
HAL Id: hal-00880716
https://hal.science/hal-00880716

Submitted on 7 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing premature convergence and proving the
optimality in evolutionary algorithms

Charlie Vanaret, Jean-Baptiste Gotteland, Nicolas Durand, Jean-Marc Alliot

To cite this version:
Charlie Vanaret, Jean-Baptiste Gotteland, Nicolas Durand, Jean-Marc Alliot. Preventing premature
convergence and proving the optimality in evolutionary algorithms. EA 2013, 11th International
Conference on Artificial Evolution, Oct 2013, Bordeaux, France. pp 84-94 ; ISBN : 9782953926736.
�hal-00880716�

https://hal.science/hal-00880716
https://hal.archives-ouvertes.fr

Preventing Premature Convergence and Proving the

Optimality in Evolutionary Algorithms

C. Vanaret1,2, J-B. Gotteland1,2, N. Durand1,2, and J-M. Alliot2

1 Ecole Nationale de l’Aviation Civile, Laboratoire de Mathématiques Appliquées,

Informatique et Automatique pour l’Aérien, Toulouse, France
2 Institut de Recherche en Informatique de Toulouse, France

{vanaret,gottelan,durand}@recherche.enac.fr
jean-marc.alliot@irit.fr

Abstract. Evolutionary Algorithms (EA) usually carry out an efficient explo-

ration of the search-space, but get often trapped in local minima and do not prove

the optimality of the solution. Interval-based techniques, on the other hand, yield

a numerical proof of optimality of the solution. However, they may fail to con-

verge within a reasonable time due to their inability to quickly compute a good

approximation of the global minimum and their exponential complexity. The con-

tribution of this paper is a hybrid algorithm called Charibde in which a partic-

ular EA, Differential Evolution, cooperates with a Branch and Bound algorithm

endowed with interval propagation techniques. It prevents premature convergence

toward local optima and outperforms both deterministic and stochastic existing

approaches. We demonstrate its efficiency on a benchmark of highly multimodal

problems, for which we provide previously unknown global minima and certifi-

cation of optimality.

1 Motivation

Evolutionary Algorithms (EA) have been widely used by the global optimization com-

munity for their ability to handle complex problems with no assumption on continuity

or differentiability. They generally converge toward satisfactory solutions, but may get

trapped in local optima and provide suboptimal solutions. Moreover, their convergence

remains hard to control due to their stochastic nature. On the other hand, exhaustive

Branch and Bound methods based on Interval Analysis [1] guarantee rigorous bounds

on the solutions to numerical optimization problems but are limited by their exponential

complexity.

Few approaches attempted to hybridize EA and Branch and Bound algorithms in

which lower bounds are computed using Interval Analysis. Integrative methods em-

bed one algorithm within the other. Sotiropoulos et al. [2] used an Interval Branch and

Bound (IB&B) to reduce the domain to a list of �-large subspaces. A Genetic Algo-

rithm (GA) [3] was then initialized within each subspace to improve the upper bound

of the global minimum. Zhang et al. [4] and Lei et al. [5] used respectively a GA and

mind evolutionary computation within the IB&B to improve the bounds and the order

of the list of remaining subspaces. In a previous communication [6], we proposed a

cooperative approach combining the efficiency of a GA and the reliability of Interval

��

2

Analysis. We presented new optimality results for two multimodal benchmark func-

tions (Michalewicz, dimension 12 and rotated Griewank, dimension 8), demonstrating

the validity of the approach. However, techniques that exploit the analytical form of the

objective function, such as local monotonicity and constraint programming, were not

addressed. In this paper, we propose an advanced cooperative algorithm, Charibde

(Cooperative Hybrid Algorithm using Reliable Interval-Based methods and Differential

Evolution), in which a Differential Evolution algorithm cooperates with interval propa-

gation methods. New optimal results achieved on a benchmark of difficult multimodal

functions attest the substantial gain in performance.

The rest of the paper is organized as follows. Notations of Interval Analysis are

introduced in Section 2 and interval-based techniques are presented in Section 3. The

implementation of Charibde is detailed in Section 4. Results on a benchmark of test

functions are given in Section 5.

