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GT2FC: An Online Growing Interval
Type-2 Self-Learning Fuzzy Classifier

Abdelhamid Bouchachia, Senior Member, IEEE, and Charlie Vanaret

Abstract—In the present paper we propose a Growing Type-2
Fuzzy Classifier (GT2FC) for online rule learning from real-time
data streams. While in batch rule learning the training data are
assumed to be drawn from a stationary distribution, in online rule
learning data can dynamically change over time becoming poten-
tially non-stationary. To accommodate dynamic change, GT2FC
relies on a new semi-supervised online learning algorithm called
2G2M (Growing Gaussian Mixture Model). In particular, 2G2M
is used to generate the type-2 fuzzy membership functions to
build the type-2 fuzzy rules. GT2FC is designed to accommodate
data online and to reconcile labeled and unlabeled data using self-
learning. Moreover. GT2FC maintains low complexity of the rule
base using online optimization and feature selection mechanisms.

GT2FC is tested on data obtained from an ambient intelligence
(AmI) application where the goal is to exploit sensed data to
monitor the living space on behalf of the inhabitants. Because
sensors are prone to faults and noise, type-2 fuzzy modeling is
very suitable for dealing with such an application. Thus, GT2FC
offers the advantage of dealing with uncertainty in addition to
self-adaptation in an online manner. For illustration purposes,
GT2FC is also validated on synthetic and classic UCI data sets.
The detailed empirical study shows that GT2FC performs very
well under various experimental settings.

Index Terms—Online learning, Type-2 fuzzy rule systems,
semi-supervised learning, Growing Gaussian mixture models,
online optimization.

I. INTRODUCTION

OFFLINE development of fuzzy rule-based systems
(FRSs) assumes that the process of rule induction is

done at once in a one-shot experiment. The learning and
the deployment of FRSs are two sequential and independent
stages. If, for instance, the FRS performance deteriorates
due to a change of the data distribution or a change of the
operating conditions, the FRS needs to be re-designed from
scratch. Online learning (OL), on the other hand, enables
both learning and deployment to happen concurrently. In this
context, learning takes place over long periods of time, and is
inherently open-ended [8]. The aim is to ensure that the system
remains amenable to refinement as long as data continue to
arrive. Moreover, online FRSs can also deal with applications
starving of data (e.g., experiments that are expensive and
slow to produce data as in some chemical and biological
applications) as well as with applications which are data
intensive (e.g., monitoring, information filtering, etc.) [3], [5].
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OL faces the challenge of accurately estimating the sta-
tistical characteristics of data in the future. In non-stationary
environments, the challenge becomes even more important,
since the FRS’s behavior may need to change drastically over
time due to concept drift [46]. The aim of OL is to ensure
continuous adaptation. The learning algorithm should store
only the learning model (e.g., only rules of the FRS) and uses
that model as basis in the future learning steps. As new data
arrive, new rules may be created and existing ones may be
modified allowing the system to evolve over time.

On the other hand, FRSs are preferred for learning from
data due to their transparency to human beings and their power
to cope with uncertainty [33], [48]. Of interest in this study
are incremental FRSs that aim at combining the technology of
fuzzy systems and online learning to deal with online induction
of comprehensible rules. In particular, incremental type-1 FRS
have been recently introduced in a number of studies involving
control [1], diagnostic [29], and pattern classification [2], [8].
Such systems are currently quite established, since they do
not only operate online, but also consider related advanced
concepts such as concept drift and online feature selection.

Motivated by an ambience intelligence application proposed
by the authors [16], [20], [47] using type-2 FRS, this paper
presents a novel online type-2 fuzzy rule-based system dedi-
cated to classification to monitor a smart space on behalf of
the occupants. To the best of our knowledge, no online type-
2 FRS for classification exists yet. However, there have been
studies related to: (1) online type-1 FRS [2], [8] for various
modeling tasks, (2) self-evolving type-2 fuzzy neural networks
for control [23] and (3) type-2 FRS for classification [30].

We are interested in an online interval-based type-2 FRS
whose rules’ premises are Gaussians and which are incre-
mentally generated by a Growing Gaussian Mixture Model
(2G2M). We also consider operational mechanisms in 2G2M
(i.e., merge of partitions, split of partitions, etc.) to dynami-
cally control the complexity and the quality of the rules. More-
over, in an online setting we cannot expect to receive feedback
(i.e., data labels) from the environment all the time; thus, it is
necessary to equip the fuzzy classifier with mechanisms that
enable learning from both labeled and unlabeled data.

This paper addresses the following questions:
• How can OL be adopted for designing type-2 fuzzy

classification systems?
• How can the complexity of the rule base be controlled

over time?
• How can both labeled and unlabeled data be accommo-

dated during rule learning?
The remainder of the paper is organized as follows. An

overview of the literature related to incremental fuzzy rule
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systems is presented in Sec. II. Then incremental mixture
models are introduced in Sec. III. The description of type-
2 fuzzy systems follows in Sec. IV. In Sec. V, we introduce
our algorithm 2G2M which generates the partitions of space.
In particular the model refinement mechanisms are discussed
therein. Section VI explains the process of fuzzy rule genera-
tion. Finally Sec. VII shows the empirical results obtained on
various datasets before the paper is then concluded in Sec. X.

II. ONLINE FUZZY RULE-BASED SYSTEMS

Traditional FRSs are designed in batch mode, that is, by
using the complete training data at once. For stationary pro-
cesses this is sufficient, but for time-dependent and complex
non-stationary processes, efficient techniques for updating the
induced models are needed. To avoid starting from scratch
every time, these techniques must be able to adapt the current
model using only the new data. They have to be equipped with
mechanisms to react to gradual changes or abrupt ones. More-
over, the adaptation of knowledge (model/rule-base) should
accommodate any information brought in by the new data and
reconcile this with the existing knowledge.

Many approaches do simply perform “adaptive tuning”,
that is, they permanently re-estimate the parameters of the
computed model. However it is quite often necessary to adapt
the structure of the rule-base. In contrast to these approaches,
some advances in the direction of fully incremental FRS have
been made over the recent years (e.g., [1], [8]). While type-1
FRSs are well established, online type-2 FRSs have not yet
received much attention. In this section we highlight some of
the work on online fuzzy rule systems.

In [1] an approach for adaptation of an FRS of Takagi-
Sugeno type was proposed. It consists of two steps: (a)
generating clusters that represent the rule’s antecedents using
an on-line version of the subtractive clustering algorithm and
(b) estimating the consequents’ parameters using the least
squares algorithm. New rules are added when new clusters are
generated. Similar approaches relying on subtractive clustering
and least squares have been proposed later in [13]. In [20] a
type-2 fuzzy controller was introduced. The FRS is capable
of incrementally updating its rules which model the relation-
ship between actuators (output variables) and sensors (input
variables) in an ambient environment. Whenever the actuators
are changed, the state of the environment is recorded before
it is mapped to the rules’ premises. The conclusions of the
firing rules are then replaced by the actual output emanating
from the actuators. If no rule is fired, a new one is added.
In [8], an integrated approach called FRCS was proposed.
To accommodate incremental rule learning, appropriate mech-
anisms are applied at all steps: (1) Incremental supervised
clustering to generate the rule antecedents in a progressive
manner, (2) online and systematic update of fuzzy partitions,
(3) Incremental feature selection using an incremental version
of the Fisher’s interclass separability criterion to dynamically
select features in an online manner.

III. ONLINE CLUSTERING BASED ON GMMS

To automatically generate fuzzy rules, one needs to define
the fuzzy membership functions which specify a partitioning

of the input and possibly the output space. To do this, there
are two types of fuzzy sets: uni-dimensional and multidimen-
sional [9], [26]. Using uni-dimensional fuzzy sets, the rule
premises are expressed as conjunction of fuzzy sets asso-
ciated with the individual dimensions. The uni-dimensional
fuzzy sets are obtained by projecting the partitions on the
individual space features. On the other hand, using multi-
dimensional fuzzy sets, the premises are expressed by the
multi-dimensional partitions as a whole. In other terms, a
multidimensional (multivariate) space can be divided into
multidimensional fuzzy partitions represented in the form of
multidimensional fuzzy membership functions. The use of
multidimensional functions in fuzzy systems has the advantage
of reducing the complexity of the rule base as well as retaining
the correlation between the features [28]. Nevertheless uni-
dimensional functions provide more transparency as rules are
explicitly expressed in terms of the input features. Note that
”uni-dimensional” is not about ”type-1”, it is rather about how
fuzzy granules are interpreted and how the form of fuzzy rules
is desired to look like. Uni-dimensional fuzzy sets involve
the individual features (see Eq. 9, Sec. IV), whereas multi-
dimensional fuzzy sets involve granules (see Eq. 10, Sec. IV).

There are 3 types of fuzzy partitioning [22]: grid partition-
ing, tree partition, and scatter partitioning via clustering. In
this paper, we consider the latter which consists of finding the
regions that are susceptible to cover the data. A straightforward
way to perform scatter partitioning is clustering. Scatter parti-
tioning offers many advantages because: (a) clustering can be
done online, (b) compact rule base can be obtained, and (c) in-
terpretability and transparency can be ensured by transforming
multi-dimensional fuzzy sets into uni-dimensional fuzzy sets,
that is by projecting the clusters onto the feature axes [8].

