γ ⊢I (a∈t ? a1 : a2) :
∨

ti 6≃0

si
(INF-CASE’)

Finally, consider the inference rule for abstractions:

∀i ∈ I.







∆ ∪ var(
∧

i∈I

ti → si) ;Γ, (x : ti) ⊢I a : s′i

s′i ⊑∆∪var(
∧

i∈I ti→si) si

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si

We verify that the abstraction can be typed with each arrow type ti → si in the interface. Meanwhile, we
also infer a set of type substitutions to tally the type s′i we infer for the body expression with si. In practice,
similarly, we expect that the abstraction is well-typed only if the type s′i we infer for the body expression is
a subtype of si. For example, the expression

λBool→(Int→Int)x.x∈true ? (λα→αy.y) : (λα→αy.(λα→αz.z)y)
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is not well-typed while

λBool→(α→α)x.x∈true ? (λα→αy.y) : (λα→αy.(λα→αz.z)y)

is well-typed. So we use the following restricted rule for abstractions instead:

∀i ∈ I. ∆ ∪ var(
∧

i∈I

ti → si) ;Γ, (x : ti) ⊢I a : s′i and s′i ≤ si

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si
(INF-ABSTR’)

In conclusion, we restrict the inference of type substitutions to applications. We give in Figure 6 the
inference rules of the system which respects the above restrictions. With these new rules, the system remains
sound, but it is not complete.

∆ ;Γ ⊢I c : bc
(INF-CONST)

∆ ;Γ ⊢I x : Γ(x)
(INF-VAR)

∆ ;Γ ⊢I a1 : t1 ∆ ;Γ ⊢I a2 : t2

∆ ;Γ ⊢I (a1, a2) : t1 × t2
(INF-PAIR)

∆ ;Γ ⊢I a : t t ≤ 1 × 1

∆ ;Γ ⊢I πi(a) : πππi(t)
(INF-PROJ’)

∆ ;Γ ⊢I a1 : t ∆ ;Γ ⊢I a2 : s u ∈ t •∆s

∆ ;Γ ⊢I a1a2 : u
(INF-APPL)

∀i ∈ I. ∆ ∪ var(
∧

i∈I

ti → si) ;Γ, (x : ti) ⊢I a : s′i and s′i ≤ si

∆ ;Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si
(INF-ABSTR’)

∆ ;Γ ⊢I a : t′ t1 = t′ ∧ t t2 = t′ ∧ ¬t
ti 6≃ 0 ⇒ ∆ ;Γ ⊢I ai : si

∆ ;Γ ⊢I (a∈t ? a1 : a2) :
∨

ti 6≃0

si
(INF-CASE’)

Figure 6. Restricted type-substitution inference rules

Theorem A.15. If Γ ⊢I a : t, then there exists an expression e ∈ E0 such that erase(e) = a and
Γ ⊢A e : t.

Proof. Similar to the proof of Theorem A.13.

B. Type Tallying

Given two types t and s, the goal of this section is to find pairs of sets of type-substitutions [σi]i∈I and
[σj ]j∈J such that

∧

j∈J sσj ≤
∨

i∈I tσi. Assuming that the cardinalities of I and J are known, then this
problem can be reduced to a type tallying problem, that we define and solve first. We then explain how we
can reduce the original problem to the type tallying problem, and provide a semi-algorithm for the original
problem. Finally, we give some heuristics to establish upper bounds (which depend on t and s) for the
cardinalities of I and J .

B.1 Type Tallying Problem

Given a finite set C of pairs of types and a finite set ∆ of type variables, the tallying problem for C and ∆
consists in verifying whether there exists a substitution σ such that σ ♯ ∆ and for all (s, t) ∈ C, sσ ≤ tσ
holds. In this section we denote constraints as triples. The notation is different from the one used in Section 3
in that it also specifies the symbol of the relation. So a pair of types (s, t) ∈ C corresponds to the constraint
(s,≤, t):

Definition B.1 (Constraints). A constraint (t, c, s) is a triple belonging to T ×{≤,≥}×T . Let C denote
the set of all constraints. Given a constraint-set C ⊆ C , the set of type variables occurring in C is defined
as

var(C) =
⋃

(t,c,s)∈C

var(t) ∪ var(s)
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Definition B.2 (Normalized constraint). A constraint (t, c, s) is said to be normalized if t is a type
variable. A constraint-set C ⊆ C is said to be normalized if every constraint (t, c, s) ∈ C is normalized.
Given a normalized constraint-set C, its domain is defined as dom(C) = {α | ∃c, s. (α, c, s) ∈ C}.

Definition B.3 (Constraint solution). Let C ⊆ C be a constraint-set. A solution to C is a substitution σ
such that

∀(t,≤, s) ∈ C . tσ ≤ sσ holds and ∀(t,≥, s) ∈ C . sσ ≤ tσ holds.

If σ is a solution to C, we write σ  C.

Definition B.4. Given two sets of constraint-sets S1,S2 ⊆ P(C ), we define their union as

S1 ⊔ S2 = S1 ∪ S2

and their intersection as

S1 ⊓ S2 = {C1 ∪ C2 | C1 ∈ S1, C2 ∈ S2}

Given a constraint-set C, the constraint solving algorithm produces the set of all the solutions of C by
following the algorithm given in Section 3.2.1. Let us examine each step of the algorithm on some examples.

Step 1: constraint normalization.
Because normalized constraints are easier to solve than regular ones, we first turn each constraint
into an equivalent set of normalized constraint-sets according to the decomposition rules in [4]. For
example, the constraint c1 = (α × α) ≤ ((Int × 1) × (1 × Int)) can be normalized into the
set S1 = {{(α,≤, 0)}; {(α,≤, (Int × 1)), (α,≤, (1 × Int))}}. Another example is the constraint
c2 = ((β × β) → (Int × Int),≤, α → α), which is equivalent to the following set of normalized
constraint-sets S2 = {{(α,≤, 0)}; {(α,≤, (β× β)), (α,≥, (Int× Int))}}. Then we join all the sets
of constraint-sets by (constraint-set) intersections, yielding the normalization of the original constraint-
set. For instance, the normalization S of {c1, c2} is S1 ⊓ S2. It is easy to see that the constraint-set
C1 = {(α,≤, (Int × 1)), (α,≤, (1 × Int)), (α,≤, (β × β)), (α,≥, (Int × Int))} is in S (see
Definition B.4).

Step 2: constraint merging.

Step 2.1: merge the constraints with a same type variable.
In each constraint-set of the normalization of the original constraint-set, there may be several
constraints of the form (α,≥, ti) (resp. (α,≤, ti)), which give different lower bounds (resp. upper
bounds) for α. We merge all these constraints into one using unions (resp. intersections). For
example, the constraint-set C1 of the previous step can be merged as C2 = {(α,≤, (Int×1)∧(1×
Int)∧ (β×β)), (α,≥, (Int×Int))}, which is equivalent to {(α,≤, (Int∧β×Int∧β)), (α,≥
, (Int × Int))}.

Step 2.2: saturate the lower and upper bounds of a same type variable.
If a type variable has both a lower bound s and an upper bound t in a constraint-set, then the solutions
we are looking for must satisfy the constraint (s,≤, t) as well. Therefore, we have to saturate the
constraint-set with (s,≤, t), which has to be normalized, merged, and saturated itself first. Take C2

for example. We have to saturate C2 with ((Int×Int),≤, (Int∧β×Int∧β)), whose normalization
is {{(β,≥, Int)}}. Thus, the saturation of C2 is {C2}⊓{{(β,≥, Int)}}, which contains only one
constraint-set C3 = {(α,≤, (Int ∧ β × Int ∧ β)), (α,≥, (Int × Int)), (β,≥, Int)}.

Step 3: constraint solving.

Step 3.1: transform each constraint-set into an equation system.
To transform constraints into equations, we use the property that some set of constraints is satisfied
for all assignments of α included between s and t if and only if the same set in which we replace
α by (s ∨ α′) ∧ t8 is satisfied for all possible assignments of α′ (with α′ fresh). Of course such a
transformation works only if s ≤ t, but remember that we “checked” that this holds at the moment
of the saturation. By performing this replacement for each variable we obtain a system of equations.
For example, the constraint set C3 is equivalent to the following equation system E:

α = ((Int × Int) ∨ α′) ∧ (Int ∧ β × Int ∧ β)
β = Int ∨ β′

where α′, β′ are fresh type variables.

Step 3.2: extract a substitution from each equation system.
Finally, using the Courcelle’s work on infinite trees [8], we solve each equation system, which gives
us a substitution which is a solution of the original constraint-set. For example, we can solve the
equation system E, yielding the type-substitution {(Int × Int)/α, Int ∨ β′/β}, which is a solution of
C3 and thus of {c1, c2}.

In the following subsections we study in details each step of the algorithm.

8 Or by s ∨ (α′ ∧ t).
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B.1.1 Constraint Normalization

The type tallying problem is quite similar to the subtyping problem presented in [4]. We therefore reuse
most of the technology developed in [4] such as, for example, the transformation of the subtyping problem
into an emptiness decision problem, the elimination of top-level constructors, and so on. One of the main
differences is that we do not want to eliminate top-level type variables from constraints, but, rather, we want
to isolate them to build sets of normalized constraints (from which we then construct sets of substitutions).

In general, normalizing a constraint generates a set of constraints. For example, (α∨β,≥, 0) holds if and
only if (α,≥, 0) or (β,≥, 0) holds; therefore the constraint (α ∨ β,≥, 0) is equivalent to the normalized
constraint-set {(α,≥, 0), (β,≥, 0)}. Consequently, the normalization of a constraint-set C yields a set S

of normalized constraint-sets.
Several normalized sets may be suitable replacements for a given constraint; for example, {(α,≤

, β ∨ t1), (β,≤, α ∨ t2)} and {(α,≤, β ∨ t1), (α,≥, β \ t2)} are clearly equivalent normalized sets.
However, the equation systems generated by the algorithm for these two sets are completely different, and
different equation systems yield different substitutions (see Section B.1.3 for more details). Concretely,
{(α,≤, β ∨ t1), (β,≤, α ∨ t2)} generates the equation system {α = α′ ∧ (β ∨ t1), β = β′ ∧ (α ∨ t2)},
which in turn gives the substitution σ1 such that

σ1(α) = µx. ((α′ ∧ β′ ∧ x) ∨ (α′ ∧ β′ ∧ t2) ∨ (α′ ∧ t1))
σ1(β) = µx. ((β′ ∧ α′ ∧ x) ∨ (β′ ∧ α′ ∧ t1) ∨ (β′ ∧ t2))

where α′ and β′ are fresh type variables and we used the µ notation to denote regular recursive types. These
recursive types are not valid in our calculus, because x does not occur under a type constructor (this means
that the unfolding of the type does not satisfy the property that every infinite branch contains infinitely many
occurrences of type constructors). In contrast, the equation system built from {(α,≤, β∨t1), (α,≥, β\t2)}
is α = ((β \ t2)∨α′)∧ (β∨ t1), and the corresponding substitution is σ2 = {((β \ t2) ∨ α′) ∧ (β ∨ t1)/α},
which is valid since it maps the type variable α into a well-formed type. Ill-formed recursive types are
generated when there exists a chain α0 = α1 B1 t1, . . . , αi = αi+1 Bi+1 ti+1, . . . , αn = α0 Bn+1 tn+1

(where Bi ∈ {∧,∨} for all i, and n ≥ 0) in the equation system built from the normalized constraint-
set. This chain implies the equation α0 = α0 B t′ for some B ∈ {∧,∨} and t′, and the corresponding
solution for α0 will be an ill-formed recursive type. To avoid this issue, we give an arbitrary ordering on type
variables occurring in the constraint-set C such that different type variables have different orders. Then we
always select the normalized constraint (α, c, t) such that the order of α is smaller than all the orders of the
top-level type variables in t. As a result, the transformed equation system does not contain any problematic
chain like the one above.

Definition B.5 (Ordering). Let V be a set of type variables. An ordering O on V is an injective map from
V to N.

We formalize normalization as a judgement Σ ⊢N C  S , which states that under the environment
Σ (which, informally, contains the types that have already been processed at this point), C is normalized
to S . The judgement is derived according the rules of Figure 7. These rules describe the same algorithm
as the function norm given in Figure 3 (ie, Σ ⊢N {(t,≤, 0)}  norm(t,Σ) is provable in the system of
Figure 7) but extended to handle also product types. We just switched to a deduction systems since it eases
the formal treatment.

If the constraint-set is empty, then clearly any substitution is a solution, and, the result of the normal-
ization is simply the singleton containing the empty set (rule (NEMPTY)). Otherwise, each constraint is
normalized separately, and the normalization of the constraint-set is the intersection of the normalizations
of each constraint (rule (NJOIN)). By using rules (NSYM), (NZERO), and (NDNF) repeatedly, we transform
any constraint into the constraint of the form (τ,≤, 0) where τ is disjunctive normal form: the first rule
reverses (t′,≥, t) into (t,≤, t′), the second rule moves the type t′ from the right of ≤ to the left, yielding
(t ∧ ¬t′,≤, 0), and finally the last rule puts t ∧ ¬t′ in disjunctive normal form. Such a type τ is the type
to be normalized. If τ is a union of single normal forms, the rule (NUNION) splits the union of single nor-
mal forms into constraints featuring each of the single normal forms. Then the results of each constraint
normalization are joined by the rule (NJOIN).

The following rules handle constraints of the form (τ,≤, 0), where τ is a single normal form. If there
are some top-level type variables, the rule (NTLV) generates a normalized constraint for the top-level type
variable whose order is the smallest. Otherwise, there are no top-level type variables. If τ has already been
normalized (i.e., it belongs to Σ), then it is not processed again (rule (NHYP)). Otherwise, we memoize it
and then process it using the predicate for single normal forms Σ ⊢∗

N C  S (rule (NASSUM)). Note
that switching from Σ ⊢N C  S to Σ ⊢∗

N C  S prevents the incorrect use of (NHYP) just after
(NASSUM), which would wrongly say that any type is normalized without doing any computation.