2 Interval Analysis

Interval Analysis (IA) bounds round-off errors due to the use of floating-point arith-

metic by computing interval operations with outward rounding [1]. Interval arithmetic

extends real-valued functions to intervals.

Definition 1 (Notations).

– An interval X = [X,X] with floating-point bounds defines the set {x ∈ R | X ≤

x ≤ X}. IR denotes the set of real intervals. We note m(X) = 1

2
(X + X) its

midpoint

– A box X = (X1, . . . , Xn) is an interval vector. We note m(X) = (m(X1), . . . ,m(Xn))
its midpoint

– We note ��(X,Y) the convex hull of two boxes X and Y , that is the smallest box

that contains X and Y

In the following, capital letters represent interval quantities (interval X) and bold let-

ters represent vectors (box X, vector x).

Definition 2 (Interval extension; Natural interval extension). Let f : Rn → R be a

real-valued function. F : IRn
→ IR is an interval extension of f if

∀X ∈ IR
n, f(X) = {f(x) | x ∈ X} ⊂ F (X)

∀(X,Y) ∈ IR
n,X ⊂ Y ⇒ F (X) ⊂ F (Y)

The natural interval extension FN is obtained by replacing the variables with their

domains and real elementary operations with interval arithmetic operations.

The dependency problem The quality of enclosure of f(X) depends on the syntactic

form of f : the natural interval extensions of different but equivalent expressions may

yield different ranges (Example 1). In particular, IA generally computes a large over-

estimation of the image due to multiple occurrences of a same variable, considered as

��

3

different variables. This ”dependency” problem is the main source of overestimation

when using interval computations. However, appropriate rewriting of the expression

may reduce or overcome dependency: if f is continuous inside a box, its natural inter-

val extension FN yields the optimal image when each variable occurs only once in its

expression.

Example 1. Let f(x) = x2 − 2x, g(x) = x(x − 2) and h(x) = (x − 1)2 − 1, where

x ∈ X = [1, 4]. f , g and h have equivalent expressions, however computing their

natural interval extensions yields

FN ([1, 4]) = [1, 4]2 − 2× [1, 4] = [1, 16]− [2, 8] = [−7, 14]

GN ([1, 4]) = [1, 4]× ([1, 4]− 2) = [1, 4]× [−1, 2] = [−4, 8]

HN ([1, 4]) = ([1, 4]− 1)2 − 1 = [0, 3]2 − 1 = [0, 9]− 1 = [−1, 8]

We have f([1, 4]) = HN ([1, 4]) ⊂ GN ([1, 4]) ⊂ FN ([1, 4]).

3 Interval-based techniques

Interval Branch and Bound algorithms (IB&B) exploit the conservative properties

of interval extensions to rigorously bound global optima of numerical optimization

problems [7]. The method consists in splitting the initial search-space into subspaces

(branching) on which an interval extension F of the objective function f is evaluated

(bounding). By keeping track of the best upper bound f̃ of the global minimum f∗,

boxes that certainly do not contain a global minimizer are discarded (Example 2). Re-

maining boxes are stored to be processed at a later stage until the desired precision � is

reached. The process is repeated until all boxes have been processed. Convergence cer-

tifies that f̃−f∗ < �, even in the presence of rounding errors. However, the exponential

complexity of IB&B hinders the speed of convergence on large problems.

Example 2. Let us compute min
x∈X

f(x) = x4 − 4x2 over the interval X = [−1, 4]. The

natural interval extension of f is FN (X) = X4 − 4X2. The floating-point evaluation

f(1) = −3 yields an upper bound f̃ of f∗. Evaluating FN on the subinterval [3, 4]
reduces the overestimation induced by the dependency effect: FN ([3, 4]) = [17, 220].
Since this enclosure is rigorous, ∀x ∈ [3, 4], f(x) ≥ 17 > f̃ = −3 ≥ f∗. Therefore,

the interval [3, 4] cannot contain a global minimizer and can be safely discarded.