To facilitate a straightforward mapping between clusters and
rules, we will propose a clustering algorithm that relies on an
incrementally growing version of the Gaussian mixture model
(GMM) trained by the Expectation-Maximization algorithm
(EM) [15]. GMM is appealing because it can model complex
and nonlinear pattern variations, it is efficient in terms of
memory, it is able of selecting the optimal model, and it is
theoretically guaranteed to converge [3], [19].

The approach proposed is characterized by the following:
• Online operation: Since the aim of this study is to

investigate growing type-2 FRSs, we will rely on an
adaptive growing Gaussian mixture model. The idea is
to produce clusters that evolve over time to generate the
rules’ antecedents. Because the mapping from clusters to
type-2 fuzzy sets of the rules must be less burdensome,
online Gaussian mixture models are applied.

• Semi-supervision: Because of the nature of online setting,
not all data that arrive over time are labeled. Therefore,
the online GMM-based clustering algorithm to be used
in this paper must have semi-supervision mechanisms to
accommodate unlabeled data. Note that for FRSs, semi-
supervised learning is not well established. Only very few
studies have investigated this subject [6], [25].

• Uncertainty handling: In real-time applications, data may
be noisy, unlabeled and may drift, while the application of
GMM trained online by Expectation-Maximization (EM)



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XXXX, NO. XXXX, XXXXX 2013 3

needs to estimate the influence of the new data. That is,
the parameters of the model are not exactly computed
due to the very nature of online learning. GMM may not
be able to reflect the true data distribution (at time t, EM
does not have the data already seen in the past, the new
data may be noisy and may drift over time). Thus, it is
necessary to consider the model’s uncertainty. Here we
use type-2 fuzzy GMM which allows to describe each
parameter of the model with uncertainty.

GMM’s are considered as a model-based clustering method
which perceives the data as a population with K different
components, where each component is generated by an under-
lying probability distribution. The density of a D−dimensional
data point xi from the jth component is fj(xi; θj), where
θj represents some unknown parameters associated with the
component j. The density function associated is expressed as:

f(xi|θ) =

K∑
j=1

τjfj(xi; θj) (1)

where τj is the weight of the jth component such that∑K
j=1 τj = 1. A typical case is when fj(xi; θj) is a multivari-

ate normal density φj with θj representing the characteristics
of each component j. These characteristics are the mean µj
and the covariance matrix Σj . The density φj reads:

φj(xi|µj ,Σj) =
exp{−1/2(xi − µj)TΣ−1

j (xi − µj)}√
det(2πΣj)

(2)

Gaussian mixtures are usually trained using the iterative EM
algorithm. In the E-step, the posterior probability of the data
is computed, while in the M-step, the mixture parameters
(τ̂j , µ̂j , Σ̂j) are computed. This iterative algorithm is not
adequate for online learning, since the aim is to avoid storing
the entire data (i.e. the continuous stream of data) and each
data point is discarded once it has been processed. Therefore,
only online variants of GMM can be applied.

Incremental approaches of GMM have been proposed by
many authors [3], [27], [36], [41] where various versions
of EM are applied. In particular, the approach described by
Stauffer and Grimson [44] in a tracking context is one of
the mostly established approaches. The parameters of the
Gaussian mixture are updated as new data arrive. The existing
approaches can be split into two categories, we name them
here as: refinement-based methods and learning methods.

1) Refinement-based methods: In this category, the meth-
ods rely generally on two abstract stages: (i) Processing
and integration of the new data into the current model,
(ii) Refinement of the resulting model which aims at
reducing the complexity of the model that results from
the former stage. Usually the refinement is realized
using some merge and split operations. Many merge
criteria have been used, e.g., the w-statistic for equality
of covariance and Hotellings T 2-statistic for equality
of mean [43], fidelity [14], weighting [21], Chernoff
bound [21], Kullback-Leibler measure [38], mutual in-
formation [49], and minimum description length [3].

2) Learning methods: In this category, the idea is to apply

an online variant of the EM algorithm [37] to train the
Gaussian mixtures in an incremental way as new data
become available. Based on this idea, there have been
several studies dedicated in particular to surveillance
systems and video analysis. The work by Stauffer and
Grimson [45] has become the standard formulation for
the online learning of Gaussian mixtures which adopts
an online EM-approximation based on recursive filter. It
relies on a learning rule with a standard scheme:

θ(t) = (1− η(t))θ(t− 1) + η(t)5 (x(t); θ(t− 1)) (3)

where t, θ, η and 5(.) are time, a model parameter
(mean, variance), learning rate, and update amount.
An analysis of the learning rate has been conducted
in [27] showed in particular that when η(t) = 1/t, the
algorithm will run into local optimum on a stationary
data distribution and if η(t) = α (α << 1), the
most recent observations will have more impact and
force the algorithm to take longer before it converges.
The author in [27] proposed a solution that ensures
temporal adaptability and fast convergence by letting
η converge to α instead of 0. More interestingly each
Gaussian has its own η computed based on the current
likelihood estimates. This allows it to handle Gaussians
independently. The algorithm proposed by Lee in [27]
differs from Stauffer and Grimson’s [44] with respect to
the update rules of the learning rate ηj and the weight
of the Gaussian components τj .

IV. OVERVIEW OF TYPE-2 FUZZY SYSTEMS

Type-2 fuzzy sets are a generalization of type-1 sets; T2
FS have membership grades that are themselves fuzzy. That
is, the membership at any value is no more a single point
but a function. There are two classes of type-2 MFs which
can be applied, interval type-2 fuzzy sets and general type-2
fuzzy sets as shown in Fig. 1. Most of the published work
has focused on interval type-2 fuzzy sets showing successful
applications in robotics, control, image processing and time
series [10], [20], [32]. The reason for using interval type-2
fuzzy sets lies in their simplicity. Generalized type-2 fuzzy
sets have been also applied in [50], [11].

Often the issue is how to define the footprint of uncertainty
(FOU) that specifies the notion of type-2 membership func-
tions. FOU is obtained by means of a blurring procedure which
allows us to assign an interval of values to each of element
of the fuzzy set as shown in Fig. 1. The (possibilistic) weight
of such values differ and we could use a three dimensional
membership function to show this situation. By doing this,
we are characterizing a type-2 fuzzy set. One of the most
used methods for defining FOU consists of creating a margin,
m, around the original type-1 fuzzy membership function. For
instance, for a Gaussian membership function, the FOU allows
the mean to lie within an interval [m1,m2] [34]. A type-2
fuzzy set Ã is defined as:

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (4)

where µÃ(x, u) ∈ [0, 1]. It follows that for a fixed x, we have
a set of values, possibly with different weights, that we call
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Fig. 1: Type-2 fuzzy sets

Embedded
FS

Fig. 2: Embedded MF

secondary membership function, µÃ(x′, u)), while the domain
of this function, Jx, is called primary membership function of
x. In this sense, FOU includes the set of all possible primary
MFs embedded in the type-2 fuzzy set as shown in Fig. 2.

Therefore, the type-2 fuzzy set can be represented as the
union of all its type-2 embedded fuzzy sets:

Ã =

n∑
j=1

Ãje (5)

where Ãje is the jth type-2 embedded fuzzy set given by:

Ãje = {(xi, (uji , fxi
(uji ))), u

j
i ∈ {uik, k = 1, · · · ,Mi}} (6)

where i = 1, · · · , S, S is the number of elements of Ãje,
fxi(u

j
i ) is the secondary grade at uji , n is the number of

embedded type-2 fuzzy sets and Mi is the number of the
possibilistic weights (range of the secondary MFs) associated
with each primary grade. That is: n =

∏S
i=1Mi.

A type-2 fuzzy set can be thought of as a large collection
of embedded type-1 sets each having a weight associated with
it. At each value x, x = x′, the 2-D plane axes are u and
µÃ(x′, u) is called a vertical slice of µÃ(x, u). The secondary
MF is a vertical slice of µÃ(x, u):

µÃ(x′, u) = µÃ(x′) =

∫
u∈Jx′

fx′(u)/(u), Jx′ ⊆ [0, 1] (7)

where 0 ≤ fx′(u) ≤ 1. Because x′ can be any x ∈ X ,
µÃ(x′) = µÃ(x) which is referred to as the secondary
MF [50]. The secondary MF is a type-1 fuzzy set, hence the
name secondary set. It can take different forms [34]. As men-
tioned earlier, the most widely used MF is the rectangularly
shaped one, the so-called Interval Type-2 (IT2 MF) due to its
simplicity. However, other MFs such as Gaussian, triangular,
trapezoidal can also be used.

Referring to Eq. 7, if fx(u) = 1,∀u ∈ Jx ⊆ [0, 1], then
the secondary MFs are interval sets. If this holds ∀x ∈ X ,
then the secondary MF is referred to as interval type-2 MF
which characterizes the interval type-2 fuzzy sets. A uniform
uncertainty at the primary memberships of x means that we
have interval secondary MFs. This is illustrated in Fig. 1. An
interval type-2 set is in this sense represented by its domain
interval, that is the lower and upper points [l, u] as illustrated
in Fig. 3 and which represent the bounds of FOU(Ã). The
lower and upper bounds are referred to [µ

Ã
(x), µÃ(x)].