Finally, the last four rules state how to normalize constraints of the form (τ,≤, 0) where τ is a single
normal form and contains no top-level type variables. Thereby τ should be an intersection of atoms with
the same constructor. If τ is an intersection of basic types, normalizing is equivalent to checking whether τ
is empty or not: if it is (rule (NBASIC-T)), we return the singleton containing the empty set (any substitution
is a solution), otherwise there is no solution and we return the empty set (rule (NBASIC-F)). When τ
is an intersection of products, the rule (NPROD) decomposes τ into several candidate types (following
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Σ ⊢N ∅ {∅}
(NEMPTY)

Σ ⊢N {(ti ci t
′
i)} Si

Σ ⊢N {(ti ci t
′
i) | i ∈ I} 

l

i∈I

Si

(NJOIN)

Σ ⊢N {(t ≤ t
′
)} S

Σ ⊢N {(t′ ≥ t)} S
(NSYM)

Σ ⊢N {(t ∧ ¬t
′ ≤ 0)} S t

′ 6= 0

Σ ⊢N {(t ≤ t
′
)} S

(NZERO)

Σ ⊢N {(dnf(t) ≤ 0)} S

Σ ⊢N {(t ≤ 0)} S
(NDNF)

Σ ⊢N {(τi ≤ 0) | i ∈ I} S

Σ ⊢N {(
∨

i∈I

τi ≤ 0)} S

(NUNION)

tlv(τ0) = ∅ α
′ OP ∪ N S =

{

{{(α′
,≤,¬tα′ )}} α

′ ∈ P

{{(α′
,≥, tα′ )}} α

′ ∈ N

Σ ⊢N {(
∧

α∈P

α ∧
∧

α∈N

¬α ∧ τ0 ≤ 0)} S

(NTLV)

τ0 ∈ Σ tlv(τ0) = ∅

Σ ⊢N {(τ0 ≤ 0)} {∅}
(NHYP)

Σ ∪ {τ0} ⊢∗
N

{(τ0 ≤ 0)} S τ0 /∈ Σ tlv(τ0) = ∅

Σ ⊢N {(τ0 ≤ 0)} S
(NASSUM)

∧

i∈P

bi ∧
∧

j∈N

¬bj ≤ 0

Σ ⊢∗
N

{(
∧

i∈P

bi ∧
∧

j∈N

¬bj ≤ 0)} {∅}
(NBASIC-T)

∧

i∈P

bi ∧
∧

j∈N

¬bj � 0

Σ ⊢∗
N

{(
∧

i∈P

bi ∧
∧

j∈N

¬bj ≤ 0)} ∅
(NBASIC-F)

∀N ′ ⊆ N.



















Σ ⊢N {
∧

i∈P

t
1
i ∧

∧

j∈N′

¬t
1
j ≤ 0} S

1
N′

Σ ⊢N {
∧

i∈P

t
2
i ∧

∧

j∈N\N′

¬t
2
j ≤ 0} S

2
N′

Σ ⊢∗
N

{(
∧

i∈P

(t
1
i × t

2
i ) ∧

∧

j∈N

¬(t
1
j × t

2
j ) ≤ 0)} 

l

N′⊆N

(S
1
N′ ⊔ S

2
N′ )

(NPROD)

∃j ∈ N ∀P ′ ⊆ P.



























Σ ⊢N {t1j ∧
∧

i∈P ′

¬t
1
i ≤ 0} S

1
P ′











Σ ⊢N {
∧

i∈P\P ′

t
2
i ∧ ¬t

2
j ≤ 0} S

2
P ′ P

′ 6= P

S
2
N′ = ∅ otherwise

Σ ⊢∗
N

{(
∧

i∈P

(t
1
i → t

2
i ) ∧

∧

j∈N

¬(t
1
j → t

2
j ) ≤ 0)} 

⊔

j∈N

l

P ′⊆P

(S
1
P ′ ⊔ S

2
P ′ )

(NARROW)

where t and t with scripts are types, ci belongs to {≤,≥}, τ0 and τi are single normal forms, α OP ∪ N denotes α has the
smallest order in P ∪ N under the ordering O, and tα′ is the type obtained from

∧

α∈P α ∧
∧

α∈N ¬α ∧ τ0 by eliminating

α′.

Figure 7. Normalization rules

Lemma 3.11 in [4]), which are to be further normalized. The case when τ is an intersection of arrows (rule
(NARROW)) is treated similarly. Note that, in the last two rules, we switch from Σ ⊢∗

N C  S back to
Σ ⊢N C  S in the premises to ensure termination.

If ∅ ⊢N C  S , then S is the result of the normalization of C. We now prove soundness,
completeness, and termination of the constraint normalization algorithm.

To prove soundness, we use a family of subtyping relations ≤n that layer ≤9 (i.e., such that
⋃

n∈N
≤n=≤)

and a family of satisfaction predicates n that layer  (i.e., such that
⋃

n∈N
n=), which are defined as

follows.

Definition B.6. Let ≤ be the subtyping relation induced by a well-founded convex model with infinite
support ([_],D). We define the family (≤n)n∈N of subtyping relations as

t ≤n s
def

⇐⇒ ∀η. [t]nη ⊆ [s]nη

where [_]n is the rank n interpretation of a type, defined as

[t]nη = {d ∈ [t]η | height(d) ≤ n}

9 See [4] for the definitions of the notions of models, interpretations, and assignments
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and height(d) is the height of an element d in D , defined as

height(c) = 1
height((d, d′)) = max(height(d), height(d′)) + 1

height({(d1, d
′
1), . . . , (dn, d

′
n)}) =

{

1 n = 0

max(height(di), height(d
′
i), . . .) + 1 n > 0

Lemma B.7. Let ≤ be the subtyping relation induced by a well-founded convex model with infinite support.
Then

(1) t ≤0 s for all t, s ∈ T .

(2) t ≤ s ⇐⇒ ∀n. t ≤n s.

(3)

∧

i∈I

(ti × si) ≤n+1

∨

j∈J

(tj × sj) ⇐⇒ ∀J ′ ⊆ J .











∧

i∈I ti ≤n

∨

j∈J′ tj

∨
∧

i∈I si ≤n

∨

j∈J\J′ sj

(4)

∧

i∈I

(ti → si) ≤n+1

∨

j∈J

(tj → sj) ⇐⇒ ∃j0∈J . ∀I ′⊆I .



























tj0 ≤n

∨

i∈I′ ti
∨










I 6= I ′

∧
∧

i∈I\I′ si ≤n sj0

Proof. (1) straightforward.
(2) straightforward.
(3) the result follows by Lemma 3.11 in [4] and Definition B.6.
(4) the result follows by Lemma 3.12 in [4] and Definition B.6.

Definition B.8. Given a constraint-set C and a type substitution σ, we define the rank n satisfaction
predicate n as

σ n C
def

⇐⇒ ∀(t,≤, s) ∈ C. t ≤n s and ∀(t,≥, s) ∈ C. s ≤n t

Lemma B.9. Let ≤ be the subtyping relation induced by a well-founded convex model with infinite support.
Then

(1) σ 0 C for all σ and C.

(2) σ  C ⇐⇒ ∀n. σ n C.

Proof. Consequence of Lemma B.7.

Given a set Σ of types, we write C(Σ) for the constraint-set {(t,≤, 0) | t ∈ Σ}.

Lemma B.10 (Soundness). Let C be a constraint-set. If ∅ ⊢N C  S , then for all normalized constraint-
set C′ ∈ S and all substitution σ, we have σ  C′ ⇒ σ  C.

Proof. We prove the following stronger statements.

(1) Assume Σ ⊢N C  S . For all C′ ∈ S , σ and n, if σ n C(Σ) and σ n C′, then σ n C.
(2) Assume Σ ⊢∗

N C  S . For all C′ ∈ S , σ and n, if σ n C(Σ) and σ n C′, then σ n+1 C.

Before proving these statements, we explain how the first property implies the lemma. Suppose ∅ ⊢N C  
S , C′ ∈ S and σ  C′. It is easy to check that σ n C(∅) holds for all n. From σ  C′, we deduce
σ n C′ for all n (by Lemma B.9). By Property (1), we have σ n C for all n, and we have then the
required result by Lemma B.9.

We prove these two properties simultaneously by induction on the derivations of Σ ⊢N C  S and
Σ ⊢∗

N C  S .

(NEMPTY): straightforward.

(NJOIN): according to Definition B.4, if there exists Ci ∈ Si such that Ci = ∅, then
d

i∈I Si = ∅, and
the result follows immediately. Otherwise, we have C′ =

⋃

i∈I Ci, where Ci ∈ Si. As σ n C′, then
clearly σ n Ci. By induction, we have σ n {(ti ci t

′
i)}. Therefore, we get σ n {(ti ci t

′
i) | i ∈ I}.

(NSYM): by induction, we have σ n {(t ≤ t′)}. Then clearly σ n {(t′ ≥ t)}.

(NZERO): by induction, we have σ n {(t∧¬t′ ≤ 0)}. According to set-theory, we have σ n {(t ≤ t′)}.
(NDNF): similar to the case of (NZERO).
(NUNION): similar to the case of (NZERO).
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(NTLV): assume α′ has the smallest order in P ∪ N . If α′ ∈ P , then we have C′ = (α′,≤,¬tα′). From
σ n C′, we deduce σ(α′) ≤n ¬tα′σ. According to set-theory, we have σ(α′) ∧ tα′σ ≤n 0, that is,
σ n {(

∧

α∈P α ∧
∧

α∈N ¬α ∧ τ0 ≤ 0)}. Otherwise, we have α′ ∈ N and the result follows as well.

(NHYP): since we have τ0 ∈ Σ and σ n C(Σ), then σ n {(τ0 ≤ 0)} holds.

(NASSUM): if n = 0, then σ 0 {(τ0 ≤ 0)} holds. Suppose n > 0. From σ n C(Σ) and σ k C′,
it is easy to prove that σ k C(Σ) (*) and σ k C′ (**) hold for all 0 ≤ k ≤ n. We now prove that
σ k {(τ0 ≤ 0}) (***) holds for all 1 ≤ k ≤ n. By definition of 0, we have σ 0 C(Σ ∪ {τ0}) and
σ 0 C′. Consequently, by the induction hypothesis (item (2)), we have σ 1 {τ0 ≤ 0}. From this and
(*), we deduce σ 1 C(Σ ∪ {τ0}). Because we also have σ 1 C′ (by (**)), we can use the induction
hypothesis (item (2)) again to deduce σ 2 {(τ0 ≤ 0}). Hence, we can prove (***) by induction on
1 ≤ k ≤ n. In particular, we have σ n {(τ0 ≤ 0}), which is the required result.

(NBASIC): straightforward.

(NPROD): If
d

N′⊆N (S 1
N′ ⊔ S

2
N′) is ∅, then the result follows straightforwardly. Otherwise, we have

C′ =
⋃

N′⊆N CN′ , where CN′ ∈ (S 1
N′ ⊔ S

2
N′). Since σ n C′, we have σ n CN′ for all subset

N ′ ⊆ N . Moreover, following Definition B.4, either CN′ ∈ S
1
N′ or CN′ ∈ S

2
N′ . By induction, we

have either σ n {
∧

i∈P t1i ∧
∧

j∈N′ ¬t
1
j ≤ 0} or σ n {

∧

i∈P t2i ∧
∧

j∈N\N′ ¬t
2
j ≤ 0}. That is, for

all subset N ′ ⊆ N , we have
∧

i∈P

t1iσ ∧
∧

j∈N′

¬t1jσ ≤n 0 or
∧

i∈P

t2iσ ∧
∧

j∈N\N′

¬t2jσ ≤n 0

Applying Lemma B.7, we have
∧

i∈P

(t1i × t2i )σ ∧
∧

j∈N

¬(t1j × t2j )σ ≤n+1 0

Thus, σ n+1 {(
∧

i∈P (t
1
i × t2i ) ∧

∧

j∈N ¬(t1j × t2j ) ≤ 0)}.

(NARROW): similar to the case of (NPROD).

Given a normalized constraint-set C and a set X of type variables, we define the restriction C|X of C
by X to be {(α, c, t) ∈ C | α ∈ X}.

Lemma B.11. Let t be a type and ∅ ⊢N {(t,≤, 0)} S . Then for all normalized constraint-set C ∈ S ,
all substitution σ and all n, if σ n C|tlv(t) and σ n−1 C \ C|tlv(t), then σ n {(t,≤, 0)}.

Proof. By applying the rules (NDNF) and (NUNION), the constraint-set {(t,≤, 0)} is normalized into a new
constraint-set C′, consisting of the constraints of the form (τ,≤, 0), where τ is a single normal form. That
is, ∅ ⊢N {(t,≤, 0)}  {C′}. Let C′

1 = {(τ,≤, 0) ∈ C′ | tlv(τ) 6= ∅} and C′
2 = C′ \ C′

1. It is easy to
deduce that all the constraints in C \ C|tlv(t) are generated from C′

2 and must pass at least one instance of
⊢∗

N (i.e., being decomposed at least once). Since σ n−1 C \ C|tlv(t), then according to the statement (2)
in the proof of Lemma B.10, we have σ n C′

2. Moreover, from σ n C|tlv(t), we have σ n C′
1. Thus,

σ n C′ and a fortiori σ n {(t,≤, 0)}.

Lemma B.12 (Completeness). Let C be a constraint-set such that ∅ ⊢N C  S . For all substitution σ,
if σ  C, then there exists C′ ∈ S such that σ  C′.

Proof. We prove the following stronger statements.

(1) Assume Σ ⊢N C  S . For all σ, if σ  C(Σ) and σ  C, then there exists C′ ∈ S such that
σ  C′.

(2) Assume Σ ⊢∗
N C  S . For all σ, if σ  C(Σ) and σ  C, then there exists C′ ∈ S such that

σ  C′.

The result is then a direct consequence of the first item (indeed, we have σ  C(∅) for all σ). We prove the
two items simultaneously by induction on the derivations of Σ ⊢N C  S and Σ ⊢∗

N C  S .

(NEMPTY): straightforward.

(NJOIN): as σ  {(ti ci t
′
i) | i ∈ I}, we have in particular σ  {(ti ci t

′
i)} for all i. By induction, there

exists Ci ∈ Si such that σ  Ci. So σ 
⋃

i∈I Ci. Moreover, according to Definition B.4,
⋃

i∈I Ci

must be in
d

i∈I Si. Therefore, the result follows.

(NSYM): if σ  {(t′ ≥ t)}, then σ  {(t ≤ t′)}. By induction, the result follows.

(NZERO): since σ  {(t ≤ t′)}, according to set-theory, σ  {(t ∧ ¬t′ ≤ 0)}. By induction, the result
follows.

(NDNF): similar to the case of (NZERO).
(NUNION): similar to the case of (NZERO).
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(NTLV): assume α′ has the smallest order in P ∪ N . If α′ ∈ P , then according to set-theory, we have
α′σ ≤ ¬(

∧

α∈(P\{α′}) α ∧
∧

α∈N ¬α ∧ τ0), that is σ  {(α′ ≤ ¬tα′)}. Otherwise, we have α′ ∈ N
and the result follows as well.

(NHYP): it is clear that σ  ∅.

(NASSUM): as σ  C(Σ) and σ  {(τ0 ≤ 0)}, we have σ  C(Σ ∪ {τ0}). By induction, the result
follows.

(NBASIC): straightforward.
(NPROD): as

σ  {(
∧

i∈P

(t1i × t2i ) ∧
∧

j∈N

¬(t1j × t2j ) ≤ 0)}

we have
∧

i∈P

(t1i × t2i )σ ∧
∧

j∈N

¬(t1j × t2j )σ ≤ 0

Applying Lemma 3.11 in [4], for all subset N ′ ⊆ N , we have
∧

i∈P

t1iσ ∧
∧

j∈N′

¬t1jσ ≤ 0 or
∧

i∈P

t2iσ ∧
∧

j∈N\N′

¬t2jσ ≤ 0

that is,

σ  {(
∧

i∈P

t1i ∧
∧

j∈N′

¬t1j ≤ 0)} or σ  {(
∧

i∈P

t2i ∧
∧

j∈N\N′

¬t2j ≤ 0)}

By induction, either there exists C1
N′ ∈ S

1
N′ such that σ  C1

N′ or there exists C2
N′ ∈ S

2
N′ such

that σ  C2
N′ . According to Definition B.4, we have C1

N′ , C2
N′ ∈ S

1
N′ ⊔ S

2
N′ . Thus there exists

C′
N′ ∈ S

1
N′⊔S

2
N′ such that σ  C′

N′ . Therefore σ 
⋃

N′⊆N C′
N′ . Moreover, according to Definition

B.4 again,
⋃

N′⊆N C′
N′ ∈

d
N′⊆N (S 1

N′ ⊔ S
2
N′). Hence, the result follows.