Interval Constraint Programming (ICP) aims at solving systems of nonlinear

equations and numerical optimization problems. Stemming from Interval Analysis and

Interval Constraint Programming communities, filtering/contraction algorithms [8] nar-

row the bounds of the variables without loss of solutions. The standard contraction

algorithm HC4Revise [9] carries out a double exploration of the syntax tree of a con-

straint to contract each occurrence of the variables (Example 3). It consists in an eval-

uation (bottom-up) phase that computes the elementary operation of each node, and a

backward (top-down) propagation phase using inverse functions.

��

4

Example 3. Let 2x = z − y2 be an equality constraint, with x ∈ [0, 20], y ∈ [−10, 10]
and z ∈ [0, 16]. The elementary expressions are the nodes n1 = 2x, n2 = y2 and

n3 = z − n2.

The evaluation phase (Figure 1) computes n1 = 2 × [0, 20] = [0, 40], n2 =
[−10, 10]2 = [0, 100] and n3 = [0, 16]− [0, 100] = [−100, 16].

=

×

2 x

−

z ˆ

y 2
2

[2, 2] [0, 20]

[0, 40]

[-10, 10]

[0, 100][0, 16]

[-100, 16]

Fig. 1. HC4Revise: evaluation phase

The propagation phase (Figure 2) starts by intersecting n1 and n3 (steps 1 and 2),

then computes the inversion of each elementary expression (steps 3 to 6).

– steps 1 and 2: n�

1 = n�

3 = n1 ∩ n3 = [0, 40] ∩ [−100, 16] = [0, 16]

– step 3: x� = x ∩
n�

1

2
= [0, 20] ∩ [0, 8] = [0, 8]

– step 4: z� = z ∩ (n2 + n�

3) = [0, 16] ∩ ([0, 100] + [0, 16]) = [0, 16]

– step 5: n�

2 = n2 ∩ (z� − n�

3) = [0, 100] ∩ ([0, 16]− [0, 16]) = [0, 16]

– step 6: y� = ��(y ∩ −
�

n�

2, y ∩
�

n�

2) = ��([−4, 0], [0, 4]) = [−4, 4]

=

×

2 x

−

z ˆ

y 2
2

[2, 2] [0, 8] [0, 20]

[0, 40][0, 16]

[-4, 4] [-10, 10]

[-100, 16][0, 16]

[0, 100][0, 16] [0, 16] [0, 16]

step 3

step 1

step 2

step 4

step 5

step 6

Fig. 2. HC4Revise: propagation phase

The initial box ([0, 20], [−10, 10], [0, 16]) has been reduced to ([0, 8], [−4, 4], [0, 16])
without loss of solutions.

��

5

4 Charibde algorithm

We consider the following global optimization problem and we assume that f is differ-

entiable and that the analytical forms of f and its partial derivatives are available. We

note n the dimension of the search-space.

min
x∈D⊂Rn

f(x)

subject to gi(x) ≤ 0, i ∈ {1, . . . ,m}

Our original cooperative algorithm [6] combined a GA and an IB&B that ran inde-

pendently, and cooperated by exchanging information through shared memory in order

to accelerate the convergence. In this approach, the GA quickly finds satisfactory solu-

tions that improve the upper bound f̃ of the global minimum, and allows the IB&B to

prune parts of the search-space more efficiently.

The current work extends the core method described in [6]. Its behavior is depicted

in Figure 3. The interval-based algorithm embedded in Charibde follows a Branch &

Contract (IB&C) scheme (described in Algorithm 1), namely an IB&B algorithm that

integrates a contraction step based on HC4Revise. While an IB&B merely determines

whether a box contains a global minimizer, an IB&C contracts the boxes with respect

to the constraints gi(x) ≤ 0, i ∈ {1, . . . ,m} (feasibility) or ∂f
∂xi

= 0, i ∈ {1, . . . , n}

(local optimality) and f ≤ f̃ . Exploiting the analytical form of the objective function

and its derivatives achieves faster convergence of the hybrid algorithm, because efficient

Constraint Programming techniques may prune parts of the search-space that cannot

contain a global minimizer or that are infeasible. Filtering algorithms show particular

efficiency when f̃ is a good approximation of the global minimum provided by the

EA thread, hence the necessity to quickly find an incumbent solution. Charibde thus

outperforms our previous algorithm by far.