Being interested in fuzzy rule-based classification systems,
we need to draw the differences between T1 FRS and T2 FRS.
At the operational level, T2 FRS differ from T1 FRS in the
type of fuzzy sets and the operations applied on these sets.
T2 fuzzy sets are equipped mainly with two newly introduced
operators called the meet, u and join, t which correspond to
the fuzzy intersection and fuzzy union. As shown in Fig. 4, T2
FRS at the structural level is similar to T1 FRS but contains
an additional module, the type-reducer. Schematically, the
structure of the T2 FRS consists of:

1) Fuzzifier:
It aims at converting the crisp inputs into input type-2
fuzzy sets. Very often and due to simplicity, only Single-
ton fuzzification is applied [34]. Formally given a crisp
vector x = [x1, · · · , xp]t ∈ X1 ×X2 × · · · ×Xp = X ,
the Singleton fuzzification transforms x into an input
fuzzy set that has only a single point, x′, of nonzero
membership, that is:

µÃx
(x, u) =

{
1/1 for x = x′

1/0 forall x 6= x′
(8)

meaning that at x = x′ the secondary grade is 1 when
the primary variable u = 1 and 0 at all other values of
the primary variable (x 6= x′).

2) Fuzzy rule base:
It consists of fuzzy ”IF-THEN” rules which are extracted
from raw data by means of an inductive learning process.
In a classification type-2 fuzzy rule system, the fuzzy
rules for a C-class pattern classification problem with n
input variable can be formulated as:

Rj ≡ if x1 is Ãj,1 ∧ ... ∧ xn is Ãj,n then Ci (9)

where x = [x1, · · · , xn]t such that each xi is a an input
variable and Ãr,i the corresponding fuzzy terms in the
form of type-2 fuzzy sets. We may associate these fuzzy
sets with linguistic labels to enhance interpretability. Ci
is a consequent class (i.e., one of the given C classes),
and j = 1, · · · , N is the number of fuzzy rules.
Multidimensional fuzzy sets can be used also to build
FRS’s. The rules are expressed in the form:

Rj ≡ if x is Kp then Ci (10)

where Kp is a cluster. The rule means that if the sample
x is close to Kp then x should belong to class Ci.
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Fig. 4: Type-2 fuzzy logic system

Motivated by interpretability issues, in this paper, we
consider the former form (Eq. 9). Type-2 fuzzy rules
are generated. In particular, it will describe mechanisms
to produce and update the type-2 antecedents of the
rules in an online manner to accommodate data arriving
sequentially and continuously over time. Such rules
should not assume that old data is available.

3) Fuzzy inference engine:
The inference engine computes the output of type-2
fuzzy sets by combining the rules. Specifically, the meet
operator is used to connect the type-2 fuzzy propositions
in the antecedent. The degree of activation of the jth rule
using the n input variables is computed as:

β̃j(x) = unq=1µÃj,q
(xq), j = 1, · · · , N (11)

The meet operation that replaces the fuzzy ’and’ in T1
FRS is given as follows:

ÃuB̃ =
∑
u∈Jx

∑
w∈Jx

fx(u)∗gx(w)/(u∧w), x ∈ X (12)

If we use the interval Singleton T2 FRS, the meet is
given for input x = x′ by the firing set, i.e.,

β̃j(x) = [β
j
(x), βj(x)]

= [µ
Aj,1

(x1) ∗ · · · ∗ µ
Aj,n

(xn),

µAj,1
(x1) ∗ · · · ∗ µAj,n

(xn)] (13)

In this paper we adopt the Gaussian membership func-
tion given as follows:

µA(x) = exp

{
− (x−m)2

2σ2

}
= N (m,σ;x) (14)

where m and σ are the mean and the standard deviation
of the function. To generate the lower and upper mem-
bership functions, we rely on two possible methods:

• The interval set for the Gaussian function with
uncertain mean is given by:

µÃ(x) =


N (m1, σ;x) x < m1

1 m1 ≤ x ≤ m2

N (m2, σ;x) x > m2

(15)

µ
Ã

(x) =

{
N (m2, σ;x) x ≤ m1+m2

2

N (m1, σ;x) x > m1+m2

2

(16)

• For the Gaussian with uncertain deviation, concen-
tration and dilation hedges are used to generate the

Fig. 5: Uncertain mean Fig. 6: Uncertain deviation

footprint. These are given as follows:

µÃ(x) = µDIL(A)(x) = [µA(x)]1/2 (17)

µ
Ã

(x) = µCON(A)(x) = [µA(x)]2 (18)

The graphical representations of these two types
of Gaussian are portrayed in Fig. 5 and Fig. 6.
Moreover, according to Eq. 14, we will have the
following expressions:

µÃ(x) = N (m,
√

2σ;x) (19)

µ
Ã

(x) = N (m,
σ√
2

;x) (20)

4) Type-reducer:
It converts T2 FSs obtained as output of the inference en-
gine into T1 FSs. Type-reduction for FRS (Mamdani and
Sugeno models) was proposed by Karnik and Mendel
[24], [35]. This will not be adopted in our case, since
the rules’ consequent represents the label of a class.
Traditionally in Type-1 fuzzy classification systems, the
output of the classifier is determined by the rule that has
the highest degree of activation:

Winner = Cj∗ , j∗ = argmax
1≤j≤N

βj (21)

where βj is the firing degree of the j rule. In type-2
fuzzy classification systems, we have an interval β̃j =
[β
j
, βj ] as defined in Eq. 13. Therefore, we compute the

winning class by considering the center of the interval
[β
j
(x), βj(x)], that is:

Winner = Cj∗ ,where (22)

j∗ = argmax
1≤j≤N

1

2
(β
j
(x) + βj(x)) (23)

V. 2G2M: A GROWING GAUSSIAN MIXTURE MODEL

The algorithm 2G2M shown in Algorithm 1 is an in-
cremental algorithm like the ones mentioned in Sec. III. It
extends the algorithm presented in [27] in many aspects. The
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novelties concern the processing of the labeling information,
the explicit handling of multi-dimensional data, handling the
complexity of the model generated as will be explained later,
and finally the re-structuration to accommodate the named
changes. The similarities concern mainly the online update
procedure which is based on an online approximation of the
standard expectation maximization method provided in [45].

The symbols appearing in Alg. 1 are defined as follows:
K : the number of Gaussians φj , j = 1 · · ·K
µj : the center of the jth Gaussian
Σ0 : the initial covariance matrix of the Gaussians (=

k0ID proportional to the identity matrix of size D
-the number of features-)

α : the learning rate
TΣ : the closeness threshold (Eq. 24)
τj : the weights of the jth Gaussian
cj : the sum of the expected posterior (a sufficient

statistics in the EM method) of the jth Gaussian
Lj : the label of the jth Gaussian (cluster)
Moreover, Alg. 1 is characterized by the following aspects:

A. Probability of Match
Equation 24 has to be adapted to enable semi-supervised

learning. We compute the probability of matching the input
xi with the jth Gaussian by considering the following cases:

1) The input xi is unlabeled: all Gaussians need to be
considered during the match operation (Eq. 24).

2) The input xi is labeled and jth Gaussian is unlabeled:
such Gaussian is considered during the match operation.

3) The input xi and jth Gaussian have the same label: the
Gaussian is of course considered.

4) The input xi and jth Gaussian do not have the same
label: the Gaussian is discarded.

Moreover the distance dM (xi, φj) between an input xi and
a Gaussian φj(µj ,Σj) in Eq. 24 is the Mahalanobis distance
expressed as follows:

dM (xi, φj) =
√

(xi − µj)TΣ−1
j (xi − µj) (35)

B. Processing of Unlabeled Data
To achieve a semi-supervised learning setting, the 2G2M

algorithm is equipped with a mechanism for accommodating
labeled and unlabeled data. The Gaussians are updated and
eventually created according to the label of both the Gaussian
and the incoming input. Similar to the cases outlined in
Sec. V-A, the accommodation of new data is done as follows:

1) If the incoming input is not labeled, simply find the
highest matching Gaussian, add the contribution of the
input and update all Gaussians.

2) If the incoming input is labeled, then
a) If the highest matching Gaussian is unlabeled, label

it with the label of the input.
b) If the highest matching Gaussian and the new input

have different labels, then create a new Gaussian.
c) If the highest matching Gaussian and the incoming

input have the same label, add the contribution of
the new input and update all Gaussians.