(NARROW): similar to the case (NPROD) except we use Lemma 3.12 in [4].

We now prove termination of the algorithm.

Definition B.13 (Plinth). A plinth i ⊂ T is a set of types with the following properties:

• i is finite;

• i contains 1, 0 and is closed under Boolean connectives (∧,∨,¬);

• for all types (t1 × t2) or (t1 → t2) in i, we have t1 ∈ i and t2 ∈ i.

As stated in [11], every finite set of types is included in a plinth. Indeed, we already know that for a
regular type t the set of its subtrees S is finite. The definition of the plinth ensures that the closure of S
under Boolean connective is also finite. Moreover, if t belongs to a plinth i, then the set of its subtrees is
contained in i. This is used to show the termination of algorithms working on types.

Lemma B.14 (Termination). Let C be a finite constraint-set. Then the normalization of C terminates.

Proof. Let T be the set of type occurring in C. As C is finite, T is finite as well. Let i be a plinth such that
T ⊆ i. Then when we normalize a constraint (t ≤ 0) during the process of ∅ ⊢N C, t would belong to
i. We prove the lemma by induction on (|i \ Σ|, U, |C|) lexicographically ordered, where Σ is the set of
types we have normalized, U is the number of unions ∨ occurring in the constraint-set C plus the number
of constraints (t,≥, s) and the number of constraint (t,≤, s) where s 6= 0 or t is not in disjunctive normal
form, and C is the constraint-set to be normalized.

(NEMPTY): it terminates immediately.

(NJOIN): |C| decreases.
(NSYM): U decreases.
(NZERO): U decreases.
(NDNF): U decreases.

(NUNION): although |C| increases, U decreases.
(NTLV): it terminates immediately.
(NHYP): it terminates immediately.

(NASSUM): as τ0 ∈ i and τ0 /∈ Σ, the number |i \ Σ| decreases.
(NBASIC): it terminates immediately.

(NPROD): although (|i \ Σ|, U, |C|) may not change, the next rule to apply must be one of (NEMPTY),
(NJOIN), (NSYM), (NZERO), (NDNF), (NUNION), (NTLV), (NHYP) or (NASSUM). Therefore, either the
normalization terminates or the triple decreases in the next step.

(NARROW): similar to Case (NPROD).
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Lemma B.15 (Finiteness). Let C be a constraint-set and ∅ ⊢N C  S . Then S is finite.

Proof. It is easy to prove that each normalizing rule generates a finite set of finite sets of normalized
constraints.

Definition B.16. Let C be a normalized constraint-set and O an ordering on var(C). We say C is well-
ordered if for all normalized constraint (α, c, tα) ∈ C and for all β ∈ tlv(tα), O(α) < O(β) holds.

Lemma B.17. Let C be a constraint-set and ∅ ⊢N C  S . Then for all normalized constraint-set
C′ ∈ S , C′ is well-ordered.

Proof. The only way to generate normalized constraints is Rule (NTLV), where we have selected the
normalized constraint for the type variable α whose order is minimum as the representative one, that is,
∀β ∈ tlv(tα) . O(α) < O(β). Therefore, the result follows.

Definition B.18. A general renaming ρ is a special type substitution that maps each type variable to another
(fresh) type variable.

Lemma B.19. Let t, s be two types and [ρi]i∈I , [ρj ]j∈J two sets of general renamings. Then if ∅ ⊢N

{(s ∧ t,≤, 0)} ∅, then ∅ ⊢N {((
∧

j∈J sρj) ∧ (
∧

i∈I tρi),≤, 0)} ∅.

Proof. By induction on the number of (NPROD) and (NARROW) used in the derivation of ∅ ⊢N {(s∧¬t,≤
, 0)} and by cases on the disjunctive normal form τ of s∧¬t. The failure of the normalization of (s∧t,≤, 0)
is essentially due to (NBASIC-F), (NPROD) and (NARROW), where there are no top-level type variables to
make the type empty.
The case of arrows is a little complicated, as we need to consider more than two types: one type for the
negative parts and two types for the positive parts from t and s respectively. Indeed, what we prove is the
following stronger statement:

∅ ⊢N {(
∧

k∈K

tk,≤, 0)} ∅ =⇒ ∅ ⊢N {(
∧

k∈K

(
∧

ik∈Ik

tkρik ),≤, 0)} ∅

where |K| ≥ 2 and ρik ’s are general renamings. For simplicity, we only consider |K| = 2, as it is easy to
extend to the case of |K| > 2.

Case 1: τ = τbs ∧ τbt and τ 6≃ 0, where τbs (τbt resp.) is an intersection of basic types from s (t resp.).
Then the expansion of τ is

(
∧

j∈J

τbsρj) ∧ (
∧

i∈I

τbtρi) ≃ τbs ∧ τbt 6≃ 0

So ∅ ⊢N {((
∧

j∈J τbsρj) ∧ (
∧

i∈I τbtρi),≤, 0)} ∅.

Case 2: τ =
∧

ps∈Ps
(wps ×vps)∧

∧

ns∈Ns
¬(wns×vns)∧

∧

pt∈Pt
(wpt ×vpt)∧

∧

nt∈Nt
¬(wnt ×vnt),

where Ps, Ns are from s and Pt, Nt are from t. Since ∅ ⊢N {τ,≤, 0)}  ∅, by the rule (NPROD),
there exist two sets N ′

s ⊆ Ns and N ′
t ⊆ Nt such that















∅ ⊢N {
∧

ps∈Ps

wps ∧
∧

ns∈N′
s

¬wns ∧
∧

pt∈Pt

wpt ∧
∧

nt∈N′
t

¬wnt ,≤, 0)} ∅

∅ ⊢N {
∧

ps∈Ps

vps ∧
∧

ns∈Ns\N′
s

¬vns ∧
∧

pt∈Pt

vpt ∧
∧

nt∈Nt\N
′
t

¬vnt ,≤, 0)} ∅

By induction, we have














∅ ⊢N {
∧

j∈J

(
∧

ps∈Ps

wps ∧
∧

ns∈N′
s

¬wns)ρj ∧
∧

i∈I

(
∧

pt∈Pt

wpt ∧
∧

nt∈N′
t

¬wnt)ρi,≤, 0)} ∅

∅ ⊢N {
∧

j∈J

(
∧

ps∈Ps

vps ∧
∧

ns∈Ns\N′
s

¬vns)ρj ∧
∧

i∈I

(
∧

pt∈Pt

vpt ∧
∧

nt∈Nt\N
′
t

¬vnt)ρi,≤, 0)} ∅

Then by the rule (NPROD) again, we get

∅ ⊢N {
∧

j∈J

(τs)ρj ∧
∧

i∈I

(τt)ρi,≤, 0)} ∅

where τs =
∧

ps∈Ps
(wps × vps) ∧

∧

ns∈Ns
¬(wns × vns) and τt =

∧

pt∈Pt
(wpt × vpt) ∧

∧

nt∈Nt
¬(wnt × vnt).
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Case 3: τ =
∧

ps∈Ps
(wps → vps)∧

∧

ns∈Ns
¬(wns → vns)∧

∧

pt∈Pt
(wpt → vpt)∧

∧

nt∈Nt
¬(wnt →

vnt), where Ps, Ns are from s and Pt, Nt are from t. Since ∅ ⊢N {τ,≤, 0)}  ∅, by the rule
(NARROW), for all w → v ∈ Ns ∪Nt, there exist a set P ′

s ⊆ Ps and a set P ′
t ⊆ Pt such that















∅ ⊢N {
∧

ps∈P ′
s

¬wps ∧
∧

pt∈P ′
t

¬wpt ∧ w,≤, 0)} ∅

P ′
s = Ps ∧ P ′

t = Pt or ∅ ⊢N {
∧

ps∈Ps\P ′
s

vps ∧
∧

pt∈Pt\P
′
t

vpt ∧ ¬v,≤, 0)} ∅

By induction, for all ρ ∈ [ρi]i∈I ∪ [ρj ]j∈J , we have


































∅ ⊢N {
∧

j∈J

(
∧

ps∈P ′
s

¬wps)ρj ∧
∧

i∈I

(
∧

pt∈P ′
t

¬wpt)ρi ∧ wρ,≤, 0)} ∅















P ′
s = Ps ∧ P ′

t = Pt

or

∅ ⊢N {
∧

j∈J

(
∧

ps∈Ps\P ′
s

vps)ρj ∧
∧

i∈I

(
∧

pt∈Pt\P
′
t

vpt)ρi ∧ ¬vρ,≤, 0)} ∅

Then by the rule (NARROW) again, we get

∅ ⊢N {
∧

j∈J

(τs)ρj ∧
∧

i∈I

(τt)ρi,≤, 0)} ∅

where τs =
∧

ps∈Ps
(wps → vps) ∧

∧

ns∈Ns
¬(wns → vns) and τt =

∧

pt∈Pt
(wpt → vpt) ∧

∧

nt∈Nt
¬(wnt → vnt).

Case 4: τ = (
∨

ks∈Ks
τks) ∧ (

∨

kt∈Kt
τkt), where τks and τkt are single normal forms. As ∅ ⊢N

{(τ,≤, 0)}  ∅, there must exist at least one ks ∈ Ks and at least one kt ∈ Kt such that
∅ ⊢N {(τks ∧ τkt ,≤, 0)} ∅. By Cases (1)− (3), the result follows.

The type tallying problem is parameterized with a set ∆ of type variables that cannot be instantiated,
but so far, we have not considered these monomorphic variables in the normalization procedure. Taking ∆
into account affects only the (NTLV) rule, where a normalized constraint is built by singling out a variable
α. Since the type substitution σ we want to construct must not touch the type variables in ∆ (i.e., σ ♯ ∆),
we cannot choose a variable α in ∆. To avoid this, we order the variables in C so that those belonging to ∆
are always greater than those not in ∆. If, by choosing the minimum top-level variable α, we obtain α ∈ ∆,
it means that all the top-level type variables are contained in ∆. According to Lemmas C.3 and C.11 in
the companion paper [3], we can then safely eliminate these type variables. So taking ∆ into account, we
amend the (NTLV) rule as follows.

tlv(τ0) = ∅ α′ OP ∪N S =











{{(α′,≤,¬tα′)}} α′ ∈ P \∆

{{(α′,≥, tα′)}} α′ ∈ N \∆

Σ ⊢N {(τ0 ≤ 0)} α′ ∈ ∆

Σ ⊢N {(
∧

α∈P

α ∧
∧

α∈N

¬α ∧ τ0 ≤ 0)} S
(NTLV)

Furthermore, it is easy to prove the soundness, completeness, and termination of the algorithm extended
with ∆.

B.1.2 Constraint merging

A normalized constraint-set may contain several constraints for a same type variable, which can eventu-
ally be merged together. For instance, the constraints α ≥ t1 and α ≥ t2 can be replaced by α ≥ t1 ∨ t2,
and the constraints α ≤ t1 and α ≤ t2 can be replaced by α ≤ t1 ∧ t2. That is to say, we can merge all the
lower bounds (resp. upper bounds) of a type variable into only one by unions (resp. intersections).

After repeated uses of the merging rules, a set C contains at most one lower bound constraint and at
most one upper bound constraint for each type variable. If both lower and upper bounds exist for a given
α, that is, α ≥ t1 and α ≤ t2 belong to C, then the substitution we want to construct from C must
satisfy the constraint (t1,≤, t2) as well. For that, we first normalize the constraint (t1,≤, t2), yielding a
set of constraint-sets S , and then saturate C with any normalized constraint-set C′ ∈ S . Formally, we
describe the saturation process as the saturation rule Σp, CΣ ⊢S C  S , where Σp is a set of type pairs
(if (t1, t2) ∈ Σp, then the constraint t1 ≤ t2 has already been treated at this point), CΣ is a normalized
constraint-set (which collects the treated original constraints, like (α,≥, t1) and (α,≤, t2), that generate
the additional constraints), C is the normalized constraint-set we want to saturate, and S is a set of sets of
normalized constraints (the result of the saturation of C joined with CΣ). The saturation rules are given in
Figure 9, which describe the same algorithm as Step 2 of the function merge given in Subsection 3.2.1.

If α ≥ t1 and α ≤ t2 belongs to the constraint-set C that is being saturated, and t1 ≤ t2 has already
been processed (i.e., (t1, t2) ∈ Σp), then the rule (SHYP) simply extends CΣ (the result of the saturation so
far) with {α ≥ t1, α ≤ t2}. Otherwise, the rule (SASSUM) first normalizes the fresh constraint {t1 ≤ t2},
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∀i ∈ I . (α ≥ ti) ∈ C |I| ≥ 2

⊢M C  (C \ {(α ≥ ti) | i ∈ I}) ∪ {(α ≥
∨

i∈I

ti)}
(MLB)

∀i ∈ I . (α ≤ ti) ∈ C |I| ≥ 2

⊢M C  (C \ {(α ≤ ti) | i ∈ I}) ∪ {(α ≤
∧

i∈I

ti)}
(MUB)

Figure 8. Merging rules

Σp, CΣ ∪ {(α ≥ t1), (α ≤ t2)} ⊢S C  S (t1, t2) ∈ Σp

Σp, CΣ ⊢S {(α ≥ t1), (α ≤ t2)} ∪ C  S
(SHYP)

(t1, t2) /∈ Σp ∅ ⊢N {(t1 ≤ t2)} S

S
′ = {{(α ≥ t1), (α ≤ t2)} ∪ C ∪ CΣ} ⊓ S

∀C′ ∈ S
′. Σp ∪ {(t1, t2)}, ∅ ⊢MS C′

 SC′

Σp, CΣ ⊢S {(α ≥ t1), (α ≤ t2)} ∪ C  
⊔

C′∈S ′

SC′

(SASSUM)

∀α, t1, t2 ∄{(α ≥ t1), (α ≤ t2)} ⊆ C

Σp, CΣ ⊢S C  {C ∪ CΣ}
(SDONE)

where Σp, CΣ ⊢MS C  S means that there exists C′ such that ⊢M C  C′ and Σp, CΣ ⊢S

C′
 S .

Figure 9. Saturation rules

yielding a set of normalized constraint-sets S . It then saturates (joins) C and CΣ with each constraint-set
CS ∈ S , the union of which gives a new set S

′ of normalized constrain-sets. Each C′ in S
′ may contain

several constraints for the same type variable, so they have to be merged and saturated themselves. Finally,
if C does not contain any couple α ≥ t1 and α ≤ t2 for a given α, the process is over and the rule (SDONE)
simply returns C ∪ CΣ.

If ∅, ∅ ⊢MS C  S , then the result of the merging of C is S .

Lemma B.20 (Soundness). Let C be a normalized constraint-set. If ∅, ∅ ⊢MS C  S , then for all
normalized constraint-set C′ ∈ S and all substitution σ, we have σ  C′ ⇒ σ  C.

Proof. We prove the following statements.