Interval Branch

& Contract

SHARED

MEMORY

xworst

xbest f
~

x~

step

Differential

Evolution
1 step 2

step 4 step 3

Fig. 3. Charibde algorithm

We note x̃ the best known solution, such that F (x̃) = f̃ . The cooperation between

the two threads boils down to 4 main steps:

– step 1: Whenever the best known DE evaluation is improved, the best individual

xbest is evaluated using IA. The upper bound of the image F (xbest) – guaranteed

to be an upper bound of the global minimum – is stored in the shared memory

– step 2: The best known upper bound F (xbest) is retrieved at each iteration from

the shared memory and compared to the current best upper bound f̃ . If the latter

��

6

is improved, it is updated to prune more efficiently parts of the search-space that

cannot contain a (feasible) global minimizer

– step 3: Whenever the evaluation of the center m(X) of a box improves f̃ , x̃ and f̃

are updated and stored in the shared memory in order to be integrated to the DE

population

– step 4: x̃ replaces the worst individual xworst of DE, thus preventing premature

convergence

In the following, we detail the implementations of the two main components of our

algorithm: the deterministic IB&C thread and the stochastic DE thread.

4.1 Interval Branch & Contract thread

We note L the priority queue in which the remaining boxes are stored and � the desired

precision. The basic framework of IB&C algorithms is described in Algorithm 1.

Algorithm 1 Interval Branch and Contract framework

f̃ ← +∞ � best found upper bound

L ← {X0} � priority queue of boxes to process

repeat

Extract a box X from L � selection rule

Compute F (X) � bounding rule

if X cannot be eliminated then � cut-off test

Contract(X, f̃) � filtering algorithms

Update f̃ � midpoint test

Bisect X into X1 and X2 � branching rule

Store X1 and X2 in L
end if

until L = ∅

return (f̃ , x̃)

The following rules have been experimentally tested and selected according to their

performances:

Selection rule: The box X for which F (X) is the largest is extracted from L
Bounding rule: Evaluating F (X) yields a rigorous enclosure of f(X)
Cut-off test: If f̃ − � < F (X), X is discarded as it cannot improve f̃ by more than �

Midpoint test: If the evaluation of the midpoint of X improves f̃ , f̃ is updated

Branching rule: X is bisected along the k-th dimension, where k is chosen accord-

ing to the round-robin method (one dimension after another). The two resulting

subboxes are inserted in L to be processed at a later stage

4.2 Differential Evolution thread

Differential Evolution (DE) is an EA that combines the coordinates of existing in-

dividuals with a particular probability to generate new potential solutions [10]. It has

��

7

shown great potential for solving difficult optimization problems, and has few control

parameters. Let us denote NP the population size, W > 0 the weighting factor and

CR ∈ [0, 1] the crossover rate. For each individual x of the population, three other

individuals u, v and w, all different and different from x, are randomly picked in the

population. The newly generated individual y = (y1, . . . , yj , . . . , yn) is computed as

follows:

yj =

�

uj +W × (vj − wj) if j = R or rand(0, 1) < CR

xj otherwise
(1)

R is a random index in {1, . . . , n} ensuring that at least one component of y differs

from that of x. y replaces x in the population if f(y) < f(x).

Boundary constraints: When a component yj lies outside the bounds [Aj , Bj] of the

search-space, the bounce-back method [11] replaces yj with a component that lies

between uj (the j-th component of u) and the admissible bound:

yj =

�

uj + rand(0, 1)(Aj − uj), if yj < Aj

uj + rand(0, 1)(Bj − uj), if yj > Bj

(2)