Algorithm 1 : Steps of 2G2M
1: Set parameters: K, Σ0, α, TΣ

2: Initialization:
∀j = 1 · · ·K, (τ, c, µ, Σ, L)j = (α, 1, ∞, Σ0, 0)

3: Given a new input xi, compute the probability of match of the
input with the Gaussians: ∀j = 1 · · ·K

pj =

{
τjφj(xi;µj ,Σj) if dM (xi, φj) < TΣ

0 otherwise
(24)

4: Let R = {j|pj > 0} be the index set of Gaussians matching the
input

5: createGaussian← (R == ∅) (i.e., no match is found: @j, pj > 0)
6: if not createGaussian then
7: Compute the index of highly matching Gaussian:

w = argmax
j=1···K

{pj} (25)

8: if xi is labeled then
9: if the wth Gaussian is not labeled then

10: Assign the wth Gaussian the label of xi
11: else if the wth Gaussian and xi have different labels then
12: Set createGaussian ← true
13: end if
14: end if
15: if not createGaussian then
16: for j = 1 · · ·K do
17: Compute the expected posterior:

qj =
pj∑

k=1···K pk
(26)

18: Update the parameters of the Gaussian:

cj =cj + qj (27)
τj(t) =(1− α)τj(t− 1) + αqj (28)

ηj =qj

(
1− α
cj

+ α

)
(29)

µj(t) =(1− ηj)µj(t− 1) + ηjxi (30)

Σj(t) =(1− ηj)Σj(t− 1) + ηj(xi − µj(t− 1))2

(31)

19: end for
20: end if
21: end if
22: if createGaussian then
23: Decay the weight of all Gaussians

∀j = 1 · · ·K, τj(t) = (1− α)τj(t− 1) (32)

24: Remove the less contributing Gaussian and create a new one
initialized with the new input:

m = argmin
j
{τj} (33)

(τ, c,µ,Σ, L)m = (α, 1, xi,Σ0, 0) (34)

25: end if
26: Split the largest Gaussian if volume > Tsplit

27: Merge the closest Gaussians if KL distance < Tmerge

28: Normalize the τj’s

C. Model Refinement

To lower the complexity and enhance the model accuracy,
we rely on refinement-based methods that use the two op-
erations: split and merge as explained in Sec. III. Due to
the presence of unlabeled data, Gaussians may overlap but
also may cover several classes. To avoid these situations, the
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algorithm has been equipped with mechanisms that perform
split and merge operations on the Gaussians.

1) Split Operation: In order to keep the algorithm accurate
and precise, large Gaussians (considered to be as ”too big”)
are split into two smaller Gaussians. The chosen criterion for
deciding to split a Gaussian φ(µ,Σ) refers to its volume:

V (φ(µ,Σ)) = det(Σ) (36)

The Gaussian φ(τ, µ,Σ) with the maximum volume V
above a given threshold Tsplit is split into two Gaussians
(φ1(τ1, µ1,Σ1), φ2(τ2, µ2,Σ2)) along its dominant principal
component (Fig. 7a). The τ ’s are the weights of the corre-
sponding Gaussians. The resulting Gaussians after split are
assigned a weight τ/2. Let v the (normalized) eigenvector
corresponding to the largest eigenvalue λ, and a (which is set
to 0.8) a split factor that determines how far the centers of
the two new Gaussians are apart from each other. Clearly the
expression of ∆v below shrinks the original ellipse along the
dominant principal component by a certain proportion which
serves to create the new centers and the covariance matrices.

∆v =
√
aλv

τ1 = τ2 = τ
2

µ1 = µ+ ∆v

µ2 = µ−∆v

Σ1 = Σ2 = Σ−∆v∆vT

(37)

2) Merge Operation: In order to reduce the complexity,
Gaussians of the same label can be merged. The merge
operation combines the two closest Gaussians into one single
Gaussian. It relies on the Kullback-Leibler divergence (kld) be-
tween two D-dimensional Gaussians (φ1(µ1,Σ1), φ2(µ2,Σ2))
as a merge criterion which reads as follows [42]:

kld(φ1, φ2) = log

(
|Σ2|
|Σ1|

)
+ tr(Σ−1

2 Σ1) + ϑTΣ−1
1 ϑ−D

(38)
where ϑ = (µ2 − µ1), tr indicates the trace. Since kld is
asymmetric, a symmetrized variant (skld) of the divergence is
used for similarity estimation:

skld(φ1, φ2) =
1

2
(kld(φ1, φ2) + kld(φ2, φ1)) (39)

The pair of Gaussians (φ1(τ1, µ1,Σ1), φ2(τ2, µ2,Σ2)) whose
skld is minimum and falling below a threshold Tmerge are
combined into a new Gaussian φ(τ, µ,Σ) (Fig. 7b) using:

f1 = τ1
τ1+τ2

f2 = τ2
τ1+τ2

τ = τ1 + τ2

µ = f1µ1 + f2µ2

Σ = f1Σ1 + f2Σ2 + f1f2(µ1 − µ2)(µ1 − µ2)T

(40)

3) Cannot-Merge Link: There is a risk that a Gaussian be
split, then re-merged straight away. To avoid this phenomenon,
we endow each split or merged Gaussian with a cannot-
merge link (CML) similar to ”must-link” and ”cannot-link”
in constraint-based clustering. CML is a positive integer that
decreases over time and that disables temporarily subsequent
split or merge of the same Gaussians as long as it is greater

(a) Split of a Gaussian (b) Merge of Gaussians

Fig. 7: Split and merge operations

than 0. In the experiments, CML is empirically set to 50.
Figure 8 shows the results of merge and split operations

occurring at different time points during clustering of the
banana dataset. The accommodation of new data can lead to
either modifying the shapes and orientations of the clusters,
merging and splitting of existing clusters, or creating new ones.
The virtual ellipses show approximately the region of influence
of each Gaussian around its center, since 2G2M outputs only
the means, the covariance matrices and the mixing parameters.

D. Parameter optimization

Due to their number (maximum number of clusters K,
thresholds TΣ - Tmerge - Tsplit, learning rate α, initial spread
Σ0), setting the parameters is in general a difficult problem.
Usually they have to be set for each dataset. However, in this
paper we rely on genetic algorithms (GA), widely used for
solving optimization problems, to provide a set of parameters
corresponding to a local optimum of the fitness function. We
choose the fitness function to be the number of misclassified
examples by the 2G2M algorithm. While the parameters, α and
K, are considered as user-defined parameters, the remaining
ones, TΣ, Tmerge, Tsplit and k0 are determined by GA.

Given the online setting, we do not have access to all data.
Hence, to ensure online optimisation of these parameters, we
propose an original way of optimizing the parameters online
and continuously. We did the following: We generated two
versions of GF2FC, one running online which we use in real
time and an offline version involving only 2G2M that runs
only periodically on small batches of labeled data. For this
offline version, data are accumulated and whenever a batch of
n labeled examples is collected, it is used in a GA loop to
find the optimal parameter values. These are then transferred
into the online version. To ensure the optimization continuity,
the top m individuals of a given cycle are used to initialize
the GA population for the next cycle.

Note that the parameters themselves are encoded together
as a chromosome with the classification accuracy measure as
a fitness function. The GA parameters used in all experiments
are: |Population|=100, number of iteration=100, recombination
probability =0.8, mutation probability=0.3, selection method:
linear ranking, and crossover method: one-point crossover. The
size of the batch is n = 30 and the number of chromosomes
retained from the next generation is m = 10.
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Fig. 8: Clustering of the Banana shaped dataset.

Algorithm 2 : Steps of the rule generation process

for a new input do
Run Alg. 1 to cluster the new input.
if the new input is labeled then

Re-select the meaningful features using the incremental
feature selection algorithm in [5] if desired;

end if
Generate the appropriate fuzzy sets by projecting the
clusters on the selected features and form the rules.

end for

Fig. 9: Projection of a bidi-
mensional Gaussian
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Fig. 10: Contraction and di-
latation of type-1 MF

VI. FUZZY RULE GENERATION

The main steps for rule generation are displayed in Alg. 2.
These steps are kept general to ease understanding. In the
following, the issues related to rule generation are highlighted.

A. Projection of Gaussians

Once the new input has either generated a new Gaussian
or updated an existing one, we use projections of the n-
dimensional Gaussians on the n axes to determine the MFs of
the T2 FRS (Fig. 9). For a Gaussian N (µ,Σ), the projected
MF on axis d is a unidimensional Gaussian N (m,σ;x) (Eq.
14), whose parameters are determined as follows:{

m = µd

σ =
√

Σdd
(41)

where µd is the d-th coordinate of the vector µ and Σdd is the
d-th diagonal term of the covariance matrix Σ. This Gaussian
defines a type-1 membership function.

It is worthwhile to recall that with multi-dimensional fuzzy
sets, the number of rules will be the same as that of fuzzy

partitions and hence no projection is needed. However, uni-
dimensional fuzzy sets offer a better degree of interpretability,
despite the lengthy premises of rules that can be generated (as
discussed in Sec. III). Unfortunately the complexity remains
high if the data is highly dimensional. This paper focuses on
generating rules whose form is shown by Eq. 9. Thus, the
features are explicitly used. Thus, to enhance the transparency
and the compactness of the rules, it is important that the if-part
of the rules does not involve many features [18]. Very often,
low classification performance results from non-informative
features. To get rid of those features, usually feature selection
methods are used which are of two classes [12]: filters and
wrappers. Many methods do not lend themselves the possi-
bility to find the most relevant features from incrementally
arriving data. They assume that the whole data is available or
at least there is sufficient amount of data.