• Assume ⊢M C  C′. For all σ, if σ  C′, then σ  C.
• Assume Σp, CΣ ⊢S C  S . For all σ and C0 ∈ S , if σ  C0, then σ  CΣ ∪ C.

Clearly, these two statements imply the lemma. The first statement is straightforward. The proof of the
second statement proceeds by induction of the derivation of Σp, CΣ ⊢S C  S .

(SHYP): by induction, we have σ  (CΣ∪{(α ≥ t1), (α ≤ t2)})∪C, that is σ  CΣ∪ ({(α ≥ t1), (α ≤
t2)} ∪ C).

(SASSUM): according to Definition B.4, C0 ∈ SC′ for some C′ ∈ S
′. By induction on the premise

Σp ∪ {(t1, t2)}, ∅ ⊢MS C′
 SC′ , we have σ  C′. Moreover, the equation S

′ = {{(α ≥
t1), (α ≤ t2)} ∪ C ∪ CΣ} ⊓ S gives us {(α ≥ t1), (α ≤ t2)} ∪ C ∪ CΣ ⊆ C′. Therefore, we have
σ  CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C).

(SDONE): straightforward.

Lemma B.21 (Completeness). Let C be a normalized constraint-set and ∅, ∅ ⊢MS C  S . Then for all
substitution σ, if σ  C, then there exists C′ ∈ S such that σ  C′.

Proof. We prove the following statements.
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• Assume ⊢M C  C′. For all σ, if σ  C, then σ  C′.
• Assume Σp, CΣ ⊢S C  S . For all σ, if σ  CΣ ∪ C, then there exists C0 ∈ S such that σ  C0.

Clearly, these two statements imply the lemma. The first statement is straightforward. The proof of the
second statement proceeds by induction of the derivation of Σp, CΣ ⊢S C  S .

(SHYP): the result follows by induction.

(SASSUM): as σ  CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C), we have σ  {(t1 ≤ t2)}. As ∅ ⊢N {(t1 ≤
t2)}  S , applying Lemma B.12, there exists C′

0 ∈ S such that σ  C′
0. Let C′ = CΣ ∪ ({(α ≥

t1), (α ≤ t2)} ∪ C) ∪ C′
0. Clearly we have σ  C′ and C′ ∈ S′. By induction on the premise

Σp ∪ {(t1, t2)}, ∅ ⊢MS C′
 SC′ , there exists C0 ∈ SC′ such that σ  C0. Moreover, it is clear

that C0 ∈
⊔

C′∈S′ SC′ . Therefore, the result follows.
(SDONE): straightforward.

Lemma B.22 (Termination). Let C be a finite normalized constraint-set. Then ∅, ∅ ⊢MS C terminates.

Proof. Let T be the set of types occurring in C. As C is finite, T is finite as well. Let i be a plinth such
that T ⊆ i. Then when we saturate a fresh constraint (t1,≤, t2) during the process of ∅, ∅ ⊢MS C,
(t1, t2) would belong to i × i. According to Lemma B.14, we know that ∅ ⊢N {(t1,≤, t2)} terminates.
Moreover,the termination of the merging of the lower bounds or the upper bounds of a same type variable
is straightforward. Finally, we have to prove termination of the saturation process. The proof proceeds by
induction on (|(i× i)| − |Σp|, |C|) lexicographically ordered:

(Shyp): |C| decreases.
(Sassum): as (t1, t2) /∈ Σp and t1, t2 ∈ i, |(i× i)| − |Σp| decreases.
(Sdone): it terminates immediately.

Definition B.23 (Sub-constraint). Let C1, C2 ⊆ C be two normalized constraint-sets. We say C1 is a
sub-constraint of C2, denoted as C1 ⋖ C2, if for all (α, c, t) ∈ C1, there exists (α, c, t′) ∈ C2 such that
t′ c t, where c ∈ {≤,≥}.

Lemma B.24. Let C1, C2 ⊆ C be two normalized constraint-sets and C1 ⋖ C2. Then for all substitution
σ, if σ  C2, then σ  C1.

Proof. Considering any constraint (α, c, t) ∈ C1, there exists (α, c, t′) ∈ C2 and t′ c t, where c ∈ {≤,≥}.
Since σ  C2, then σ(α) c t′σ. Moreover, as t′ c t, we have t′σ c tσ. Thus σ(α) c tσ.

Definition B.25. Let C ⊆ C be a normalized constraint-set. We say C is saturated if for each type variable
α ∈ dom(C),

(1) there exists at most one form (α ≥ t1) ∈ C,

(2) there exists at most one form (α ≤ t2) ∈ C,

(3) if (α ≥ t1), (α ≤ t2) ∈ C, then ∅ ⊢N {(t1 ≤ t2)}  S and there exists C′ ∈ S such that C′ is a
sub-constraint of C (i.e., C′ ⋖ C).

Lemma B.26. Let C be a finite normalized constraint-set and ∅, ∅ ⊢MS C  S . Then for all normalized
constraint set C′ ∈ S , C′ is saturated.

Proof. We prove a stronger statement: assume Σp, CΣ ⊢MS C  S . If

(i) for all (t1, t2) ∈ Σp there exists C′ ∈ (∅ ⊢N {(t1 ≤ t2)}) such that C′ ⋖ CΣ ∪ C and
(ii) for all {(α ≥ t1), (α ≤ t2)} ⊆ CΣ the pair (t1, t2) is in Σp,

then C0 is saturated for all C0 ∈ S .
The proof of conditions (1) and (2) for a saturated constraint-set is straightforward for all C0 ∈ S . The

proof of the condition (3) proceeds by induction on the derivation Σp, CΣ ⊢S C  S and a case analysis
on the last rule used in the derivation.

(SHYP): as (t1, t2) ∈ Σp, the conditions (i) and (ii) hold for the premise. By induction, the result follows.

(SASSUME): take any premise Σp ∪ {(t1, t2)}, ∅ ⊢S C′′
 SC′ , where C′ ∈ S

′ and ⊢M C′
 C′′.

For any (s1, s2) ∈ Σp, the condition (i) gives us that there exists C0 ∈ (∅ ⊢N {(s1 ≤ s2)}) such
that C0 ⋖ CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C). Since S

′ = CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C) ⊓ S ,
we have C0 ⋖ C′′. Moreover, consider (t1, t2). As ∅ ⊢N {(t1 ≤ t2)}  S , there exists C0 ∈ S

such that C0 ⋖ C′′. Thus the condition (i) holds for the premise. Moreover, the condition (ii) holds
straightforwardly for premise. By induction, the result follows.

(SDONE): the result follows by the conditions (i) and (ii).
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Lemma B.27 (Finiteness). Let C be a constraint-set and ∅, ∅ ⊢MS C  S . Then S is finite.

Proof. It follows by Lemma B.15.

Lemma B.28. Let C be a well-ordered normalized constraint-set and ∅, ∅ ⊢MS C  S . Then for all
normalized constraint-set C′ ∈ S , C′ is well-ordered.

Proof. The merging of the lower bounds (or the upper bounds) of a same type variable preserves the orders.
The result of saturation is well-ordered by Lemma B.17.

Normalization and merging may produce redundant constraint-sets. For example, consider the constraint-
set {(α× β),≤, (Int × Bool)}. Applying the rule (NPROD), the normalization of this set is

{{(α,≤, 0)}, {(β,≤, 0)}, {(α,≤, 0), (β,≤, 0)}, {(α,≤, Int), (β,≤, Bool)}}.

Clearly each constraint-set is a saturated one. Note that {(α,≤, 0), (β,≤, 0)} is redundant, since any
solution of this constraint-set is a solution of {(α,≤, 0)} and {(β,≤, 0)}. Therefore it is safe to eliminate
it. Generally, for any two different normalized constraint sets C1, C2 ∈ S , if C1 ⋖ C2, then according to
Lemma B.24, any solution of C2 is a solution of C1. Therefore, C2 can be eliminated from S .

Definition B.29. Let S be a set of normalized constraint-sets. We say that S is minimal if for any two
different normalized constraint-sets C1, C2 ∈ S , neither C1⋖C2 nor C2⋖C1. Moreover, we say S ≃ S

′

if for all substitution σ such that ∃C ∈ S . σ  C ⇐⇒ ∃C′ ∈ S
′. σ  C′.

Lemma B.30. Let C be a well-ordered normalized constraint-set and ∅, ∅ ⊢MS C  S . Then there
exists a minimal set S0 such that S0 ≃ S .

Proof. By eliminating the redundant constraint-sets in S .

B.1.3 Constraint solving

From constraints to equations. Given a well-ordered saturated constraint-set, we transform it into an
equivalent equation system. This shows that the type tallying problem is essentially a unification problem.

Definition B.31 (Equation system). An equation system E is a set of equations of the form α = t such
that there exists at most one equation in E for every type variable α. We define the domain of E, written
dom(E), as the set {α | ∃t . α = t ∈ E}.

Definition B.32 (Equation system solution). Let E be an equation system. A solution to E is a substitution
σ such that

∀α = t ∈ E . σ(α) ≃ tσ holds

If σ is a solution to E, we write σ  E.

From a normalized constraint-set C, we obtain some explicit conditions for the substitution σ we want to
construct from C. For instance, from the constraint α ≤ t (resp. α ≥ t), we know that the type substituted
for α must be a subtype of t (resp. a super type of t).

We assume that each type variable α ∈ dom(C) has a lower bound t1 and a upper bound t2 using, if
necessary, the fact that 0 ≤ α ≤ 1. Formally, we rewrite C as follows:











t1 ≤ α ≤ 1 if α ≥ t1 ∈ C and ∄t. α ≤ t ∈ C

0 ≤ α ≤ t2 if α ≤ t2 ∈ C and ∄t. α ≥ t ∈ C

t1 ≤ α ≤ t2 if α ≥ t1, α ≤ t2 ∈ C

We then transform each constraint t1 ≤ α ≤ t2 in C into an equation α = (t1 ∨ α′) ∧ t2
10, where α′ is

a fresh type variable. The type (t1 ∨ α′) ∧ t2 ranges from t1 to t2, so the equation α = (t1 ∨ α′) ∧ t2
expresses the constraint that t1 ≤ α ≤ t2, as wished. We prove the soundness and completeness of this
transformation.

To prove soundness, we define the rank n satisfaction predicaten for equation systems, which is similar
to the one for constraint-sets.

Lemma B.33 (Soundness). Let C ⊆ C be a well-ordered saturated normalized constraint-set and E its
transformed equation system. Then for all substitution σ, if σ  E then σ  C.

Proof. Without loss of generality, we assume that each type variable α ∈ dom(C) has a lower bound and an
upper bound, that is t1 ≤ α ≤ t2 ∈ C. We write O(C1) < O(C2) if O(α) < O(β) for all α ∈ dom(C1)
and all β ∈ dom(C2). We first prove a stronger statement:

10 Or, equivalently, α = t1 ∨ (α′ ∧ t2). Besides, in practice, if only α ≥ t1 (α ≤ t2 resp.) and all the occurrences of
α in the co-domain of the function type are positive (negative resp.), we can use α = t1 (α = t2 resp.) instead, and the
completeness is ensured by subsumption.
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(*) for all σ, n and CΣ ⊆ C, if σ n E, σ n CΣ, σ n−1 C \ CΣ, and O(C \ CΣ) < O(CΣ), then
σ n C \ CΣ.

Here CΣ denotes the set of constraints that have been checked. The proof proceeds by induction on |C\CΣ|.

C \ CΣ = ∅: straightforward.
C \ CΣ 6= ∅: take the constraint (t1 ≤ α ≤ t2) ∈ C\CΣ such that O(α) is the maximum in dom(C\CΣ).

Clearly, there exists a corresponding equation α = (t1 ∨ α′) ∧ t2 ∈ E. As σ n E, we have
σ(α) ≃n ((t1 ∨ α′) ∧ t2)σ. Then,

σ(α) ∧ ¬t2σ ≃n ((t1 ∨ α′) ∧ t2)σ ∧ ¬t2σ
≃n 0

Therefore, σ(α) ≤n t2σ.
Consider the constraint (t1,≤, α). We have

t1σ ∧ ¬σ(α) ≃n t1σ ∧ ¬((t1 ∨ α′) ∧ t2)σ
≃n t1σ ∧ ¬t2σ

What remains to do is to check the subtyping relation t1σ ∧ ¬t2σ ≤n 0, that is, to check that the
judgement σ n {(t1 ≤ t2)} holds. Since the whole constraint-set C is saturated, according to
Definition B.25, we have ∅ ⊢N {(t1 ≤ t2)}  S and there exists C′ ∈ S such that C′ ⋖ C,
that is C′ ⋖ CΣ ∪ C \ CΣ. Moreover, as C is well-ordered, O({α}) < O(tlv(t1) ∪ tlv(t2)) and
thus O(C \ CΣ) < O(tlv(t1) ∪ tlv(t2)). Therefore, we can deduce that C′|tlv(t1)∪tlv(t2) ⋖ CΣ and
C′ \C′|tlv(t1)∪tlv(t2)⋖C \CΣ. From the premise and Lemma B.24, we have σ n C′|tlv(t1)∪tlv(t2) and
σ n−1 C′ \ C′|tlv(t1)∪tlv(t2). Then, by Lemma B.11, we get σ n {(t1 ≤ t2)}.
Finally, consider the constraint-set C \ (CΣ ∪ {(t1 ≤ α ≤ t2)}). By induction, we have σ n

C \ (CΣ ∪ {(t1 ≤ α ≤ t2)}). Thus the result follows.

Finally, we explain how to prove the lemma with the statement (*). Take CΣ = ∅. Since σ  E, we have
σ n E for all n. Trivially, we have σ 0 C. This can be used to prove σ 1 C. Since σ 1 E, by (*),
we get σ 1 C, which will be used to prove σ 2 C. Consequently, we can get σ n C for all n, which
clearly implies the lemma.

Lemma B.34 (Completeness). Let C ⊆ C be a saturated normalized constraint-set and E its transformed
equation system. Then for all substitution σ, if σ  C then there exists σ′ such that σ′ ♯ σ and σ ∪ σ′

 E.

Proof. Let σ′ = {σ(α)/α′ | α ∈ dom(C)}. Consider each equation α = (t1 ∨ α′) ∧ t2 ∈ E.
Correspondingly, there exist α ≥ t1 ∈ C and α ≤ t2 ∈ C. As σ  C, then t1σ ≤ σ(α) and σ(α) ≤ t2σ.
Thus

((t1 ∨ α′) ∧ t2)(σ ∪ σ′) = (t1(σ ∪ σ′) ∨ α′(σ ∪ σ′)) ∧ t2(σ ∪ σ′)
= (t1σ ∨ σ(α)) ∧ t2σ
≃ σ(α) ∧ t2σ (t1σ ≤ σ(α))
≃ σ(α) (σ(α) ≤ t2σ)
= (σ ∪ σ′)(α)

Definition B.35. Let E be an equation system and O an ordering on dom(E). We say that E is well
ordered if for all α = tα ∈ E, we have O(α) < O(β) for all β ∈ tlv(tα) ∩ dom(E).

Lemma B.36. Let C be a well-ordered saturated normalized constraint-set and E its transformed equation
system. Then E is well ordered.