Evaluation: Given inequality constraints {gi | i = 1, . . . ,m}, the evaluation of an

individual x is computed as a triplet (fx, nx, sx), where fx is the objective value,

nx the number of violated constraints and sx =
�m

i=1
max(gi(x), 0). If at least

one of the constraints is violated, the objective value is not computed

Selection: Given the evaluation triplets (fx, nx, sx) and (fy, ny, sy) of two candidate

solutions x and y, the best individual to be kept for the next generation is computed

as follows:
– if nx < ny or (nx = ny > 0 and sx < sy) or (nx = ny = 0 and fx < fy)

then x is kept

– otherwise, y replaces x
Termination: The DE has no termination criterion and stops only when the IB&C

thread has reached convergence

5 Experimental results

Charibde has been tested on the benchmark of functions reported in Table 1. This

benchmark includes quadratic, polynomial and nonlinear functions, as well as bound-

constrained and inequality-constrained problems. Both the best known minimum in the

literature and the certified global minimum3 computed by Charibde are given. Some

global minima may be analytically computed for separable or trivial functions, but for

others (Rana and Egg Holder functions) no result concerning deterministic methods

exists in the literature.

Partial derivatives of the objective function are computed using automatic differen-

tiation [12]. To compute the partial derivatives of the functions that contain absolute

values (Rana, Egg Holder, Schwefel and Keane), we use an interval extension based on

the subderivative of | · | [13].

3 Corresponding solutions are available upon request

��

8

Table 1. Test functions with best known and certified minima

n Type Reference Best known Certified minimum

minimum by Charibde

Bound-Constrained Problems

Rana 4 nonlinear [14] - -1535.1243381

Egg Holder 10 nonlinear [15] -8247 [16] -8291.2400675249

Schwefel 10 nonlinear -4189.828873 [17] -4189.8288727

Rosenbrock 50 quadratic 0 0

Rastrigin 50 nonlinear 0 0

Michalewicz 75 nonlinear - -74.6218111876

Griewank 200 nonlinear 0 0

Inequality-Constrained Problems

Tension 3 polynomial [18] 0.012665232788319 [19] 0.0126652328

Himmelblau 5 quadratic [18] -31025.560242 [20] -31025.5602424972

Welded Beam 4 nonlinear [18] 1.724852309 [21] 1.7248523085974

Keane 5 nonlinear [22] -0.634448687 [23] -0.6344486869

5.1 Computation of certified minima

The average results over 100 runs of Charibde are presented in Table 2. � is the

numerical precision of the certified minimum such that f̃ − f∗ < �, (NP , W , CR)

are the DE parameters, tmax is the maximal computation time (in seconds), Smax is the

maximal size of the priority queue L, nef is the number of evaluations of the real-valued

function f and neF = neDE
F + neIB&C

F is the number of evaluations of the interval

function F computed in the DE thread (neDE
F) and the IB&C thread (neIB&C

F). Note

that neDE
F represents the number of improvements of the best DE evaluation. Because

the DE thread keeps running as long as the IB&C thread has not achieved convergence,

nef is generally much larger than the number of evaluations required to reach f̃ .

Table 2 shows that Charibde has achieved new optimality results for 3 func-

tions (Rana, Egg Holder and Michalewicz) and has proven the optimality of the known

minima of the other functions. As variables all have multiple occurrences in the expres-

sion of Rana, Egg Holder and Keane’s functions, their natural interval extensions are

strongly subject to dependency. They are extremely difficult for interval-based solvers

to optimize. Note that the constraints of Keane’s function do not contain variables with

multiple occurrences, and are therefore not subject to dependency. However, they re-

main highly combinatorial due to the sum and the product operations, which makes

constraint propagation rather inefficient.