In order to cope with the complexity of the rules, enhancing
the transparency by reducing the number of features in the
rules, the incremental feature selection algorithm described
in [5][8] is used. The importance of incremental feature
selection comes from the fact that the set of selected features
change over time. The algorithm uses an incremental version
of Fishers interclass separability criterion. As new data in-
stances arrive, some features may be neglected in the rules
and some others may be included. The premises of the rules
are dynamically and systematically updated. The main goal is
that at any time, the rule base reflects the semantical contents
of the data already used. In our experiments, when the data
dimensionality exceeds a certain number n (one can fix this
number at wish), the incremental feature selection algorithm is
applied and only the first n important features are retained. It
is, however, up to the user to decide, either to keep all features
or to select a particular number of them over time.

B. Rule base Optimization
In order to enhance the quality of the T2 fuzzy rules [18],

we use two methods:
1) Cluster refinement: by merging the highly overlapping

Gaussians using the Mahalanobis distance, a lower num-
ber of type 2 FS’s can be obtained which will be used
to generate the fuzzy rules.

2) Rule refinement: once the Gaussians are obtained, rules
are then generated. These rules undergo an optimization
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process which consists of merging the membership func-
tions (fuzzy sets) using the Jaccard’s similarity measure
for type-2 FS’s which is based on the analysis provided
in [31]. Those exceeding a threshold are merged using
an adapted formula for fusing univariate Gaussians like:
µnew = (s1 ∗ µ1 + s2 ∗ µ2)/(s1 + s2), snew = s1 + s2

where s{new,1,2} = 1/σ2
{new,1,2}. One could also merge

the underlying clusters and then consider only the tar-
geted dimension. Another merge method would be to
use the Join operation [34], but rules premises will not
be expressed as Gaussians in a straightforward way.

Both methods yield quite compact rules. The first one is easy
to perform given that the clustering algorithm, 2G2M, is al-
ready equipped with a merge operation. It is however difficult
in general to re-define the closeness threshold used in the
clustering algorithm, because it is originally and automatically
determined by means of a GA-based optimization process
on batches of data (See Sec. V-D). The second method on
the other hand requires also the definition of the similarity
threshold, but it is easier to do so; the higher it is, the less
frequent the merge is. For instance with the second method,
we can generate rules of the form:

Rj ≡ if xi is (Ãj,i∨ ...∨ Ãj,i′)∧ ((xk is Ãj,k∨ ...∨ Ãj,k′)
∨ (xl is (Ãj,l ∨ ... ∨ Ãj,l′)) then Cn (42)

For the Banana-shaped data, the fuzzy partitions obtained
without any optimization are shown in Fig. 11a. Figures 11b
and 11c show the optimization results after applying method
(1) and method (2). For the purpose of legibility, type-1 fuzzy
membership functions are used. Type-2 fuzzy rules are shown
in Tab. I. In particular, we notice that rules generated after
method 2 are fewer than those generated after method 1. The
number of original rules is usually much higher. Note that in
the experiments (Sec. VII), we used the original rule set.

To generate linguistic terms in the rules, the Gaussians
will be ordered from low/small to high/large with respect
to each dimension. Then those linguistic terms can replace
the Gaussians in the rules. However, the meaning of these
terms changes dynamically over time as new data arrive. For
example, at time t, “large” on the x-axis corresponds to values
between 20 and 30. In the future, “large” may indicate values
between 50 and 60. A term can, however, be assigned to only
one function, but it may represent many clusters.

C. Unlabeled Clusters
Because the 2G2M algorithm (Alg. 1) accommodates both

labeled and unlabeled data, the resulting clusters can be either
labeled or unlabeled. The unlabeled clusters do not produce
any rule, although it is possible to generate rules by computing
the class of the neighboring clusters and then use majority
voting to assign a label to the unlabeled cluster and therefore,
this uncertain aspect is implicitly taken care of by the type-2
fuzzy rule system.

VII. EMPIRICAL EVALUATION

We evaluate the proposed classifier GT2FC using two sets
of experiments. For the sake of illustration, the first set of
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TABLE I: Fuzzy rules for the Banana-shaped dataset

Rule Antecedent C Antecedent C

1 x1 IN N(-17.66, [0.96,1.93]) ∧ x2 IN N(-3.89, [1.17,2.34]) 2 x1 IN N(-17.65, [0.96, 1.92]) ∧ x2 IN N(-3.89, [1.17, 2.34]) 2

2 x1 IN N(-4.97, [1.02,2.04]) ∧ x2 IN N(1.78, [0.97,1.94]) 2 x1 IN N(-11.09, [1.91, 3.82]) ∧ x2 IN N(1.61, [1.01, 2.02]) 2

3 x1 IN N(5.37, [1.32,2.65]) ∧ x2 IN N(7.78, [1.20,2.39]) 1 x1 IN N(8.631, [2.076, 4.153]) ∧ x2 IN N(4.609, [2.137, 4.275]) 1

4 x1 IN N(-5.46, [1.60,3.20]) ∧ x2 IN N(-7.90, [1.65,3.30]) 1 x1 IN N(-5.46, [1.60, 3.20]) ∧ x2 IN N(-7.89, [1.65, 3.30]) 1

5 x1 IN N(-11.88, [1.14,2.28]) ∧ x2 IN N(1.60, [1.01,2.03]) 2 x1 IN N(2.69, [0.93, 1.87]) ∧ x2 IN N(-9.00, [0.96, 1.92]) 1

6 x1 IN N(2.70, [0.94,1.88]) ∧ x2 IN N(-9.01, [0.96,1.92]) 1 x1 IN N(-14.48, [1.29, 2.58]) ∧ x2 IN N(-14.74, [1.37, 2.74]) 2

7 x1 IN N(-17.18, [0.94,1.89]) ∧ x2 IN N(-9.85, [1.08,2.16]) 2 x1 IN N(0.28, [0.96, 1.93]) ∧ x2 IN N(-1.477, [1.171, 2.343]) 2

8 x1 IN N(10.51, [0.98,1.96]) ∧ x2 IN N(2.78, [1.34,2.68]) 1 x1 IN N(5.98, [0.93, 1.87]) ∧ x2 IN N(-6.09, [0.97, 1.94]) 1

9 x1 IN N(-14.28, [1.20,2.39]) ∧ x2 IN N(-15.12, [0.98,1.96]) 2 x1 IN N(9.01, [0.91, 1.82]) ∧ x2 IN N(-3.96, [1.34, 2.68]) 1

10 x1 IN N(0.28, [0.97,1.93]) ∧ x2 IN N(-1.48, [1.17,2.34]) 2

11 x1 IN N(5.98, [0.94,1.88]) ∧ x2 IN N(-6.10, [0.97,1.94]) 1

12 x1 IN N(9.02, [0.91,1.83]) ∧ x2 IN N(-3.96, [1.34,2.69]) 1

Rule Antecedent C

1 x1 IN N(-17.60, [0.968,1.93]) ∧ (x2 IN N(-2.31, [1.42,2.85]) ∨ (x2 IN N(-9.45, [2.04, 4.08])) 2

2 (x1 IN N(-5.27, [2.62, 5.24]) ∨ x1 IN N(-13.10, [1.44,2.89])) ∧ x2 IN N(1.61, [1.01,2.02]) 2

3 x1 IN N(-13.10, [1.44,2.89]) ∧ (x2 IN N(1.61, [1.01,2.02]) ∨ x2 IN N(-15.12, [0.98,1.96])) 2

4 x1 IN N(5.47, [1.28,2.56]) ∧ (x2 IN N(7.78, [1.19,2.39]) ∨ x2 IN N(-6.10, [0.97,1.94])) 1

5 (x1 IN N(-5.27, [2.62, 5.24]) ∨ x1 IN N(5.470, [1.28,2.56]) ∨ x1 IN N(9.79, [1.89, 3.78]) ∧ x2 IN N(-5.30, [1.91,3.83]) 1

6 x1 IN N(2.69, [0.93,1.87]) ∧ x2 IN N(-9.45, [2.04, 4.08]) 1

7 (x1 IN N(0.28, [0.97,1.93]) ∨ x1 IN N(-17.60, [0.96,1.93])) ∧ x2 IN N(-2.31, [1.42,2.85]) 2

experiments is carried out on a synthetic data set, a Banana
shaped dataset. In the second set of experiments, we use
real-world datasets: classic datasets (from UCI [17]) and an
ambient intelligence dataset [20]. We will investigate many
aspects to give insight into the approach. In particular, we
study the behavior of online adaptation which is measured by
Eq. 43 that expresses the current error rate as:

e(t) =
misses(t)

seen so far(t)
(43)

where misses(t) represents the number of misclassified data
until time t and seen so far(t) represents the number of
presentations (inputs) seen so far.

The datasets are split into labeled and unlabeled sets in two
ways:

1) random decreasing: the desired proportion of labeled
data is randomly selected and the position in the se-
quence of the whole data is also random but the fre-
quency of occurrence of labeled examples decreases over
time. That is, labeled examples are more frequent at the
beginning of the sequence, but become rare and then
non-existent towards the end of the sequence. The idea
reflects the fact that the system may need more labeled
data in earlier stages of the training. Given that the
datasets used in this paper are labeled, samples satisfying
the following probability are retained, while the rest is
considered unlabeled:

∀i ∈ {1, · · · , n}, plabel(xi) = 1− i

n
(44)

where i is the order of xi in the input sequence and n
is the size of the data(i.e, sequence length).

2) random selection: the desired proportion of labeled data
is randomly selected. The position in the sequence of
the whole data is random.

TABLE II: Datasets used to test the algorithm

Dataset Features Classes Instances

Iris 4 3 150 [50 50 50]

Wine 13 3 178 [59 71 48]

Banana shaped 2 2 400 [200 200]

A. Classic Datasets

The first class of datasets consists of: Iris, Wine which are
obtained from the UCI repository [17] and a banana-shaped
dataset which is artificially generated (already used in the
previous sections). The description of these datasets is shown
in Tab. II. The banana-shaped dataset consists of a synthetic
bidimensional set of 400 points. It has been chosen due to:
• its difficulty for semi-supervised learning algorithms be-

cause of its non-linear separability,
• its shape which is not Gaussian and
• the possibility to visualize it easily, since it is 2-

dimensional.
Using the online optimization approach presented in

Sec. V-D, the value of the parameters TΣ, Tmerge, Tsplit and
k0 will be automatically and over time computed. For the sake
of illustration, Tab. III shows the evolution of the parameter
setting (early stage, middle stage and final stage).

Considering the two modes of labeled data selection, ran-
dom decreasing and random, we obtain the results shown in
Figs. 12, 13, and 14 which are averaged over 30 runs. Three
main conclusions can be drawn:
• the adaptation capability of the algorithm 2G2M: the

learning effect is clear and the accuracy of the classi-
fication increases as more data are presented.

• the random decreasing mode of labeled data selection
looks slightly better than the random mode
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TABLE III: Excerpt of the parameter settings for 2G2M resulting from GA optimization for the classic and the banana datasets.

Parameter Iris Wine Banana

Early Middle Final Early Middle Final Early Middle Final

K (maxnumber of clusters) 10 10 10 10 10 10 20 20 20

α (learning rate) 0.25 0.25 0.25 0.25 0.25 0.25 0.01 0.01 0.01

TΣ (closeness threshold) 3.16 4.83 5.01 14.30 10.26 10.05 3.73 5.40 5.08

Tmerge (merge threshold) 14.74 12.12 10.13 132.33 159.33 150.67 19.5 18.14 15.05

Tsplit (split threshold) 9.33 2.42 5.25 6.00 15.52 10.97 6.34 9.80 10.19

k0 (initial Gaussians’ spread) 0.14 1.31 0.009 1.72 1.99 4.05 3.18 2.81 1.15
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(b) Random decreasing selection of labeled examples

Fig. 12: Effect of the selection method (Iris data)

• the variability of the results (standard deviation) at the
beginning of the learning is higher than that towards the
end of the data presentation.

Moreover, the algorithm has been tested on these data sets
by splitting them into 60% − 40% (60% for training, 40%
for testing) to test the performance. The accuracy measure
(i.e., the ratio of the correctly classified data) has been used
to evaluate the performance of the type-2 fuzzy classifier.
Different configurations (proportion of the labeled data, mode
of labeled data selection, the maximum number of clusters)
have been tested yielding the final classification results shown
in Tab. IV after 30 runs. The results look highly promising.

Table V shows the 2G2M behavior over the banana data.
It shows in particular new labeled/unlabeled data (0 for
unlabeled, 1 for labeled; the true label is between brackets),
the matching Gaussian - Winner (the label of the winner is
between brackets), the matching probability, the actual number
of Gaussians, and the boolean operations creation, merge and
split (they are set to 1 if they are executed, otherwise 0).
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(b) Random decreasing selection of labeled examples

Fig. 13: Effect of the selection method (Wine data)

B. Real-World Application: Ambient Intelligence

Ambient intelligence (AmI) aims at exploiting sensed infor-
mation to seamlessly assist the inhabitants of a smart space to
carry on their daily activities. Intelligent monitoring solutions
of the living space intend to deal efficiently with various
aspects like comfort, security and safety, productivity, and
energy efficiency for the benefit of the occupants. The major
challenges of intelligent environments research include the
modeling of the occupants activities and actions, the dynamic
evolution of the occupant behavior, the interaction, and the
smart monitoring of the physical infrastructure.

A suitable monitoring system for this application must be
evolving, in the sense that as new data become available, it has
to self-adapt in an online manner. Because, sensors are prone
to faults and noise, type-2 fuzzy modeling is very appropriate
for dealing with such application. Designed for applications
confronting uncertainty, GT2FC is tested on datasets stemming
from an AmI environment which is an intelligent student
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Fig. 14: Effect of the selection method (Banana data)

TABLE IV: Average accuracy results using the classic datasets

Dataset Ratio of labeled data Clusters Accuracy (%)

Iris 10% (random) 10 89.17±0.10

30% (random) 15 93.25±0.03

10% (random decr.) 10 93.58±0.04

30% (random decr.) 15 94.25±0.05

Wine 10% (random) 10 80.28±0.33

30% (random) 10 82.41±0.09

10% (random decr.) 10 81.25±0.02

30% (random decr.) 10 85.02±0.10

Banana 10% (random) 20 97.00±0.05

30% (random) 20 99.15±0.02

10% (random decr.) 20 98.13±0.03

30% (random decr.) 20 98.98±0.02

dormitory (called iDorm) [4], [16], [20]. The iDorm test bed
serves to predict the different classes of user actions.

The dataset is generated by recording student activities in
the iDorm which is equipped with embedded sensors, actua-
tors, processors and heterogeneous networks that are concealed
in a way letting the users behave naturally [20]. The data (7
input features) are provided by the sensors: internal light level,
external light level, internal temperature, external temperature,
chair pressure, bed pressure, occupancy and time. The data
used in the following experiments concern two inhabitants: D1

TABLE V: Execution of running 2G2M on the banana dataset

data labeled[label] Matching prob. Winner # Gaussians Creation

1 0[2] 0.00000 - 0 1

2 0[2] 0.00000 - 2 1

3 1[1] 0.00000 - 3 1

· · · · · · · · · · · · · · · · · ·
100 0[2] 0.00492 1(2) 8 0

101 0[1] 0.00000 - 8 1

102 1[2] 0.14111 1(2) 9 0

· · · · · · · · · · · · · · · · · ·
278 0[1] 0.05659 7(1) 10 0

279 1[2] 0.00021 9(2) 10 0

280 0[2] 0.11371 10(2) 10 0

which consists of 5 classes and D2 which consists of 2 classes.
D1 has been collected over June and September, while D2 has
been collected over March and June. It is important to note that
data of each month differ from that of the other month; hence
notions like data drift can be studied. Tab. VI summarizes both
datasets in terms of number of data points and classes. The
classes have been generated by combining the output variables
corresponding to 6 actuators: intensity spot light, desk and bed
side lamps, window blinds, heater, and PC-based applications
comprising word and media playing program. The different
combinations of values are considered as classes. The classes
reflect some distinct settings.

The goal of the study is to use the data obtained over long
periods of time in order to build a classifier capable of learning
the user’s behavior and actions on the actuators given some
environmental conditions that are captured by the sensors.

The parameters TΣ, Tmerge, Tsplit and k0 are again deter-
mined online using GA. Table VIII shows an excerpt of the
parameter evolution (early stage, middle stage, final stage).
The actual values change over time as batches of labeled data
are collected. It is worth mentioning that the values shown in
Tab. VIII change depending mainly on size of labeled data.

1) Effect of Increasing Labeled Data: In real-world appli-
cations, it is important to know how often a labeling feedback
might be necessary to help the learning system to self-adjust.
Each of the datasets D1 and D2 has been split into 2 sets:
training and testing. The training set consists of the first 3/4 of
month 1, while the testing set consists of the last 1/4 of month
1 and the whole data of month 2. Note that the classifier is
trained online. Details of the data split are shown in Tab. VII.

For both datasets, we obtained the accuracy results illus-
trated in Fig. 16 and the evolution trend of the current error
during the training phase shown in Fig. 15. Clearly larger
ratios of labeled data provide better prediction results in both
cases of D1 and D2 after running the algorithm 100 times and
averaging the results. On the other hand the evolution of the
current error during the training phase seems to be higher when
the ratio of labeled data is 10%, but for the other ratios, the
evolution is almost stable as the error is small and sometimes
is almost 0. It is important to recall that the classifier has not
been trained on the second month.