Proof. Clearly, dom(E) = dom(C). Consider an equation α = (t1∨α′)∧ t2. Correspondingly, there exist
α ≥ t1 ∈ C and α ≤ t2 ∈ C. By Definition B.16, for all β ∈ (tlv(t1)∪tlv(t2))∩dom(C) . O(α) < O(β).
Moreover, α′ is a fresh type variable in C, that is α′ /∈ dom(C). And then α′ /∈ dom(E). Therefore,
tlv((t1 ∨ α′) ∧ t2) ∩ dom(E) = (tlv(t1) ∪ tlv(t2)) ∩ dom(C). Thus the result follows.

Solution of Equation Systems. We now extract a solution (i.e., a substitution) from the equation system
we build from C. In an equation α = tα, α may also appear in the type tα; such an equality reminds the
definition of a recursive type. As a first step, we introduce a recursion operator µ in all the equations of the
system, transforming α = tα into α = µxα. tα{xα/α}. This ensures that type variables do not appear in
the right-hand side of the equalities, making the whole solving process easier. If some recursion operators
are in fact not needed in the solution (i.e., we have α = µxα.tα with xα /∈ fv(tα)), then we can simply
eliminate them.

If the equation system contains only one equation, then this equation is immediately a substitution.
Otherwise, consider the equation system {α = µxα. tα}∪E, where E contains only equations closed with
the recursion operator µ as explained above. The next step is to substitute the content expression µxα. tα
for all the occurrences of α in equations in E. In detail, let β = µxβ . tβ ∈ E. Since tα may contain
some occurrences of β and these occurrences are clearly bounded by µxβ , we in fact replace the equation
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β = µxβ . tβ with β = µxβ . tβ{µxα. tα/α}{xβ/β}, yielding a new equation system E′. Finally, assume that
the equation system E′ (which has fewer equations) has a solution σ′. Then the substitution {tασ′/α} ⊕ σ′

is a solution to the original equation system {α = µxα. tα} ∪ E. The solving algorithm Unify() is given
in Figure 10.

Require: an equation system E
Ensure: a substitution σ

1. let e2mu (α, tα) = (α, µxα. tα{xα/α}) in
2. let subst (α, tα) (β, tβ) = (β, tβ{tα/α}{xβ/β}) in
3. let rec mu2sub E =
4. match E with
5. |[ ] → [ ]
6. |(α, tα) :: E

′ →
7. let E′′ = List.map (subst (α, tα)) E

′ in

8. let σ′ = mu2sub E′′ in {tασ′/α} ⊕ σ′

9. in
10. let e2sub E =
11. let E′ = List.map e2mu E in
12. mu2sub E′

Figure 10. Equation system solving algorithm Unify()

Definition B.37 (General solution). Let E be an equation system. A general solution to E is a substitution
σ from dom(E) to T such that

∀α ∈ dom(σ) . var(σ(α)) ∩ dom(σ) = ∅

and

∀α = t ∈ E . σ(α) ≃ tσ holds

Lemma B.38. Let E be an equation system. If σ = Unify(E), then ∀α ∈ dom(σ). var(σ(α))∩dom(σ) =
∅ and dom(σ) = dom(E).

Proof. The algorithm Unify() consists of two steps: (i) transform types into recursive types and (ii) extract
the substitution. After the first step, for each equation (α = tα) ∈ E, we have α /∈ var(tα). Consider the
second step. Let var(E) =

⋃

(α=tα)∈E var(tα) and S = V \ S, where S is a set of type variables. We
prove a stronger statement:

∀α ∈ dom(σ). var(σ(α)) ∩ (dom(σ) ∪ var(E)) = ∅ and dom(σ) = dom(E).

The proof proceeds by induction on E:

E = ∅: straightforward.
E = {(α = tα)} ∪ E′: let E′′ = {(β = tβ{tα/α}{xβ/β}) | (β = tβ) ∈ E′}. Then there exists a

substitution σ′′ such that σ′′ = Unify(E′′) and σ = {tασ′′/α} ⊕ σ′′. By induction, we have ∀β ∈
dom(σ′′). var(σ′′(β)) ∩ (dom(σ′′) ∪ var(E′′)) = ∅ and dom(σ′′) = dom(E′′). As α /∈ dom(E′′),
we have α /∈ dom(σ′′) and then dom(σ) = dom(σ′′) ∪ {α} = dom(E).
Moreover, α /∈ var(E′′), then dom(σ) ⊂ dom(σ′′) ∪ var(E′′). Thus, for all β ∈ dom(σ′′), we
have var(σ′′(β))∩ dom(σ) = ∅. Consider tασ

′′. It is clear that var(tασ
′′)∩ dom(σ) = ∅. Besides, the

algorithm does not introduce any fresh variable, then for all β ∈ dom(σ), we have var(tβ)∩var(E) = ∅.
Therefore, the result follows.

Lemma B.39 (Soundness). Let E be an equation system. If σ = Unify(E), then σ  E.

Proof. By induction on E.

E = ∅: straightforward.
E = {(α = tα)} ∪ E′: let E′′ = {(β = tβ{tα/α}{xβ/β}) | (β = tβ) ∈ E′}. Then there exists

a substitution σ′′ such that σ′′ = Unify(E′′) and σ = {tασ′′/α} ⊕ σ′′. By induction, we have
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σ′′
 E′′. According to Lemma B.38, we have dom(σ′′) = dom(E′′). So dom(σ) = dom(σ′′)∪{α}.

Considering any equation (β = tβ) ∈ E where β ∈ dom(σ′′). Then

σ(β) = σ′′(β) (apply σ)
≃ tβ{tα/α}{xβ/β}σ

′′ (as σ′′
 E′′)

= tβ{tα{xβ/β}/α, xβ/β}σ
′′

= tβ{tα{xβ/β}σ
′′/α, xβσ

′′/β} ⊕ σ′′

= tβ{tα({xβσ
′′
/β} ⊕ σ′′)/α, xβσ

′′/β} ⊕ σ′′

≃ tβ{tα({tβσ
′′
/β} ⊕ σ′′)/α, tβσ

′′/β} ⊕ σ′′ (expand xβ)

≃ tβ{tα({βσ
′′
/β} ⊕ σ′′)/α, βσ

′′/β} ⊕ σ′′ (as σ′′
 E′′)

= tβ{tασ
′′/α} ⊕ σ′′

= tβσ

Finally, consider the equation (α = tα). As

σ(α) = tασ
′′ (apply σ)

= tα{βσ
′′/β | β ∈ dom(σ′′)} (expand σ′′)

= tα{βσ/β | β ∈ dom(σ′′)} (as βσ = βσ′′)
= tα{βσ/β | β ∈ dom(σ′′) ∪ {α}} (as α /∈ var(tα))
= tα{βσ/β | β ∈ dom(σ)} (as dom(σ) = dom(σ′′) ∪ {α})
= tασ

Thus, the result follows.

Lemma B.40. Let E be an equation system. If σ = Unify(E), then σ is a general solution to E.

Proof. Immediate consequence of Lemmas B.38 and B.39.

Clearly, given an equation system E, the algorithm Unify(E) terminates with a substitution σ.

Lemma B.41 (Termination). Given an equation system E, the algorithm Unify(E) terminates.

Proof. By induction on the number of equations in E.

Definition B.42. Let σ, σ′ be two substitutions. We say σ ≃ σ′ if and only if ∀α. σ(α) ≃ σ′(α).

Lemma B.43 (Completeness). Let E be an equation system. For all substitution σ, if σ  E, then there
exist σ0 and σ′ such that σ0 = Unify(E) and σ ≃ σ′ ◦ σ0.

Proof. According to Lemma B.41, there exists σ0 such that σ0 = Unify(E). For any α /∈ dom(σ0), clearly
we have ασ0σ = ασ and then ασ0σ ≃ ασ. What remains to prove is that if σ  E and σ0 = Unify(E)
then ∀α ∈ dom(σ0). ασ0σ ≃ ασ. The proof proceeds by induction on E:

E = ∅: straightforward.
E = {(α = tα)} ∪ E′: let E′′ = {(β = tβ{tα/α}{xβ/β}) | (β = tβ) ∈ E′}. Then there exists a

substitution σ′′ such that σ′′ = Unify(E′′) and σ0 = {tασ′′/α} ⊕ σ′′. Considering each equation
(β = tβ{tα/α}{xβ/β}) ∈ E′′, we have

tβ{tα/α}{xβ/β}σ = tβ{tα{xβ/β}/α, xβ/xβ}σ

= tβ{tα{xβ/β}σ/α, xβσ/β} ⊕ σ
= tβ{tα({xβσ/β} ⊕ σ)/α, xβσ/β} ⊕ σ
≃ tβ{tα({tβσ/β} ⊕ σ)/α, tβσ/β} ⊕ σ (expand xβ)

≃ tβ{tα({βσ/β} ⊕ σ)/α, βσ/β} ⊕ σ (as σ  E)
= tβ{tασ/α} ⊕ σ
≃ tβ{ασ/α} ⊕ σ
= tβσ
≃ βσ

Therefore, σ  E′′. By induction on E′′, we have ∀β ∈ dom(σ′′). βσ′′σ ≃ βσ. According to Lemma
B.38, dom(σ′′) = dom(E′′). As α /∈ dom(E′′), then dom(σ0) = dom(σ′′) ∪ {α}. Therefore for any
β ∈ dom(σ′′) ∩ dom(σ0), βσ0σ ≃ βσ′′σ ≃ βσ. Finally, considering α, we have

ασ0σ = tασ
′′σ (apply σ0)

= tα{βσ
′′/β | β ∈ dom(σ′′)}σ (expand σ′′)

= tα{βσ
′′σ/β | β ∈ dom(σ′′)} ⊕ σ

≃ tα{βσ/β | β ∈ dom(σ′′)} ⊕ σ (as ∀β ∈ σ′′. βσ ≃ βσ′′σ)
= tασ
≃ ασ (as σ  E)

Therefore, the result follows.
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In our calculus, a type is well-formed if and only if the recursion traverses a constructor. In other words,
the recursive variable should not appear at the top level of the recursive content. For example, the type
µx. x ∨ t is not well-formed. To make the substitutions usable, we should avoid these substitutions with
ill-formed types. Fortunately, this can been done by giving an ordering on the domain of an equation system
to make sure that the equation system is well-ordered.

Lemma B.44. Let E be a well-ordered equation system. If σ = Unify(E), then for all α ∈ dom(σ), σ(α)
is well-formed.

Proof. Assume that there exists an ill-formed σ(α). That is, σ(α) = µx. t where x occurs at the
top level of t. According to the algorithm Unify(), there exists a sequence of equations (α =)α0 =
tα0 , α1 = tα1 , . . . , αn = tαn such that αi ∈ tlv(tαi−1) and α0 ∈ tlv(tαn) where i ∈ {1, . . . , n}
and n ≥ 0. According to Definition B.35, O(αi−1) < O(αi) and O(αn) < O(α0). Therefore, we have
O(α0) < O(α1) < . . . < O(αn) < O(α0), which is impossible. Thus the result follows.

As mentioned above, there may be some useless recursion constructor µ. They can be eliminated by
checking whether the recursive variable appears in the content expression or not. Moreover, if a recursive
type is empty (which can be checked with the subtyping algorithm), then it can be replaced by 0.

B.1.4 The complete algorithm

To conclude, we now describe the solving procedure Sol∆(C) for the type tallying problem C. We first
normalize C into a finite set S of well-ordered normalized constraint-sets (Step 1). If S is empty, then
there are no solutions to C. Otherwise, each constraint-set Ci ∈ S is merged and saturated into a finite
set SCi of well-order saturated normalized constraint-sets (Step 2). Then all these sets are collected into
another set S

′ (i.e., S
′ =

⊔

Ci∈S
SCi ). If S

′ is empty, then there are no solutions to C. Otherwise,

for each constraint-set C′
i ∈ S

′, we transform C′
i into an equation system Ei and then construct a general

solution σi from Ei (Step 3). Finally, we collect all the solutions σi, yielding a set Θ of solutions to C.
We write Sol∆(C)  Θ if Sol∆(C) terminates with Θ, and we call Θ the solution of the type tallying
problem C.

Theorem B.45 (Soundness). Let C be a constraint-set. If Sol∆(C) Θ, then for all σ ∈ Θ, σ  C.

Proof. Consequence of Lemmas B.10, B.17, B.20, B.26, B.28, B.33 and B.39.

Theorem B.46 (Completeness). Let C be a constraint-set and Sol∆(C) Θ. Then for all substitution σ,
if σ  C, then there exists σ′ ∈ Θ and σ′′ such that σ ≈ σ′′ ◦ σ′.

Proof. Consequence of Lemmas B.12, B.21, B.34 and B.43.

Theorem B.47 (Termination). Let C be a constraint-set. Then Sol∆(C) terminates.

Proof. Consequence of Lemmas B.14, B.22 and B.41.

Lemma B.48. Let C be a constraint-set and Sol∆(C) Θ. Then

(1) Θ is finite.

(2) for all σ ∈ Θ and for all α ∈ dom(σ), σ(α) is well-formed.

Proof.(1): Consequence of Lemmas B.15 and B.27.
(2): Consequence of Lemmas B.17, B.28, B.36 and B.44.

B.2 Type-Substitution Inference Algorithm

In Section A, we presented a sound and complete inference system, which is parametric in the decision
procedures for ⊑∆, ∐i

∆(), and •∆. In this section we tackle the problem of computing these operators. We
focus on the application problem •∆, since the other two can be solved similarly. Recall that to compute
t •∆s, we have to find two sets of substitutions [σi]i∈I and [σj ]j∈J such that ∀h ∈ I ∪ J. σh ♯ ∆ and

∧

i∈I

tσi ≤ 0 → 1 (18)

∧

j∈J

sσj ≤ dom(
∧

i∈I

tσi) (19)

This problem is more general than the other two problems. If we are able to decide inequation (19), it means
that we are able to decide s′ ⊑∆ t′ for any s′ and t′, just by considering t′ ground. Therefore we can decide
⊑∆. We can also decide [σi]i∈I  s ⊑∆ 1 × 1 for all s, and therefore compute ∐i

∆(s).
Let the cardinalities of I and J be p and q respectively. We first show that for fixed p and q, we can

reduce the application problem to a type tallying problem. Note that if we increase p, the type on the right
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of Inequality (19) is larger, and if we increase q the type on the left is smaller. Namely, the larger p and q
are, the higher the chances that the inequality holds. Therefore, we can search for cardinalities that make the
inequality hold by starting from p = q = 1, and then by increasing p and q in a dove-tail order until we get
a solution. This gives us a semi-decision procedure for the general application problem. In order to ensure
termination, we give some heuristics based on the shapes of s and t to set upper bounds for p and q.

B.2.1 Application problem with fixed cardinalities

We explain how to reduce the application problem with fixed cardinalities for I and J to a type tallying
problem. Without loss of generality, we can split each substitution σk (k ∈ I ∪ J) into two substitutions:
a renaming substitution ρk that maps each variable in the domain of σk into a fresh variable and a second
substitution σ′

k such that σk = σ′
k ◦ ρk. The two inequalities then can be rewritten as

∧

i∈I

(tρi)σ
′
i ≤ 0 → 1

∧

j∈J

(sρj)σ
′
j ≤ dom(

∧

i∈I

(tρi)σ
′
i)

The domains of the substitutions σ′
k are pairwise distinct, since they are composed by fresh type variables.