Figure 4 portrays the average comparison of performance between Charibde and

standalone DE and IB&C over 100 runs on the Griewank function (n = 200). The stan-

dalone DE remains stuck in a local optimum close to 0 after 22s, while the standalone

IB&C achieves convergence in 20.5s after several phases of stagnation. This is due to

the (crude) upper bounds of f∗ evaluated at the center of the boxes. In Charibde, the

IB&C provides the DE thread with a better solution than the current best known evalua-

��

9

Table 2. Average results over 100 runs

n � NP W CR tmax Smax nef neF

Bound-Constrained Problems

Rana 4 10−6 50 0.7 0.5 222 42 274847000 47 + 27771415

Egg Holder 10 10−6 50 0.7 0.5 768 45 423230200 190 + 423230200

Schwefel 10 10−6 40 0.7 0.5 2.3 32 1462900 150 + 362290

Rosenbrock 50 10−12 40 0.7 0.9 3.3 531 368028 678 + 664914

Rastrigin 50 10−15 40 0.7 0 0.3 93 29372 29 + 42879

Michalewicz 75 10−9 70 0.5 0 138 187 6053495 1203 + 5796189

Griewank 200 10−12 50 0.5 0 11.8 134 188340 316 + 116624

Inequality-Constrained Problems

Tension 3 10−9 50 0.7 0.9 3.8 80 1324026 113 + 1057964

Himmelblau 5 10−9 50 0.7 0.9 0.07 139 12147 104 + 36669

Beam 4 10−12 50 0.7 0.9 2.2 11 316966 166 + 54426

Keane 5 10−4 40 0.7 0.5 472 23 152402815 125 + 99273548

tion, which prevents premature convergence toward a local optimum. The convergence

is eventually completed in 5.2s, with a numerical proof of optimality.

0 5 10 15 20

0
.0

1
.0

2
.0

3
.0

CPU time (s)

G
ri

e
w

a
n

k
 f

u
n

c
ti
o

n

Charibde

DE

IB&C

Fig. 4. Comparison of Charibde and standalone DE and IB&C (Griewank function, n = 200)

5.2 A word on dependency

When partial derivatives are available, detecting local monotonicity with respect to a

variable cancels the dependency effect due to this variable (Definition 3 and Example

4). In Definition 3, we call a monotonic variable a variable with respect to which f is

monotonic.

Definition 3 (Monotonicity-based extension). Let f be a function involving the set of

variables V . Let X ⊆ V be a subset of k monotonic variables and W = V \ X the set

��

10

of variables not detected monotonic. If xi is an increasing (resp. decreasing) variable,

we note x−

i = xi and x+
i = xi (resp. x−

i = xi and x+
i = xi). fmin and fmax are

functions defined by:

fmin(W) = f(x−

1 , . . . , x
−

k ,W)

fmax(W) = f(x+
1 , . . . , x

+

k ,W)

The monotonicity-based extension FM of f computes:

FM = [fmin(W), fmax(W)]

Example 4. Let f(x) = x2 − 2x and X = [1, 4]. As seen in Example 1, FN ([1, 4]) =
[−7, 14]. The derivative of f is f �(x) = 2x − 2, and F �

N ([1, 4]) = 2 × [1, 4] − 2 =
[0, 6] ≥ 0. f is thus increasing with respect to x ∈ X . Therefore, the monotonicity-

based interval extension computes the optimal range: FM ([1, 4]) = [F (X), F (X)] =

[F (1), F (4)] = [−1, 8] = f([1, 4]).

This powerful property has been exploited in [24] to enhance constraint propagation.

However, the efficiency of this approach remains limited because the computation of

partial derivatives is also subject to overestimation (Example 5).

Example 5. Let f(x) = x3 − x2, f �(x) = 3x2 − 2x and x ∈ X = [0, 2

3
]. Since

f �(X) = {f �(x) | x ∈ X} = [− 1

3
, 0], f is decreasing with respect to x on X . However,

F �(X) = 3 × [0, 2

3
]2 − 2 × [0, 2

3
] = [− 4

3
, 4

3
] whose sign is not constant. Dependency

precludes us from detecting the monotonicity of f . Bisecting X is necessary in order to

reduce the overestimation of f �(X) computed by IA.

6 Conclusion

Extending the basic concept of [6], we have presented in this paper a new cooperative

hybrid algorithm, Charibde, in which a stochastic Differential Evolution algorithm

(DE) cooperates with a deterministic Interval Branch and Contract algorithm (IB&C).

The DE algorithm quickly finds incumbent solutions that help the IB&C to improve

pruning the search-space using interval propagation techniques. Whenever the IB&C

improves the best known upper bound f̃ of the global minimum f∗, the corresponding

solution is used as a new DE individual to avoid premature convergence toward local

optima.