2) Effect of Labeled Data Presentation: Similar to
Sec. VII-A, the effect of using two modes of labeled data
selection, random and random decreasing, is studied. The data
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TABLE VI: Characteristics of the datasets

Data set Month 1 Month 2 Number of
classes

Inhabitant 1 904 561 5

Inhabitant 2 326 995 2

TABLE VII: Split of the iDorm datasets

Data set Online
Training
(Month 1)

Testing
(Month 1)

Testing
(Month 2)

D1 684 220 561

D2 246 80 995

TABLE VIII: Parameter evolution for the iDorm datasets

Parameter Stages

Early Middle Final

K 20 20 20

α 0.05 0.05 0.05

TΣ 0.75 0.39 0.85

Tmerge 27.99 83.15 64.25

Tsplit 3.01 0.41 0.53

k0 4.44 0.12 0.61

TABLE IX: Effect of the mode of data presentation on the
accuracy (30% of data is labeled)

Presentation mode D1 D2

Random 77.59 88.06

Random decreasing 66.21 72.21

TABLE X: Effect of the mode of data presentation on the
accuracy (50% of data is labeled)

Presentation mode D1 D2

Random 80.98 94.91

Random decreasing 67.76 78.80

set is split according to the scheme described in Sec. VII-B1.
Two ratios of labeled data, 30% and 50%, are considered.
Figure 17 shows the evolution of the current error for D1 and
D2 and for both ratios of labeled data. Table IX and Tab. X
present the classification results. Clearly the GT2FC algorithm
performs better in the case of random mode of labeled data
presentation independently of the data set used. Note that the
results are averaged over 100 runs.

3) Effect of the Maximum Number of Gaussians: To ob-
serve the effect of changing the maximum number of clusters
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(b) Case of D2 using different labeled ratios

Fig. 15: Evolution of the current error during the training phase
for different ratios of labeled data
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Fig. 16: Effect of increasing the size of labeled data

TABLE XI: Effect of the maximum number of clusters (30%
of data is labeled, random selection mode)

Max. Clusters D1 D2

5 74.31 70.82

10 77.25 88.06

20 78.18 92.98

30 78.91 93.67

40 82.24 95.48

50 81.42 96.04

to be created, we vary the number between 5 and 50 for
random selection scenario (Fig. 18). The results are obtained
by averaging over 100 runs.

In general, a higher number of Gaussians than the actual
number of classes tends to provide better accuracy. Also, the
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Fig. 17: Evolution of the current error during the training phase
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Fig. 18: Evolution of the number of clusters during training

maximum number of clusters is quickly reached if it set small.
Running the algorithm with as many clusters as classes is
not efficient enough. Table XI illustrates that better results
are obtained with a higher number of clusters. The problem is
then the transparency of the rule base which is generated from
the clusters. In other terms, increasing the number of clusters

TABLE XII: Feature ordered by importance

Features

Batch 1 3 1 8 2 7 5 4 6

Batch 2 1 8 2 3 4 5 6 7

Batch 3 1 2 3 8 7 4 5 6

Batch 4 8 1 2 7 3 4 5 6

TABLE XIII: Features of the iDorm datasets

Feature Id Feature Id

InternalLightLevel 1 ExternalLightLevel 2

InternalTemperature 3 ExternalTemperature 4

ChairPressure 5 BedPressure 6

Occupancy 7 Hour 8

leads to a quite large rule base. The tradeoff is then between
the accuracy and the transparency. An optimization stage may
be required to remove redundant clusters/rules as explained
in Sec. VI-B. Note, however, that the number of clusters
generated does not depend only on the maximum (threshold)
number of clusters allowed, but also on the thresholds TΣ,
Tmerge, Tsplit, the learning rate α and the initial spread Σ0.

4) Rule Generation and Feature Selection: To illustrate the
effect of adding new data on the selected features, Tab. XII
shows the process of feature selection when using D2 data
with 70% labeled data (batch size=60). The features are shown
in Tab. XIII. The incremental feature selection uses the new
batches to update the relevance order of features. An excerpt
of rules generated after the presentation of the last labeled
batch is shown in Tab. XIV. After merging the similar fuzzy
sets according to the 2nd optimization method (see Sec. VI-B),
the new version of the rules are shown in Tab. XV.

C. Data Drift Handling

In dynamically evolving environments, the data distribution
may drift over time, leading to performance deterioration of
the system, that is, the model built using old data becomes
inconsistent with the new data. To tackle this problem, the
system needs to be equipped with appropriate mechanisms to
handle concept drift.

The current state-of-the-art techniques of concept drift are
rather data driven, meaning that drift is handled only from
the perspective of data. There are many techniques [7], [46]
such as instance selection, instance weighting, and ensemble
learning. Although there are several research avenues using
data-driven techniques, in this paper we use model-driven drift
handling techniques [39]. Model-driven drift means using ap-
propriate models that are incremental and able to handle drift.
We are interested in models that are capable of handling drift
in a systematic way without relying on additional techniques,
such as time windowing.

We evaluate the adaptation capability of the algorithm
GT2FC to data drift. GT2FC is dedicated to dynamically
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TABLE XIV: Fuzzy rules for D2

Rule Antecedent C

1 x1 IN N(83.655, [0.964,1.928]) ∧ x2 IN N(81.115, [0.863,1.726]) ∧ x3 IN N(22.809, [0.851,1.703]) ∧ x4 IN N(7.443, [0.853,1.706]) ∧ x5 IN N(-0.115, [0.863,1.726])
∧ x6 IN N(1.115, [0.863,1.726]) ∧ x7 IN N(1.000, [0.850,1.699]) ∧ x8 IN N(11.564, [0.544,1.088])

1

2 x1 IN N(67.000, [0.850,1.699]) ∧ x2 IN N(76.589, [0.714,1.427]) ∧ x3 IN N(22.736, [0.850,1.699]) ∧ x4 IN N(7.500, [0.850,1.699]) ∧ x5 IN N(0.000, [0.850,1.699])
∧ x6 IN N(1.000, [0.850,1.699]) ∧ x7 IN N(1.000, [0.850,1.699]) ∧ x8 IN N(11.242, [0.654,1.309])

1

3 x1 IN N(8.733, [2.425,4.850]) ∧ x2 IN N(0.683, [0.869,1.738]) ∧ x3 IN N(23.556, [0.677,1.353]) ∧ x4 IN N(8.158, [0.706,1.413]) ∧ x5 IN N(0.000, [0.643,1.286])
∧ x6 IN N(1.000, [0.643,1.286]) ∧ x7 IN N(1.000, [0.643,1.286]) ∧ x8 IN N(18.645, [1.363,2.726])

2

· · · · · · · · ·
18 x1 IN N(13.000, [1.143,2.286]) ∧ x2 IN N(82.000, [1.143,2.286]) ∧ x3 IN N(24.400, [1.143,2.286]) ∧ x4 IN N(8.500, [1.143,2.286]) ∧ x5 IN N(0.000, [1.143,2.286])
∧ x6 IN N(1.000, [1.143,2.286]) ∧ x7 IN N(1.000, [1.143,2.286]) ∧ x8 IN N(13.112, [0.511,1.022])

2

19 x1 IN N(0.000, [1.143,2.286]) ∧ x2 IN N(1.000, [1.143,2.286]) ∧ x3 IN N(23.260, [1.143,2.286]) ∧ x4 IN N(8.500, [1.143,2.286]) ∧ x5 IN N(0.000, [1.143,2.286])
∧ x6 IN N(0.000, [1.143,2.286]) ∧ x7 IN N(1.000, [1.143,2.286]) ∧ x8 IN N(19.896, [0.511,1.022])

2

20 x1 IN N(6.000, [0.303,0.606]) ∧ x2 IN N(0.745, [0.520,1.039]) ∧ x3 IN N(23.587, [0.323,0.647]) ∧ x4 IN N(8.391, [0.443,0.886]) ∧ x5 IN N(0.000, [0.303,0.606])
∧ x6 IN N(1.000, [0.303,0.606]) ∧ x7 IN N(1.000, [0.303,0.606]) ∧ x8 IN N(19.194, [0.438,0.876])

2

TABLE XV: Fuzzy rules for D2 after merge of similar fuzzy sets

Rule Antecedent C

1 x1 IN N(83.655, [0.964,1.928]) ∧ x2 IN N(81.115, [0.863,1.726]) ∧ x3 IN N(22.772, [0.601,1.203] ∧ x4 IN N(7.472, [0.602,1.204]) ∧ x8 IN N(11.432, [0.418,0.836]) 1

2 x1 IN N(67.000, [0.850,1.699]) ∧ x2 IN N(76.589, [0.714,1.427]) ∧ x3 IN N(22.772, [0.601,1.203] ∧ x4 IN N(7.472, [0.602,1.204]) ∧ x8 IN N(11.432, [0.418,0.836]) 1

3 x1 IN N(8.733, [2.425,4.850]) ∧ x2 IN N(0.729, [0.446,0.892]) ∧ x3 IN N(23.562, [0.282,0.565]) ∧ x4 IN N(8.356, [0.340,0.681]) ∧ x8 IN N(19.444, [0.323,0.646]) 2

· · · · · · · · ·
18 x1 IN N(13.000, [1.143,2.286]) ∧ x2 IN N(82.000, [1.143,2.286]) ∧ x3 IN N(24.400, [1.143,2.286]) ∧ x4 IN N(8.356, [0.340,0.681]) ∧ x8 IN N(13.112, [0.511,1.022]) 2

19 x1 IN N(0.000, [1.143,2.286]) ∧ x2 IN N(1.000, [1.143,2.286]) ∧ x3 IN N(23.562, [0.282,0.565]) ∧ x4 IN N(8.356, [0.340,0.681]) ∧ x8 IN N(19.444, [0.323,0.646]) 2

20 x1 IN N(6.000, [0.303,0.606]) ∧ x2 IN N(0.729, [0.446,0.892]) ∧ x3 IN N(23.562, [0.282,0.565]) ∧ x4 IN N(8.356, [0.340,0.681]) ∧ x8 IN N(19.444, [0.323,0.646]) 2

incremental settings requiring to self-adjust over time so that a
continuous performance is ensured. The sensitivity of GT2FC
to drift is tested using the iDorm data in two ways:

1) Artificial Drift: To generate drifting data from the real
world iDorm dataset, we rely on feature selection as a method
to determine the feature which is the highly correlated with the
classes measured by a partial F-test. Once such a feature has
been found, the data set is sorted according to that feature.
Then, the indicated feature is discarded from the data. The
drift is generated, while its origin is hidden (the drift origin is
often unknown in real world situations).

The feature which is most correlated with the output of
the iDorm dataset is ”internal light level” (first feature). We
sort the data according to this feature, then we discard it.
Figures 19 and 20 show the evolution of the error using the
whole data sets D1 and D2. Clearly the algorithm GT2FC is
capable of self-adjusting in response to drift as the error rate
decreases. Note that in this experiment different numbers of
clusters have been tried, the ratio of labeled data has been set
to 30% randomly presented, and the results have been averaged
over 100 runs.

2) Natural Drift over Two Seasons: As explained in
Sec. VII-B, the first iDorm data set D1 concerns two months
June and September, while D2 concerns March and June. The
data of each month differ from that of the other month for
both datasets. The two pairs of months refer to two pairs
of seasons in UK: (Summer vs. Autumn) and (Spring vs.
Summer) respectively. Hence, drift is natural in the data, but
sofar in the experiments the data has been split into 2 sets:
training and testing, where the training set consists of the first
3/4 of month 1 and the testing set consists of the last 1/4 of
month 1 and the whole month 2. In the present experiment,
the whole data will be used as a stream to observe how the

current error evolves over time.
Figures 21 and 22 show the current error over the two

seasons for different numbers of clusters. The current error
starts to increase in the vicinity of the season change point.
While for the first data set D1 the error increases slightly (but
remains small), for the second data set D2 the error decreases
as new data arrive.

VIII. TYPE-2 VS. TYPE 1 AND OTHER INCREMENTAL
LEARNING SYSTEMS

To highlight the suitability of the proposed incremental
type-2 FS, GT2FC to the ambient intelligence application at
hand, we compare it against the type-1 version of GT2FC, de-
noted in the following as GT1FC, and against other incremen-
tal learning algorithms namely Incremental Fuzzy Rule-based
Classification System (IFCS) [6] and the Nearest Generalized
Exemplar (NGE) [40].

Tables XVI and XVII show the results for different ratios
of labeled data. Note that IFCS and NGE are trained using
only the labeled data, while GT1FC and GT2FC are trained
using both labeled and unlabeled data. The training and the
testing data are obtained according to the split explained in
Sec. VII-B. Judged by the standard deviation, clearly GT1FC
and GT2FC are more efficient and stable as the labeled data
size increases compared to IFCS and NGE. Moreover, GT2FC
outperforms GT1FC on average especially in the case of D2
(Tab. XVII) although the difference is not significantly high.

For 10% labeled data, the performance of GT2FC and
GF1FC is below that of the other algorithms. The reason is
that the other algorithms are trained on only labeled data and
therefore their prediction power is higher than that of GT2FC
which uses labeled and unlabeled data. We notice that the
boundary may be between 10% and 30% included, where the
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Fig. 19: Artificial drift based on feature selection (D1)
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Fig. 20: Artificial drift based on feature selection (D2)
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Fig. 21: Natural drift - season change (D1)
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Fig. 22: Natural drift - season change (D2)

rise occurs, although this observation may not always be true
(e.g., in Tab. XVI, even with 30%, GT2FC does not perform
as well as NGE). To formally check the observation, we run
further experiments for the percentages 15%, 20%, and 25%
of labelled data which are in the interval [10%, 30%].

The outcome of the new experiments on D1 is 61.1230 ±
0.2900, 68.4492 ± 0.180 and 73.1105 ± 0.1391 and on D2 it
is 62.2714± 0.3632, 74.1809± 0.3170 and 83.5477± 0.2428
respectively. Comparing the values in Tab. XVI and Tab. XVII
and these new results, the boundary seems rather to be around
30%. The major conclusion is, however, that the accuracy of
GT2FC is higher for large ratios of labeled data and increases
as such ratio increases.

From a computational time perspective, Tab. XVIII com-
pares the computational time of the 4 algorithms (IFCS, NGE,
GT1FC, GT2FC) for one run on the same data (D2) for
different ratios of labeled data (10%, 50%, 100%). The results
indicate that GT2FC requires more time compared with the
other algorithms, especially when dealing with more labeled
data. This, however, is expected due to the steps involved in
GT2FC which includes many checks related to labels of the
data. In particular, IFCS and NGE use only the labeled data.

IX. ONLINE VS. BATCH LEARNING

An online learner receives a new data point xt along with
the current hypothesis Ht−1, checks if the data point is
covered by the current hypothesis and updates the hypothesis
accordingly. Ideally the online learner performs as well as
its corresponding offline version, where it can see the data
for many epochs. If this happens we say that the algorithm
is lossless. In this experiment, we compare the performance

TABLE XVIII: Computational time

Algorithm Ratio of labeled data

0.1 0.5 1

IFCS 0.91 3.09 8.15

NGE 0.18 0.20 0.23

GT1FC 11.05 14.37 14.54

GT2FC 14.50 18.66 19.52

accuracy of the proposed online GT2FC against its offline
version. Table XIX shows that when the ratio of labeled data
is below 30%, the offline mode performs relatively better,
but when the labeled data is above 30%, the online version
performs better. The results of the online and the offline
versions are close. Therefore GT2FC can potentially perform
as well as its offline version.

X. CONCLUSION

In this paper, we proposed a growing interval type-2 fuzzy
classifier, called GT2FC, which is equipped with various
mechanisms for online learning, quality control and data drift
management. The aim is to deal with data whose distribution
may change dynamically over time. To generate the type-
2 fuzzy membership functions associated with the features
in the rules’ premises, we proposed a new semi-supervised
online learning algorithm, called 2G2M. This algorithm is
designed to operate online and to learn from both labeled
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TABLE XVI: GT2FC vs. other online classifiers: Case D1

Algorithm Ratio of labeled data in the training data

0.1 0.3 0.5 0.7 0.9 1

IFCS 76.14±2.38 75.33±1.12 75.49±0.68 75.27±0.27 75.24±0.27 75.22±0.03

NGE 82.27±3.62 83.83±2.81 79.63±5.22 75.54±3.43 74.31±0.05 74.33±0.05

GT1FC 55.43±0.23 75.36±0.15 80.62±0.02 81.42±0.01 82.88±0.01 83.13±0.01

GT2FC 60.28±0.24 79.55±0.02 80.73±0.01 81.65±0.01 82.88±0.01 83.76±0.01

TABLE XVII: GT2FC vs. other online classifiers: Case D2

Algorithm Ratio of labeled data in the training data

0.1 0.3 0.5 0.7 0.9 1

IFCS 91.17±5.03 88.39±3.28 86.64±1.16 86.25±0.42 86.12±0.27 85.92±0.10

NGE 88.08±2.34 87.37±0.10 87.40±0.04 87.42±0.02 87.43±0.01 87.43±0.03

GT1FC 59.12±0.30 89.71±0.13 93.68±0.05 96.20±0.01 96.68±0.01 97.01±0.01

GT2FC 60.19±0.34 89.44±0.10 95.50±0.04 96.89±0.01 96.78±0.01 97.00±0.01

TABLE XIX: Online vs. batch (D2)

Algorithm Ratio of labeled data in the training data

0.1 0.3 0.5 0.7 0.9 1

GT2FC (Online) 60.19±0.34 89.44±0.10 95.50±0.04 96.89±0.01 96.78±0.01 97.00±0.01

GT2FC (Offline) 70.05±0.31 93.23±0.04 94.86±0.03 96.20±0.01 96.46±0.01 96.68±0.01

and unlabeled data. The 2G2M parameters are optimized
continuously and regularly using batches of labeled data. To
maintain compactness of the rules, the GT2FC classifier uses
an online feature selection algorithm, while 2G2M optimizes
the clusters online. A broad range of experiments using differ-
ent datasets (artificial, classic and real-world) were conducted.
These experiments provided a picture on the performance of
GT2FC and 2G2M algorithms under various settings. The
major outcome is that the type-2 classifier performs very well.

Moreover, the approach presented in this paper is in the
first place illustrative to show how type-2 fuzzy systems
can be developed for open-ended dynamic environments to
accommodate continuous learning over time.

In the future, we will extend the present work to (i) grow-
ing generalized type-2 fuzzy classification systems and (ii)
growing type-2 fuzzy classification systems where Gaussian
membership functions are characterized not only by uncertain
deviation as presented here, but also by uncertain mean.
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