We can therefore merge the σ′
k into one substitution σ =

⋃

k∈I∪J σ′
k. We can then further rewrite the two

inequalities as

(
∧

i∈I

(tρi))σ ≤ 0 → 1

(
∧

j∈J

(sρj))σ ≤ dom((
∧

i∈I

(tρi))σ)

which are equivalent to

t′σ ≤ 0 → 1

s′σ ≤ dom(t′σ)

where t′ = (
∧

i∈I tρi) and s′ = (
∧

j∈J sρj). As t′σ ≤ 0 → 1, then t′σ must be a function type. Then
according to Lemmas C.12 and C.13 in the companion paper [3], we can reduce these two inequalities to
the constraint set11:

C = {(t′,≤, 0 → 1), (t′,≤, s′ → γ)}

where γ is a fresh type variable. We have reduced the original application problem t •∆ s to solving C,
which can be done as explained in Section B.1. We write AppFix∆(t, s) for the algorithm of the application
problem with fixed cardinalities t •∆s and AppFix∆(t, s) Θ if AppFix∆(t, s) terminates with Θ.

Lemma B.49. Let t, s be two types and γ a type variable such that γ /∈ var(t) ∪ var(s). Then for all
substitution σ, if tσ ≤ sσ → γσ, then sσ ≤ dom(tσ) and σ(γ) ≥ tσ · sσ.

Proof. Consider any substitution σ. As tσ ≤ sσ → γσ, by Lemma C.12 in the companion paper [3], we
have sσ ≤ dom(tσ). Then by Lemma C.13 in the companion paper [3], we get σ(γ) ≥ tσ · sσ.

Lemma B.50. Let t, s be two types and γ a type variable such that γ /∈ var(t) ∪ var(s). Then for
all substitution σ, if sσ ≤ dom(tσ) and γ /∈ dom(σ), then there exists σ′ such that σ′ ♯ σ and
t(σ ∪ σ′) ≤ (s → γ)(σ ∪ σ′).

Proof. Consider any substitution σ. As sσ ≤ dom(tσ), by Lemma C.13 in the companion paper [3], the
type (tσ) · (sσ) exists and tσ ≤ sσ → ((tσ) · (sσ)). Let σ′ = {(tσ) · (sσ)/γ}. Then

t(σ ∪ σ′) = tσ
≤ sσ → ((tσ) · (sσ))
= sσ → γσ′

= (s → γ)(σ ∪ σ′)

Note that the solution of the γ introduced in the constraint (t,≤, s → γ) represents a result type for
the application of t to s. In particular, completeness for the tallying problem ensures that each solution will
assign to γ (which occurs in a covariant position) the minimum type for that solution. So the minimum
solutions for γ are in t •∆s (see the substitution σ′(γ) = (tσ) · (sσ) in the proof of Lemma B.50).

Theorem B.51 (Soundness). Let t and s be two types. If AppFix∆(t, s) Θ, then for all σ ∈ Θ, we have
tσ ≤ 0 → 1 and sσ ≤ dom(tσ).

Proof. Consequence of Lemmas B.49 and B.45.

11 The first constraint (t′,≤,0 → 1) can be eliminated since it is implied by the second one.
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Theorem B.52 (Completeness). Let t and s be two types and AppFix∆(t, s) Θ. For all substitution σ,
if tσ ≤ 0 → 1 and sσ ≤ dom(tσ), then there exists σ′ ∈ Θ and σ′′ such that σ ≃ σ′′ ◦ σ′.

Proof. Consequence of Lemmas B.50 and B.46.

B.2.2 General application problem

Now we take the cardinalities of I and J into account to solve the general application problem. We start
with I and J both of cardinality 1 and explore all the possible combinations of the cardinalities of I and J
by, say, a dove-tail order until we get a solution. More precisely, the algorithm consists of two steps:

Step A: we generate a constraint set as explained in Section B.2.1 and apply the tallying solving algorithm
described in Section B.1, yielding either a solution or a failure.

Step B: if all attempts to solve the constraint sets have failed at Step 1 of the tallying solving algorithm
given at the beginning of Section B.1.1, then fail (the expression is not typable). If they all failed but at
least one did not fail in Step 1, then increment the cardinalities I and J to their successor in the dove-
tail order and start from Step A again. Otherwise all substitutions found by the algorithm are solutions
of the application problem.

Notice that the algorithm returns a failure only if the solving of the constraint-set fails at Step 1 of
the algorithm for the tallying problem. The reason is that up to Step 1 all the constraints at issue are on
distinct occurrences of type variables: if they fail there is no possible expansion that can make the constraint-
set satisfiable (see Lemma B.53). For example, the function map can not be applied to any integer, as the
normalization of {(Int,≤, α → β)} is empty (and even for any expansion of α → β). In Step 2 instead
constraints of different occurrences of a same variable are merged. Thus even if the constraints fail it may
be the case that they will be satisfied by expanding different occurrences of a same variable into different
variables. Therefore an expansion is tried. For example, consider the application of a function of type
((Int → Int) ∧ (Bool → Bool)) → t to an argument of type α → α. We start with the constraint

(α → α,≤, (Int → Int) ∧ (Bool → Bool)).

The tallying algorithm first normalizes it into the set

{(α,≤, Int), (α,≥, Int), (α,≤, Bool), (α,≥, Bool)} (Step 1).

But it fails at Step 2 as neither Int ≤ Bool nor Bool ≤ Int hold. However, if we expand α → α, the
constraint to be solved becomes

((α1 → α1) ∧ (α2 → α2),≤, (Int → Int) ∧ (Bool → Bool))

and one of the constraint-set of its normalization is

{(α1,≤, Int), (α1,≥, Int), (α2,≤, Bool), (α2,≥, Bool)}

The conflict between Int and Bool disappears and we can find a solution to the expanded constraint.
Note that we keep trying expansion without giving any bound on the cardinalities I and J , so the

procedure may not terminate, which makes it only a semi-algorithm. The following lemma justifies why
we do not try to expand if normalization (i.e., Step 1 of the tallying algorithm) fails.

Lemma B.53. Let t, s be two types, γ a fresh type variable and [ρi]i∈I , [ρj ]j∈J two sets of general renam-
ings. If ∅ ⊢N {(t,≤, 0 → 1), (t,≤, s → γ)}  ∅, then ∅ ⊢N {(

∧

i∈I tρi,≤, 0 → 1), (
∧

i∈I tρi,≤
, (
∧

j∈J sρj) → γ)} ∅.

Proof. As ∅ ⊢N {(t,≤, 0 → 1), (t,≤, s → γ)}  ∅, then either ∅ ⊢N {(t,≤, 0 → 1)}  ∅
or ∅ ⊢N {(t,≤, s → γ)}  ∅. If the first one holds, then according to Lemma B.19, we have
∅ ⊢N {(

∧

i∈I tρi,≤, 0 → 1)} ∅, and a fortiori

∅ ⊢N {(
∧

i∈I

tρi,≤, 0 → 1), (
∧

i∈I

tρi,≤, (
∧

j∈J

sρj) → γ)} ∅

Assume that ∅ ⊢N {(t,≤, s → γ)}  ∅. Without loss of generality, we consider the disjunctive normal
form τ of t:

τ =
∨

kb∈Kb

τkb ∨
∨

kp∈Kp

τkp ∨
∨

ka∈Ka

τka

where τkb (τkp and τka resp.) is an intersection of basic types (products and arrows resp.) and type
variables. Then there must exist k ∈ Kb ∪ Kp ∪ Ka such that ∅ ⊢N {(τk,≤, 0 → 1)}  ∅. If
k ∈ Kb ∪ Kp, then the constraint (τk,≤, s → γ) is equivalent to (τk,≤, 0). By Lemma B.19, we get
∅ ⊢N {(

∧

i∈I τkρi,≤, 0)}  ∅, that is, ∅ ⊢N {(
∧

i∈I τkρi,≤, (
∧

j∈J sρj) → γ)}  ∅. So the result
follows.
Otherwise, it must be that k ∈ Ka and τk =

∧

p∈P (wp → vp) ∧
∧

n∈N ¬(wn → vn). We claim that
∅ ⊢N {(τk,≤, 0)}  ∅ (otherwise, ∅ ⊢N {(τk,≤, s → γ)}  ∅ does not hold). Applying Lemma B.19
again, we get ∅ ⊢N {(

∧

i∈I τkρi,≤, 0)}  ∅. Moreover, following the rule (NARROW), there exists a set
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P ′ ⊆ P such that














∅ ⊢N {
∧

p∈P ′

¬wp ∧ s,≤, 0)} ∅

P ′ = P or ∅ ⊢N {
∧

p∈P\P ′

vp ∧ ¬γ,≤, 0)} ∅

Applying B.19, we get














∅ ⊢N {
∧

i∈I

(
∧

p∈P ′

¬wp)ρi ∧
∧

j∈J

sρj ,≤, 0)} ∅

P ′ = P or ∅ ⊢N {
∧

i∈I

(
∧

p∈P\P ′

vp)ρi ∧ ¬γ,≤, 0)} ∅

By the rule (NARROW), we have

∅ ⊢N {(
∧

i∈I

(
∧

p∈P

(wp → vp))ρi,≤, (
∧

j∈J

sρj) → γ)} ∅

Therefore, we have ∅ ⊢N {(
∧

i∈I τkρi,≤, (
∧

j∈J sρj) → γ)} ∅. So the result follows.

Let App∆(t, s) denote the semi-algorithm for the general application problem.

Theorem B.54. Let t, s be two types and γ the special fresh type variable introduced in (
∧

i∈I tσi,≤
, (
∧

j∈J sσj) → γ). If App∆(t, s) terminates with Θ, then

(1) (Soundness) if Θ 6= ∅, then for each σ ∈ Θ, σ(γ) ∈ t •∆s.

(2) (Weak completeness) if Θ = ∅, then t •∆s = ∅.

Proof. (1): consequence of Theorem B.51 and Lemma B.49.
(2): consequence of Lemma B.53.

Consider the application map even, whose types are

map :: (α → β) → [α] → [β]
even :: (Int → Bool) ∧ ((α \ Int) → (α \ Int))

We start with the constraint-set

C1 = {(α1 → β1) → [α1] → [β1] ≤ ((Int → Bool) ∧ ((α \ Int) → (α \ Int))) → γ}

where γ is a fresh type variable (and where we α-converted the type of map). Then the algorithm Sol∆(C1)
generates a set of eight constraint-sets at Step 2 :

{γ ≥ [α1] → [β1], α1 ≤ 0}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ Bool}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ α \ Int}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ Bool ∨ (α \ Int)}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ Bool ∧ (α \ Int)}
{γ ≥ [α1] → [β1], α1 ≤ Int, β1 ≥ Bool}
{γ ≥ [α1] → [β1], α1 ≤ α \ Int, β1 ≥ α \ Int}
{γ ≥ [α1] → [β1], α1 ≤ Int ∨ α, β1 ≥ Bool ∨ (α \ Int)}

Clearly, the solutions to the 2nd-5th constraint-sets are included in those to the first constraint-set. For the
other four constraint-sets, by minimum instantiation, we can get four solutions for γ (i.e., the result types of
map even): [ ] → [ ], or [Int] → [Bool], or [α \ Int] → [α \ Int], or [Int∨α] → [Bool∨ (α \ Int)]. Of
these solutions only the last two are minimal (the first type is an instance of the third one and the second is
an instance of the fourth one) and since both are valid we can take their intersection, yielding the (minimum)
solution

([α \ Int] → [α \ Int]) ∧ ([Int ∨ α] → [Bool ∨ (α \ Int)]) (20)

Alternatively, we can dully follow the algorithm, perform an iteration, expand the type of the function,
yielding the constraint-set

{((α1 → β1) → [α1] → [β1]) ∧ ((α2 → β2) → [α2] → [β2])
≤ ((Int → Bool) ∧ ((α \ Int) → (α \ Int))) → γ}

from which we get the type (20) directly.
As stated in Section B.1, we chose an arbitrary ordering on type variables, which affects the generated

substitutions and then the resulting types. Assume that σ1 and σ2 are two type substitutions generated
by different orders. Thanks to the completeness of the tallying problem, there exist σ′

1 and σ′
2 such that

σ2 ≃ σ′
1 ◦σ1 and σ1 ≃ σ′

2 ◦σ2. Therefore, the result types corresponding to σ1 and σ2 are equivalent under
⊑∆, that is σ1(γ) ⊑∆ σ2(γ) and σ2(γ) ⊑∆ σ1(γ). However, this does not imply that σ1(γ) ≃ σ2(γ).
For example, α ⊑∆ 0 and 0 ⊑∆ α, but α 6≃ 0. Moreover, some result types are easier to understand or
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more precise than some others. Which one is better is a language design and implementation problem12. For
example, consider the map even again. The type (20) is obtained under the ordering o(α1) < o(β1) < o(α).
While under the ordering o(α) < o(α1) < o(β1), we would instead get

([β \ Int] → [β]) ∧ ([Int ∨ Bool ∨ β] → [Bool ∨ β]) (21)

It is clear that (20) ⊑∅ (21) and (21) ⊑∅ (20). However, compared with (20), (21) is less precise and less
comprehensible, if we look at the type [Int ∨ Bool ∨ β] → [Bool ∨ β] : (1) there is a Bool in the domain
which is useless here and (2) we know that Int cannot appear in the returned list, but this is not expressed
in the type.

There is a final word on completeness, which states that for every solution of the application problem, our
algorithm finds a solution that is more general. However this solution is not necessarily the first one found
by the algorithm: even if we find a solution, continuing with a further expansion may yield a more general
solution. We have just seen that, in the case of map even, the good solution is the second one, although
this solution could have already been deduced by intersecting the first minimal solutions we found. Another
simple example is the case of the application of a function of type (α × β) → (β × α) to an argument
of type (Int×Bool) ∨ (Bool×Int). For this application our algorithm returns after one iteration the type
(Int∨Bool) × (Int∨Bool) (since it unifies α with β) while one further iteration allows the system to
deduce the more precise type (Int×Bool)∨(Bool×Int). Of course this raises the problem of the existence
of principal types: may an infinite sequence of increasingly general solutions exist? This is a problem we
did not tackle in this work, but if the answer to the previous question were negative then it would be easy
to prove the existence of a principal type: since at each iteration there are only finitely many solutions, then
the principal type would be the intersection of the minimal solutions of the last iteration (how to decide that
an iteration is the last one is yet another problem).

B.2.3 Heuristics to stop type-substitution inference

We only have a semi-algorithm for t •∆s because, as long as we do not find a solution, we may increase
the cardinalities of I and J (where I and J are defined as in the previous sections) indefinitely. In this
section, we propose two heuristic numbers p and q for the cardinalities of I and J that are established
according to the form of s and t. These heuristic numbers set the upper limit for the procedure: if no
solution is found when the cardinalities of I and J have reached these heuristic numbers, then the procedure
stops returning failure. This yields a terminating algorithm for t •∆ s which is clearly sound but, in our
case, not complete. Whether it is possible to define these boundaries so that they ensure termination and
completeness is still an open issue.

Through some examples, we first analyze the reasons why one needs to expand the function type t
and/or the argument type s: the intuition is that type connectives are what makes the expansions necessary.
Then based on this analysis, we give some heuristic numbers for the copies of types that are needed by the
expansions. These heuristics follow some simple (but, we believe, reasonable) guidelines. First, when the
substitutions found for a given p and q yield a useless type (e.g., “0 → 0” the type of a function that cannot
be applied to any value), it seems sensible to expand the types (i.e., increase p or q), in order to find more
informative substitutions. Second, if iterating the process does not give a more precise type (in the sense of
⊑), then it seems sensible to stop. Last, when the process continuously yields more and more precise types,
we choose to stop when the type is “good enough” for the programmer. In particular we choose to avoid to
introduce too many new fresh variables that make the type arbitrarily more precise but at the same time less
“programmer friendly”. We illustrate these behaviours for three strategies: increasing p (that is, expanding
the domain of the function), increasing q (that is, expanding the type of the argument) or lastly increasing
both p and q at the same time.

Expansion of t. A simple reason to expand t is the presence of (top-level) unions in s. Generally, it is better
to have as many copies of t as there are disjunctions in s. Consider the example,

t = (α → α) → (α → α)
s = (Int → Int) ∨ (Bool → Bool)

(22)

If we do not expand t (ie, if p is 1), then the result type computed for the application of t to s is 0 → 0.
However, this result type cannot be applied hereafter, since its domain is 0, and is therefore useless (more
precisely, it can be applied only to expressions that are provably diverging). When p is 2, we get an extra
result type, (Int → Int) ∨ (Bool → Bool), which is obtained by instantiating t twice, by Int and Bool
respectively. Carrying on expanding t does not give more precise result types, as we always select only two
copies of t to match the two summands in s, according to the decomposition rule for arrows [4].

A different example that shows that the cardinality of the summands in the union type of the argument
is a good heuristic choice for p is the following one:

t = (α× β) → (β × α)
s = (Int × Bool) ∨ (Bool × Int)

(23)

Without expansion, the result type is ((Int ∨ Bool) × (Bool ∨ Int)) (α unifies Int and Bool). If we
expand t, there exists a more precise result type (Int × Bool) ∨ (Bool × Int), each summand of which

12 In the current implementation we assume that the type variables in the function type always have smaller orders than
those in the argument type.
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Table 1. Heuristic number Hp(s) for the copies of t
Shape of s Number Hp(s)
∨

i∈I si Σi∈IHp(si)
∧

i∈P bi ∧
∧

i∈N ¬bi ∧
∧

i∈P1
αi ∧

∧

i∈N1
¬αi 1

∧

i∈P (s
1
i × s2i ) ∧

∧

i∈N ¬(s1i × s2i ) ΣN′⊆NHp(s
1
N′ × s2N′)

(s1 × s2) Hp(s1) ∗Hp(s2)
∧

i∈P (s
1
i → s2i ) ∧

∧

i∈N ¬(s1i → s2i ) 1

where (s1N′ × s2N′) = (
∧

i∈P s1i ∧
∧

i∈N′ ¬s
1
i ×

∧

i∈P s2i ∧
∧

i∈N\N′ ¬s
2
i ).

corresponds to a different summand in s. Besides, due to the decomposition rule for product types [4], there
also exist some other result types which involve type variables, like ((Int∨Bool)×α)∨ ((Int∨Bool)×
(Int ∨ Bool) \ α). Further expanding t makes more product decompositions possible, which may in turn
generate new result types. However, the type (Int × Bool) ∨ (Bool × Int) is informative enough, and so
we set the heuristic number to 2, that is, the number of summands in s.

We may have to expand t also because of intersection. First, suppose s is an intersection of basic types;
it can be viewed as a single basic type. Consider the example

t = α → (α× α) and s = Int (24)

Without expansion, the result type is γ1 = (Int × Int). With two copies of t, besides γ1, we get another
result type γ2 = (β × β) ∨ (Int \ β × Int \ β), which is more general than γ1 (eg, γ1 = γ2{0/β}).
Generally, with k copies, we get k result types of the form

γk = (β1 × β1) ∨ . . . ∨ (βk−1 × βk−1) ∨ (Int \ (
∨

i=1..k−1

βi)× Int \ (
∨

i=1..k−1

βi))

It is clear that γk+1 ⊑∅ γk . Moreover, it is easy to find two substitutions [σ1, σ2] such that [σ1, σ2] 
γk ⊑∅ γk+1 (k ≥ 2). Therefore, γ2 is the minimum (with respect to ⊑∅) of {γk, k ≥ 1}, so expanding t
more than once is useless (we do not get a type more precise than γ2). However, we think the programmer
expects (Int × Int) as a result type instead of γ2. So we take the heuristic number here as 1.

An intersection of product types is equivalent to
∨

i∈I(s
i
1 × si2), so we consider just a single product

type (and then use union for the general case). For instance,

t = ((α → α)× (β → β)) → ((β → β)× (α → α))
s = (((Even → Even) ∨ (Odd → Odd))× (Bool → Bool))

(25)

For the application to succeed, we have a constraint generated for each component of the product type,
namely (α → α ≥ (Even → Even) ∨ (Odd → Odd)) and (β → β ≥ Bool → Bool). As with
Example (22), it is better to expand α → α once for the first constraint, while there is no need to
expand β → β for the second one. As a result, we expand the whole type t once, and get the result type
((Bool → Bool) × ((Even → Even) ∨ (Odd → Odd))) as expected. Generally, if the heuristic numbers
of the components of a product type are respectively p1 and p2, we take p1 ∗ p2 as the heuristic number for
the whole product.

Finally, suppose s is an intersection of arrows, like for example map even.

t = (α → β) → [α] → [β]
s = (Int → Bool) ∧ ((γ \ Int) → (γ \ Int))

(26)

When p = 1, the constraint to solve is (α → β ≥ s). As stated in Subsection B.2.2, we get four possible
result types: [ ] → [ ], [Int] → [Bool], [α \ Int] → [α \ Int], or [Int ∨ α] → [Bool ∨ (α \ Int)], and
we can build the minimum one by taking the intersection of them. If we continue expanding t, any result
type we obtain is an intersection of some of the result types we have deduced for p = 1. Indeed, assume
we expand t so that we get p copies of t. Then we would have to solve either (

∨

i=1..p αi → βi ≥ s) or
(
∧

i=1..p αi → βi ≥ s). For the first constraint to hold, by the decomposition rule of arrows, there exists
i0 such that s ≤ αi0 → βi0 , which is the same constraint as for p = 1. The second constraint implies
s ≤ αi → βi for all i; we recognize again the same constraint as for p = 1 (except that we intersect p
copies of it). Consequently, expanding does not give us more information, and it is enough to take p = 1 as
the heuristic number for this case.

Following the discussion above, we propose in Table 1 a heuristic number Hp(s) that, according to the
shape of s, sets an upper bound to the number of copies of t. We assume that s is in normal form. This
definition can be easily extended to recursive types by memoization.

The next example shows that performing the expansion of t with Hp(s) copies may not be enough to get
a result type, confirming that this number is a heuristic that does not ensure completeness. Let

t = ((true × (Int → α)) → t1) ∧ ((false × (α → Bool)) → t2)
s = (Bool × (Int → Bool))

(27)

Here dom(t) is (true×(Int → α))∨(false×(α → Bool)). The type s cannot be completely contained
in either summand of dom(t), but it can be contained in dom(t). Indeed, the first summand requires the
substitution of α to be a supertype of Bool while the second one requires it to be a subtype of Int. As Bool
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Table 2. Heuristic number Hq(dom(t)) for the copies of s
Shape of dom(t) Number Hq(dom(t))

∨

i∈I ti
∏

i∈I Hq(ti) + 1
∧

i∈P bi ∧
∧

i∈N ¬bi ∧
∧

i∈P1
αi ∧

∧

i∈N1
¬αi 1

∧

i∈P (t
1
i × t2i ) ∧

∧

i∈N ¬(t1i × t2i )
∏

N′⊆N Hq(t
1
N′ × t2N′)

(t1 × t2) Hq(t1) +Hq(t2)
∧

i∈P (t
1
i → t2i ) ∧

∧

i∈N ¬(t1i → t2i ) |P | ∗ (Hq(t
1
i ) +Hq(t

2
i ))

where (t1N′ × t2N′) = (
∧

i∈P t1i ∧
∧

i∈N′ ¬t
1
i ×

∧

i∈P t2i ∧
∧

i∈N\N′ ¬t
2
i ),

is not a subtype of Int, to make the application possible, we have to expand the function type at least once.
However, according to Table 1, the heuristic number in this case is 1 (ie, no expansions).

Expansion of s. For simplicity, we assume that dom(
∧

i∈I tσi) =
∨

i∈I dom(t)σi, so that the tallying
problem for the application becomes

∧

j∈J sσ′
j ≤

∨

i∈I dom(t)σi. We now give some heuristic numbers
for |J | depending on dom(t).

First, consider the following example where dom(t) is a union:

dom(t) = (Int → ((Bool → Bool) ∧ (Int → Int)))
∨(Bool → ((Bool → Bool) ∧ (Int → Int) ∧ (Real → Real)))

s = (Int → (α → α)) ∨ (Bool → (β → β))
(28)

For the application to succeed, we need to expand Int → (α → α) with two copies (so that we can
make two distinct instantiations α = Bool and α = Int) and Bool → (β → β) with three copies (for
three instantiations β = Bool, β = Int, and β = Real), corresponding to the first and the second
summand in dom(t) respectively. Since the expansion distributes the union over the intersections, we
need to get six copies of s. In detail, we need the following six substitutions: {α = Bool, β = Bool},
{α = Bool, β = Int}, {α = Bool, β = Real}, {α = Int, β = Bool}, {α = Int, β = Int}, and
{α = Int, β = Real}, which are the Cartesian products of the substitutions for α and β.

If dom(t) is an intersection of basic types, we use 1 for the heuristic number. If it is an intersection of
product types, we can rewrite it as a union of products and we only need to consider the case of just a single
product type. For instance,

dom(t) = ((Int → Int)× (Bool → Bool))
s = ((α → α)× (α → α))

(29)

It is easy to infer that the substitution required by the left component needs α to be Int, while the one
required by the right component needs α to be Bool. Thus, we need to expand s at least once. Assume
that s = (s1 × s2) and we need qi copies of si with the type substitutions: σi

1, . . . , σ
i
qi . Generally, we can

expand the whole product type so that we get s1 × s2 copies as follows:
∧

j=1..q1
(s1 × s2)σ

1
j ∧

∧

j=1..q2
(s1 × s2)σ

2
j

= ((
∧

j=1..q1
s1σ

1
j ∧

∧

j=1..q2
s1σ

2
j )× (

∧

j=1..q1
s2σ

1
j ∧

∧

j=1..q2
s2σ

2
j ))

Clearly, this expansion type is a subtype of (
∧

j=1..q1
s1σ

1
j ×

∧

j=1..q2
s2σ

2
j ) and so the type tallying

succeeds.
Next, consider the case where dom(t) is an intersection of arrows:

dom(t) = (Int → Int) ∧ (Bool → Bool)
s = α → α

(30)

Without expansion, we need (α → α) ≤ (Int → Int) and (α → α) ≤ (Bool → Bool), which reduce
to α = Int and α = Bool; this is impossible. Thus, we have to expand s once, for the two conjunctions in
dom(t).

Note that we may also have to expand s because of unions or intersections occurring under arrows. For
example,

dom(t) = t′ → ((Int → Int) ∧ (Bool → Bool))
s = t′ → (α → α)

(31)

As in Example (30), expanding once the type α → α (which is under an arrow in s) makes type tallying
succeed. Because (t′ → s1) ∧ (t′ → s2) ≃ t′ → (s1 ∧ s2), we can in fact perform the expansion on s
and then use subsumption to obtain the desired result. Likewise, we may have to expand s if dom(t) is an
arrow type and contains an union in its domain. Therefore, we have to look into dom(t) and s deeply if they
contain both arrow types.

Following these intuitions, we define in Table 2 a heuristic number Hq(dom(t)) that, according to the
sharp of dom(t), sets an upper bound to the number of copies of s.

Together. Up to now, we have considered the expansions of t and s separately. However, it might be the
case that the expansions of t and s are interdependent, namely, the expansion of t causes the expansion of
s and vice versa. Here we informally discuss the relationship between the two, and hint as why decidability
is difficult to prove.
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Let dom(t) = t1 ∨ t2, s = s1 ∨ s2, and suppose the type tallying between dom(t) and s requires that
tiσi ≥ si, where σ1 and σ2 are two conflicting type substitutions. Then we can simply expand dom(t) with
σ1 and σ2, yielding t1σ1 ∨ t2σ1 ∨ t1σ2 ∨ t2σ2. Clearly, this expansion type is a supertype of t1σ1 ∨ t2σ2

and thus a supertype of s. Note that as t is on the bigger side of ≤, then the extra chunk of type brought
by the expansion (i.e., t2σ1 ∨ t1σ2) does not matter. That is to say, the expansion of t would not cause the
expansion of s.

However, the expansion of s could cause the expansion of t, and even a further expansion of s itself.
Assume that s = s1 ∨ s2 and si requires a different substitution σi (i.e., siσi ≤ dom(t) and σ1 is in
conflict with σ2). If we expand s with σ1 and σ2, then we have

(s1 ∨ s2)σ1 ∧ (s1 ∨ s2)σ2

= (s1σ1 ∧ s1σ2) ∨ (s1σ1 ∧ s2σ2) ∨ (s2σ1 ∧ s1σ2) ∨ (s2σ1 ∧ s2σ2)

It is clear that s1σ1 ∧ s1σ2, s1σ1 ∧ s2σ2 and s2σ1 ∧ s2σ2 are subtypes of dom(t). Consider the extra type
s1σ2 ∧ s2σ1. If this extra type is empty (e.g., because s1 and s2 have different top-level constructors), or
if it is a subtype of dom(t), then the type tallying succeeds. Otherwise, in some sense, we need to solve
another type tallying between s ∧ (s2σ1 ∧ s1σ2) and dom(t), which would cause the expansion of t or s.
This is the main reason why we fail to prove the decidability of the application problem (that is, deciding
•∆) so far.

To illustrate this phenomenon, consider the following example:

dom(t) = ((Bool → Bool) → (Int → Int))
∨((Bool → Bool) ∨ (Int → Int)) → ((β → β) ∨ (Bool → Bool))
∨(β × β)

s = (α → (Int → Int)) ∨ ((Bool → Bool) → α) ∨ (Bool × Bool)

(32)

Let us consider each summand in s respectively. A solution for the first summand is α ≥ Bool → Bool,
which corresponds to the first summand in dom(t). The second one requires α ≤ Int → Int and the third
one β ≥ Bool. Since (Bool → Bool) is not subtype of (Int → Int), we need to expand s once, that is,

s′ = s{Bool → Bool/α} ∧ s{Int → Int/α}
= ((Bool → Bool) → (Int → Int)) ∧ ((Int → Int) → (Int → Int))

∨((Bool → Bool) → (Int → Int)) ∧ ((Bool → Bool) → (Int → Int))
∨((Bool → Bool) → (Bool → Bool)) ∧ ((Int → Int) → (Int → Int))
∨((Bool → Bool) → (Bool → Bool)) ∧ ((Bool → Bool) → (Int → Int))
∨(Bool × Bool)

Almost all the summands of s′ are contained in dom(t) except the extra type

((Bool → Bool) → (Bool → Bool)) ∧ ((Int → Int) → (Int → Int))

Therefore, we need to consider another type tallying involving this extra type and dom(t). By doing so,
we obtain β = Int; however we have inferred before that β should be a supertype of Bool. Consequently,
we need to expand dom(t); the expansion of dom(t) with {Bool/β} and {Int/β} makes the type tallying
succeed.

In day-to-day examples, the extra type brought by the expansion of s is always a subtype of (the
expansion type of) dom(t), and we do not have to expand dom(t) or s again. The heuristic numbers we
gave seem to be enough in practice.

C. Type reconstruction

We define an implicit calculus without interfaces, for which we define a reconstruction system.

Definition C.1. An implicit expression m is an expression without any interfaces (or type substitutions). It
is inductively generated by the following grammar:

m ::= c | x | (m,m) | πi(m) | m m | λx.m | m∈t ?m :m

The type reconstruction for expressions has the form Γ ⊢R e : t  S , which states that under the
typing environment Γ, e has type t if there exists at least one constraint-set C in the set of constraint-sets
S such that C are satisfied. The type reconstruction rules are given in Figure 11.

Most of the rules, except the rules for type cases, are standard but differ from most of the type inference
of other work in that they generate a set of constraint-sets rather than a single constraint-set. This is due to
the type inference for type-cases. There are four possible cases for type-cases ((RECON-CASE)): (i) if no
branch is selected, then the type t0 inferred for the argument m0 should be 0 (and the result type can be any
type); (ii) if the first branch is selected, then the type t0 should be a subtype of t and the result type α for
the whole type-case should be a super-type of the type t1 inferred for the first branch m1; (iii) if the second
branch is selected, then the type t0 should be a subtype of ¬t and the result type α should be a super-type
of the type t2 inferred for the second branch m2; and (iv) both branches are selected, then the result type
α should be a super-type of the union of t1 and t2 (note that the condition for t0 is the one that does not
satisfy (i), (ii) and (iii)). Therefore, there are four possible solutions for type-cases and thus four possible
constraint-sets. Finally, the rule (RECON-CASE-VAR) deals with the type inference for the special binding
type-case introduced in Appendix E in the companion paper [3].
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Γ ⊢R c : bc  {∅}
(RECON-CONST)

Γ ⊢R x : Γ(x) {∅}
(RECON-VAR)

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R (m1,m2) : t1 × t2  S1 ⊓ S2
(RECON-PAIR)

Γ ⊢R m : t S

Γ ⊢R πi(m) : αi  S ⊓ {{(t,≤, α1 × α2)}}
(RECON-PROJ)

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R m1 m2 : α S1 ⊓ S2 ⊓ {{(t1,≤, t2 → α)}}
(RECON-APPL)

Γ, (x : α) ⊢R m : t S

Γ ⊢R λx.m : α → β  S ⊓ {{(t,≤, β)}}
(RECON-ABSTR)

Γ ⊢R m0 : t0  S0 (m0 /∈ X )
Γ ⊢R m1 : t1  S1

Γ ⊢R m2 : t2  S2

S = (S0 ⊓ {{(t0,≤, 0), (0,≤, α)}})
⊔ (S0 ⊓ S1 ⊓ {{(t0,≤, t), (t1,≤, α)}})
⊔ (S0 ⊓ S2 ⊓ {{(t0,≤,¬t), (t2,≤, α)}})
⊔ (S0 ⊓ S1 ⊓ S2 ⊓ {{(t0,≤, 1), (t1 ∨ t2,≤, α)}})

Γ ⊢R (m0∈t ?m1 :m2) : α S
(RECON-CASE)

Γ, (x : Γ(x) ∧ t) ⊢R m1 : t1  S1

Γ, (x : Γ(x) ∧ ¬t) ⊢R m2 : t2  S2

S = ({{(Γ(x),≤, 0), (0,≤, α)}})
⊔ (S1 ⊓ {{(Γ(x),≤, t), (t1,≤, α)}})
⊔ (S2 ⊓ {{(Γ(x),≤,¬t), (t2,≤, α)}})
⊔ (S1 ⊓ S2 ⊓ {{(Γ(x),≤, 1), (t1 ∨ t2,≤, α)}})

Γ ⊢R (xǫ t ?m1 :m2) : α S
(RECON-CASE-VAR)

where α, αi and β in each rule are fresh type variables.

Figure 11. Type reconstruction rules

Let m be an implicit expression such that Γ ⊢R m : t  S . By inserting into m those types form of
α → β introduced by the derivation of Γ ⊢R m : t  S for the λ-abstractions in m correspondingly, we
obtain an explicit expression e for m, denoted as insert(m). In particular, for λ-abstraction λx. m, we have

insert(λx. m) = λα→βx.insert(m)

where α → β is a fresh type introduced for λx. m.

Theorem C.2 (Soundness). Let m be an implicit expression such that Γ ⊢R m : t  S . Then for all
C ∈ S and for all σ, if σ  C, then ∅ ;Γσ ⊢ insert(m)@[σ] : tσ.

Proof. By induction on the derivation of Γ ⊢R m : t  S . We proceed by a case analysis of the last rule
used in the derivation.

(RECON-CONST): straightforward .
(RECON-VAR): straightforward.
(RECON-PAIR): consider the following derivation:

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R (m1,m2) : t1 × t2  S1 ⊓ S2

Since C ∈ S1 ⊓ S2, according to Definition B.4, there exists C1 ∈ S1 and C2 ∈ S2 such that C =
C1 ∪ C2. Thus, we have σ  C1 and σ  C2. By induction, we have ∅ ;Γσ ⊢ insert(m1)@[σ] : t1σ
and ∅ ;Γσ ⊢ insert(m2)@[σ] : t2σ. By (pair), we get ∅ ;Γσ ⊢ (insert(m1)@[σ], insert(m2)@[σ]) :
(t1σ × t2σ), that is ∅ ;Γσ ⊢ insert((m1,m2))@[σ] : (t1 × t2)σ.

(RECON-PROJ): consider the following derivation:

Γ ⊢R m′ : t′  S
′

Γ ⊢R πi(m
′) : αi  S

′ ⊓ {{(t′,≤, α1 × α2)}}
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According to Definition B.4, there exists C′ ∈ S
′ such that C = C′ ∪ {(t′,≤, α1 × α2)}. Thus,

we have σ  C′ and t′σ ≤ (α1σ × α2σ). By induction, we have ∅ ;Γσ ⊢ insert(m′)@[σ] : t′σ.
By subsumption, we have ∅ ;Γσ ⊢ insert(m′)@[σ] : (α1σ × α2σ). Then by (proj), we get ∅ ;Γσ ⊢
(πi(insert(m′)@[σ])) : αiσ, that is ∅ ;Γσ ⊢ insert(πi(m

′))@[σ] : αiσ.
(RECON-APPL): consider the following derivation:

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R m1 m2 : α S1 ⊓ S2 ⊓ {{(t1,≤, t2 → α)}}

According to Definition B.4, there exists C1 ∈ S1 and C2 ∈ S2 such that C = C1 ∪ C2 ∪ {(t1,≤
, t2 → α)}. Thus, we have σ  C1, σ  C2 and t1σ ≤ t2σ → ασ. By induction, we have ∅ ;Γσ ⊢
insert(m1)@[σ] : t1σ and ∅ ;Γσ ⊢ insert(m2)@[σ] : t2σ. By subsumption, we can get ∅ ;Γσ ⊢
insert(m1)@[σ] : t2σ → ασ. Then by (appl), we get ∅ ;Γσ ⊢ (insert(m1)@[σ] insert(m2)@[σ]) : ασ,
that is ∅ ;Γσ ⊢ insert(m1 m2)@[σ] : ασ.

(RECON-ABSTR): consider the following derivation:

Γ, (x : α) ⊢R m′ : t′  S
′

Γ ⊢R λx.m′ : α → β  S
′ ⊓ {{(t′,≤, β)}}

According to Definition B.4, there exists C′ ∈ S
′ such that C = C′ ∪ {(t′,≤, β)}. Thus, we

have σ  C′ and t′σ ≤ βσ. By induction, we have ∅ ;Γσ, (x : ασ) ⊢ insert(m′)@[σ] : t′σ. By
subsumption, we can get ∅ ;Γσ, (x : ασ) ⊢ insert(m′)@[σ] : βσ. It is clear that there are no sub-
terms form of e[σj ]j∈J in insert(m′)@[σ], so insert(m′)@[σ] ♯ var(ασ → βσ). Then according to
weakening (i.e., Lemma B.8 in the companion paper [3]), we have var(ασ → βσ) ;Γσ, (x : ασ) ⊢
insert(m′)@[σ] : βσ. Finally, by (abstr), we get ∅ ;Γσ ⊢ (λα→β

[σ] x. insert(m′)) : ασ → βσ, that is

∅ ;Γσ ⊢ insert(λx. m′)@[σ] : ασ → βσ.
(RECON-CASE): consider the following derivation:

Γ ⊢R m0 : t0  S0 (m0 /∈ X )
Γ ⊢R m1 : t1  S1

Γ ⊢R m2 : t2  S2

S = (S0 ⊓ {{(t0,≤, 0), (0,≤, α)}})
⊔ (S0 ⊓ S1 ⊓ {{(t0,≤, t′), (t1,≤, α)}})
⊔ (S0 ⊓ S2 ⊓ {{(t0,≤,¬t′), (t2,≤, α)}})
⊔ (S0 ⊓ S1 ⊓ S2 ⊓ {{(t0,≤, 1), (t1 ∨ t2,≤, α)}})

Γ ⊢R (m0∈t
′
?m1 :m2) : α S

Since C ∈ S , according to Definition B.4, there are four possible cases for C: (i) C ∈ S0 ⊓ {{(t0,≤
, 0), (0,≤, α)}}, (ii) C ∈ S0 ⊓ S1 ⊓ {{(t0,≤, t′), (t1,≤, α)}}, (iii) C ∈ S0 ⊓ S2 ⊓ {{(t0,≤
,¬t′), (t2,≤, α)}}, and (iv) C ∈ S0 ⊓ S1 ⊓ S2 ⊓ {{(t0,≤, 1), (t1 ∨ t2,≤, α)}}.

Case (i): there exists C0 ∈ S0 such that σ  C0, t0σ ≤ 0 and 0 ≤ ασ. By induction, we have
∅ ;Γσ ⊢ insert(m0)@[σ] : t0σ. Since t0σ ≤ 0, we have t0σ ≤ ¬t′ and t0σ ≤ t′. Then applying
the rule (case), we have ∅ ;Γσ ⊢ insert(m′)@[σ]∈t′ ? insert(m1)@[σ] : insert(m2)@[σ] : 0, that
is, ∅ ;Γσ ⊢ insert(m′∈t′ ?m1 :m2)@[σ] : 0. Finally, by subsumption, the result follows.

Case (ii): there exists C0 ∈ S0 and C1 ∈ S1 such that σ  C0, σ  C1 , t0σ ≤ t′ (t′ is ground) and
t1σ ≤ ασ. By induction, we have ∅ ;Γσ ⊢ insert(m0)@[σ] : t0σ and ∅ ;Γσ ⊢ insert(m1)@[σ] :
t1σ. If t0σ ≤ ¬t′, then t0σ ≤ t′ ∧ (¬t′) ≃ 0 (i.e., Case (i)), and thus the result follows by
subsumption. Otherwise, we have t0σ ≤ ¬t′. Then applying the rule (case), we have

∅ ;Γσ ⊢ insert(m′)@[σ]∈t′ ? insert(m1)@[σ] : insert(m2)@[σ] : t1σ

that is, ∅ ;Γσ ⊢ insert(m′∈t′ ?m1 :m2)@[σ] : t1σ. Finally, by subsumption, the result follows.
Case (iii): similar to Case (ii).
Case (iv): there exists C0 ∈ S0, C1 ∈ S1 and C2 ∈ S2 such that σ  C0, σ  C1 , σ  C2 and t1σ∨

t2σ ≤ ασ. By induction, we have ∅ ;Γσ ⊢ insert(m0)@[σ] : t0σ, ∅ ;Γσ ⊢ insert(m1)@[σ] : t1σ
and ∅ ;Γσ ⊢ insert(m2)@[σ] : t2σ. By subsumption, we have ∅ ;Γσ ⊢ insert(m1)@[σ] : t1σ∨ t2σ
and ∅ ;Γσ ⊢ insert(m2)@[σ] : t1σ ∨ t2σ. If t0σ ≤ t′ or t0σ ≤ ¬t′, then we are in Case (i)− (iii),
thus the result follows by subsumption. Otherwise, applying the rule (case), we have

∅ ;Γσ ⊢ insert(m′)@[σ]∈t′ ? insert(m1)@[σ] : insert(m2)@[σ] : t1σ ∨ t2σ

that is, ∅ ;Γσ ⊢ insert(m′∈t′ ?m1 :m2)@[σ] : t1σ ∨ t2σ. Finally, by subsumption, the result
follows.

(RECON-CASE-VAR): similar to (RECON-CASE).

Consider the implicit version of map, which can be defined as:

µm λf . λℓ . ℓǫ nil ? nil : (f(π1ℓ),mf(π2ℓ))
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The type inferred for map by the type reconstruction system is α1 → α2 and the generated set S of
constraint-sets is:

{ {α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ 0, 0 ≤ α5},
{α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ nil, nil ≤ α5},
{α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ ¬nil, (α6 × α9) ≤ α5} ∪ C,
{α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ 1, (α6 × α9) ∨ nil ≤ α5} ∪ C }

where C is {α1 ≤ α7 → α6, α3 \ nil ≤ (α7 × α8), α1 → α2 ≤ α1 → α10, α3 \ nil ≤
(α11 × α12), α10 ≤ α12 → α9}. Then applying the tallying algorithm to the sets, we get the following
types for map:

α1 → (0 → α5)
α1 → (nil → nil)
0 → ((α7 ∧ α11 × α8 ∧ α12) → (α6 × α9))
(α7 → α6) → (0 → (α6 × α9))
(α7 → α6) → (0 → [α6])
0 → ((nil ∨ (α7 ∧ α11 × α8 ∧ α12)) → (nil ∨ (α6 × α9)))
(α7 → α6) → (nil → (nil ∨ (α6 × α9)))
(α7 → α6) → ((µx. nil ∨ (α7 ∧ α11 × α8 ∧ x)) → [α6])

By replacing type variables that only occur positively by 0 and those only occurring negatively by 1, we
obtain

1 → (0 → 0)
1 → (nil → nil)
0 → ((1 × 1) → 0)
(0 → 1) → (0 → 0)
(1 → β) → (0 → [β])
0 → ((nil ∨ (1 × 1)) → nil)
(0 → 1) → (nil → nil)
(α → β) → ([α] → [β])

All the types, except the last two, are useless 13, as they provide no further information. Thus we deduce the
following type for map:

((α → β) → ([α] → [β])) ∧ ((0 → 1) → (nil → nil))

which is more precise than (α → β) → ([α] → [β]) since it states that the application of map to any
function and the empty list returns the empty list.

13 These useless types are generated from the fact that 0 → t contains all the functions, or the fact that (0× t) or (t×0)
is a subtype of any type, or the fact that Case (i) in type-cases is useless in practice.
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