We have demonstrated the efficiency of this algorithm on a benchmark of diffi-

cult multimodal functions. Previously unknown results have been presented for Rana,

Egg Holder and Michalewicz functions, while other known minima have been certi-

fied. By preventing premature convergence in the EA and providing the IB&C with a

good approximation f̃ of f∗, Charibde significantly outperforms its two standalone

components.

References

1. Moore, R.E.: Interval Analysis. Prentice-Hall (1966)

��

11

2. Sotiropoulos, G.D., Stavropoulos, C.E., Vrahatis, N.M.: A new hybrid genetic algorithm

for global optimization. In: Proceedings of second world congress on Nonlinear analysts,

Elsevier Science Publishers Ltd. (1997) 4529–4538

3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press

(1975)

4. Zhang, X., Liu, S.: A new interval-genetic algorithm. International Conference on Natural

Computation 4 (2007) 193–197

5. Lei, Y., Chen, S.: A reliable parallel interval global optimization algorithm based on mind

evolutionary computation. 2012 Seventh ChinaGrid Annual Conference (2009) 205–209

6. Alliot, J.M., Durand, N., Gianazza, D., Gotteland, J.B.: Finding and proving the optimum:

Cooperative stochastic and deterministic search. 20th European Conference on Artificial

Intelligence (2012)

7. Hansen, E.: Global optimization using interval analysis. Dekker (1992)

8. Chabert, G., Jaulin, L.: Contractor programming. Artificial Intelligence 173 (2009) 1079–

1100

9. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency.

In: International Conference on Logic Programming, MIT press (1999) 230–244

10. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global opti-

mization over continuous spaces. Journal of Global Optimization (1997) 341–359

11. Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global

Optimization. Natural Computing. Springer-Verlag (2006)

12. Rall, L.B.: Automatic differentiation: Techniques and applications. Lecture Notes in Com-

puter Science (1981)

13. Kearfott, R.B.: Interval extensions of non-smooth functions for global optimization and

nonlinear systems solvers. Computing 57 (1996) 57–149

14. Whitley, D., Mathias, K., Rana, S., Dzubera, J.: Evaluating evolutionary algorithms. Artifi-

cial Intelligence 85 (1996) 245–276

15. Mishra, S.K.: Some new test functions for global optimization and performance of repulsive

particle swarm method. Technical report, University Library of Munich, Germany (2006)

16. Sekaj, I.: Robust Parallel Genetic Algorithms with Re-initialisation. In: PPSN. (2004) 411–

419

17. Kim, Y.H., Lee, K.H., Yoon, Y.: Visualizing the search process of particle swarm optimiza-

tion. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computa-

tion, ACM (2009) 49–56

18. Coello Coello, C.A.: Use of a self-adaptive penalty approach for engineering optimization

problems. In: Computers in Industry. (1999) 113–127

19. Zhang, J., Zhou, Y., Deng, H.: Hybridizing particle swarm optimization with differential

evolution based on feasibility rules. In: ICGIP 2012. Volume 8768. (2013)

20. Aguirre, A., Muñoz Zavala, A., Villa Diharce, E., Botello Rionda, S.: Copso: Constrained

optimization via PSO algorithm. Technical report, CIMAT (2007)

21. Duenez-Guzman, E., Aguirre, A.: The baldwin effect as an optimization strategy. Technical

report, CIMAT (2007)

22. Keane, A.J.: A brief comparison of some evolutionary optimization methods. In: Proceedings

of the Conference on Applied Decision Technologies (Modern Heuristic Search Methods).

Uxbrigde,1995, Wiley (1996) 255–272

23. Mishra, S.K.: Minimization of keane‘s bump function by the repulsive particle swarm and

the differential evolution methods. Technical report, North-Eastern Hill University, Shillong

(India) (2007)

24. Araya, I., Trombettoni, G., Neveu, B.: Exploiting monotonicity in interval constraint propa-

gation. In: Proc. AAAI. (2010) 9–14

��

