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Abstract The paper is devoted to the study of the Aubin/Lipschitz-like property
and the isolated calmness of a particular non-monotone generalized equation arising
in electronics. The variational and non-smooth analysis is applied in the theory of
non-regular electrical circuits involving electronic devices like ideal diodes, practical
diodes, DIACs, silicon controlled rectifiers (SCR), and transistors. We also discuss
the relationship of our results to the ones using classical techniques from (smooth)
analysis and provide a simulation for several simple electrical circuits which are
chosen in order to cover the most common non-smooth elements in electronics. The
simulations of the electrical circuits discussed in this paper are performed by using
Xcos (a component of Scilab).

Keywords Generalized equation · Non-smooth and variational analysis ·
Aubin/Lipschitz-like property · Isolated calmness · Non-regular electrical circuits

S. Adly (B) · R. Cibulka · H. Massias
CNRS-XLIM UMR 7252, Université de Limoges, 123 Avenue Albert Thomas,
87060 Limoges Cedex, France
e-mail: samir.adly@unilim.fr

H. Massias
e-mail: henri.massias@unilim.fr

R. Cibulka
Department of Mathematics, University of West Bohemia, Univerzitní 8,
306 14 Pilsen, Czech Republic
e-mail: cibi@kma.zcu.cz

1



1 Introduction

Given matrices B ∈ R
n×m, C ∈ R

m×n, a non-linear mapping f : R
n → R

n, and a set-
valued map F : R

m ⇒ R
m, we consider the problem of finding for a vector p ∈ R

n

the solution z ∈ R
n to the inclusion

p ∈ f (z) + BF(Cz). (1)

Denote by � the set-valued mapping from R
n into itself defined by �(z) = f (z) +

BF(Cz) whenever z ∈ R
n. Our aim is to investigate stability properties such as the

Aubin/Lipschitz-like continuity and the isolated calmness of the solution mapping
S := �−1 for particular examples arising in electronics. Except for the last section,
we will suppose that m ≤ n, and that

(A1) B is injective;
(A2) f is continuously differentiable on R

n;
(A3) F has closed graph;
(A4) C is surjective; and

(A5) there are F j : R ⇒ R, j ∈ {1, . . . , m} such that F(x) =
m∏

j=1
F j(x j) whenever x =

(x1, . . . , xm)T ∈ R
m.

As an example of F satisfying (A3) and (A5), one can mention the Clarke sub-
differential of the so-called Moreau-Panagiotopoulos super-potential [5]

J(x) := j1(x1) + j2(x2) + · · · + jm(xm), x = (x1, . . . , xm)T ∈ R
m,

with ji : R → R being a locally Lipchitz continuous function for each i = 1, . . . , m
(corresponding to the electrical super-potential of the electrical devices). This par-
ticular case was studied by S. Adly and J. V. Outrata in [1]. They derived criteria
for the Aubin/Lipschitz-like continuity and the isolated calmness property of S. The
general case (1) was investigated in [Adly, S., Cibulka, R.: Quantitative stability of
a generalized equation. Application to non-regular electrical circuits. to appear in J.
Optim. Theory Appl.] (see Theorems 1 and 3 below). The aim of the present note is
twofold. First, to illustrate the application of the theoretical results in case of several
important non-smooth elements appearing in electronics (including their input-
output simulation). Second, to show that one can have m > n in some applications.
In such a case, one cannot expect the assumptions (A1) and (A4) to hold. We show,
that it is possible to derive the conditions for the isolated calmness property under
slightly weaker conditions.

The paper is organized as follows. In the leading section, we provide the needed
mathematical background. The next one deals with several examples corresponding
to particular non-regular electrical circuits. In the last section, we focus on the
isolated calmness of S in case that m > n. The assumptions on injectivity of the matrix
B and surjectivity of C are weakened.

2 Mathematical Background

The notation is fairly standard. In R
d, the norm, the scalar product, the closed ball

with the center x ∈ R
d with the radius r ≥ 0, and the unit ball are denoted by ‖ · ‖,

〈·, ·〉, B(x, r), and B, respectively.
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Given a non-empty subset � of R
d, the regular (Fréchet) normal cone to � at x̄ ∈ �

is the set

N̂(x̄;�) :=
{

ξ ∈ R
d : lim sup

�	x→x̄

〈ξ, x − x̄〉
‖x − x̄‖ ≤ 0

}

;

the Mordukhovich limiting normal cone N(x̄; �) to � at x̄ contains all ξ ∈ R
d for

which there are sequences (xk)k∈N in � and (ξk)k∈N in R
d converging to x̄ and ξ ,

respectively, such that

ξk ∈ N̂(xk;�) for each k ∈ N;
and finally the Bouligand-Severi tangent cone T(x̄; �) to � at x̄ contains those v ∈ R

d

for which there are sequences (tk)k∈N in (0,∞) and (vk)k∈N in R
d converging to 0 and

v, respectively, such that x̄ + tkvk ∈ � whenever k ∈ N. The set � is called normally
(Clarke) regular at x̄ if N̂(x̄; �) = N(x̄; �).

By S : R
d ⇒ R

l we mean a multivalued mapping from R
d into R

l with the domain
dom S, the graph gph S and the range rge S. Fix a point (x̄, ȳ) ∈ gph S, a mapping S
is said to have the Aubin/Lipschitz-like property around (x̄, ȳ) if there is a constant
κ ≥ 0 along with neighborhoods U of x̄ and V of ȳ such that

S(x) ∩ V ⊂ S(x′) + κ‖x − x′‖B for all x, x′ ∈ U. (2)

The infimum of the set of values κ for which there are neighborhoods U of x̄ and
V of ȳ such that (2) holds is called Lipschitz modulus of S at (x̄, ȳ) and is denoted
by lip

(
S; (x̄, ȳ)

)
. It is well known [2, Theorem 3E.6] that the Aubin/Lipschitz-like

property of S around (x̄, ȳ) is equivalent to the metric regularity of � := S−1 around
(ȳ, x̄) and that the regularity modulus of � at (ȳ, x̄) equals to the Lipschitz modulus
of S at (x̄, ȳ). Clearly, this property ensures that S(x) �= ∅ for each x in vicinity of x̄.

Fixing one of the points in U , i.e. the request for the existence of a constant κ ≥ 0
along with neighborhoods U of x̄ and V of ȳ such that

S(x) ∩ V ⊂ S(x̄) + κ‖x − x̄‖B whenever x ∈ U, (3)

we get the definition of the calmness property of S at (x̄, ȳ). Again, the infimum of
the set of values κ for which there are neighborhoods U of x̄ and V of ȳ such that
(3) holds is called calmness modulus of S at (x̄, ȳ) and is denoted by clm

(
S; (x̄, ȳ)

)
.

Remember, that [2, Theorem 3H.3] establishes the equivalence between calmness
property of S at (x̄, ȳ) and the metric subregularity of � at (ȳ, x̄). Moreover, the
subregularity modulus of � at (ȳ, x̄) and the calmness modulus of S at (x̄, ȳ) are the
same. However, there is no guarantee that S(x) �= ∅ for any x in vicinity of x̄.

Further, the mapping S has the isolated calmness property at (x̄, ȳ) provided that
it has calmness property and ȳ is an isolated point of S(x̄), i.e. S(x̄) ∩ B(ȳ, r) = {ȳ}
for some r > 0. Note that the isolated calmness property of S at (x̄, ȳ) amounts to the
existence of a constant κ ≥ 0 along with neighborhoods U of x̄ and V of ȳ such that

S(x) ∩ V ⊂ ȳ + κ‖x − x̄‖B for each x ∈ U. (4)

Theorem 3I.2 in [2] says that the isolated calmness property of S at (x̄, ȳ) is equivalent
to the strong metric subregularity of � at (ȳ, x̄). Again, one can have S(x) = ∅ for all
x in a neighborhood of x̄. This is not the case if the corresponding calmness modulus
is positive.
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For now on assume that � and S are the mappings defined in the introduction. For
a point (z̄, p̄) ∈ gph �, we set v̄ := (BT B)−1 BT( p̄ − f (z̄)). In [Adly, S., Cibulka, R.:
Quantitative stability of a generalized equation. Application to non-regular electrical
circuits. to appear in J. Optim. Theory Appl.], using the well-known Mordukhovich
criterion [4, Theorem 4.10], the following necessary and sufficient condition for the
Aubin/Lipschitz-like continuity of S := �−1 is derived.

Theorem 1 Suppose that the assumptions (A1)–(A4) hold true. Then S has the
Aubin/Lipschitz-like property at ( p̄, z̄) ∈ gph S if and only if

((
CCT

)−1
C∇ f (z̄)Tξ, BTξ

)
∈ −N

(
(Cz̄, v̄); gph F

)

∇ f (z̄)Tξ ∈ rge CT

}

=⇒ ξ = 0Rn . (5)

Using [2, Theorem 4C.1], one can obtain a similar result on the isolated calmness
property of S.

Theorem 2 Suppose that the assumptions (A1)–(A4) hold true. Then S has the
isolated calmness property at ( p̄, z̄) ∈ gph S if and only if

(
Cb ,−(BT B

)−1
BT∇ f (z̄)b

)
∈ T

(
(Cz̄, v̄); gph F

)

∇ f (z̄)b ∈ rge B

}

=⇒ b = 0Rn . (6)

Remark 1 In view of [6, Proposition 6.41], the assumption (A5) ensures that the
conditions (5) and (6) can be checked coordinate-wise. To be more precise, as
gph F = ∏m

j=1 gph F j, one has N
(
(Cz̄, v̄); gph F

) = ∏m
j=1 N

(
((Cz̄) j, v̄ j); gph F j

)
and

T
(
(Cz̄, v̄); gph F

) ⊂ ∏m
j=1 T

(
((Cz̄) j, v̄ j); gph F j

)
. Hence, replacing the tangent cone

to the graph of F by the product of tangent cones to the graphs of F j in (6), one gets
the sufficient condition for the isolated calmness. It becomes necessary if, in addition,
gph F j is normally regular at ((Cz̄) j, v̄ j) for each j ∈ {1, . . . , m}.

Recall that M ∈ R
n×n is called a P-matrix provided that all its k-by-k principal

minors are positive whenever k ∈ {1, . . . , n}. It is well known, that M is a P-matrix
if and only if for any non-zero x ∈ R

n there is j ∈ {1, . . . , n} such that x j(Mx) j > 0.
The following simple sufficient condition for the Aubin/Lipschitz-like property may
be useful.

Corollary 1 In addition to (A1)–(A5), assume that n = m, that B = C = In, that
∇ f (z̄)T is a P-matrix, and that for each j ∈ {1, 2, . . . , n}, we have

N
(
(z̄ j, v̄ j); gph F j

) ⊂ {
(a, b)T ∈ R

2 : ab ≤ 0
}
.

Then S has the Aubin/Lipschitz-like property at ( p̄, z̄) ∈ gph S.

Proof In view of Remark 1, the condition (5) says that S has the Aubin/Lipschitz-like
property at ( p̄, z̄) provided that ξ = 0Rn is the only point which satisfies

(∇ f (z̄)Tξ, ξ
) ∈ −

n∏

j=1

N
(
(z̄ j, v̄ j); gph F j

) ⊂ [{
(a, b)T ∈ R

2 : ab ≤ 0
}]n

.
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Suppose on the contrary that ξ is non-zero. Then ξ j
(∇ f (z̄)Tξ

)
j ≤ 0 for each j ∈

{1, 2, . . . , n}. We obtained a contradiction, since ∇ f (z̄)T is a P-matrix. ��

Note that the inclusion in Corollary 1 is satisfied if F j is a maximal monotone
operator. We recall that an operator H : R ⇒ R is maximal monotone if and only
if there is a proper lower semi-continuous convex function ψ : R → R ∪ {+∞} such
that H = ∂ψ , where the subdifferential is understood in the sense of convex analysis.

3 Non-Regular Electrical Circuits

In this section we investigate the stability properties of the solution mappings
corresponding to several non-regular electrical circuits.

Example 1 Consider the circuit in Fig. 1 involving a load resistance R > 0, a source
E > 0, an input-signal source u with corresponding instantaneous current i, and a
non-smooth element with the current-voltage (i–v) characteristic given by a set-
valued mapping F : R ⇒ R. Kirchhoff’s voltage law reveals that

u − E ∈ Ri︸︷︷︸
VR

+ F(i)
︸︷︷︸

VD

.

By setting p = u − E and z = i we get (1) with m = n = 1, that B = C = 1, and
f (z) = Rz, z ∈ R.

Practical Diode Suppose that V1 < 0 < V2. The i–v characteristic is given by

F(z) :=

⎧
⎪⎨

⎪⎩

[V1, V2], if z = 0,

V2, if z > 0,

V1, if z < 0.

Fig. 1 The circuit considered
in Example 1

u(t)

i(t)

VR

VD

E
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Note that for each p ∈ R there is a unique solution z ∈ R to (1) given by

z =

⎧
⎪⎨

⎪⎩

0, if p ∈ [V1, V2],
(p − V2)/R, if p > 0,

(p − V1)/R, if p < 0.

Since F is maximal monotone, one applies the Corollary 1 to conclude that S has the
Aubin/Lipschitz-like property at any ( p̄, z̄) ∈ gph S. Moreover, the uniqueness of the
solution implies that S has also the isolated calmness property at any reference point.
In order to simulate this circuit in standard software packages, one has to replace the
multivalued map F by its single-valued “good” approximation, ϕ say. For example,
for a given small ε > 0 one can take

ϕ(z) =

⎧
⎪⎪⎨

⎪⎪⎩

1
ε

(

V2 − V1 + V2

2

)

z + V1 + V2

2
, if z ∈ [−ε, ε],

V2, if z > ε,

V1, if z < −ε.

For each p ∈ R, the (unique) solution to the equation p = f (z) + ϕ(z) is close to the
solution of (1). Moreover, since the monotonicity is preserved, the corresponding
solution mapping also has both the Aubin/Lipschitz-like and the isolated calmness
property around any reference point of its graph. The simulation can be seen in Fig. 2.
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Fig. 2 Voltage of the input source and the output voltage across the practical diode (R = 10, V1 =
−8, V2 = 1, ε = 0.01)
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Diode Alternating Current (DIAC) Bilateral triggers diacs are bidirectional thyris-
tors designed to switch alternating current and trigger silicon controlled rectifiers and
triacs. Figure 3 illustrates typical i–v characteristic of a diac along with its schematic
symbol. Here V (resp. −V) is the forward (resp. reverse) breakover voltage. The
diacs, because of their symmetrical bidirectional switching characteristics, are widely
used as triggering devices in triac phase control circuits employed for lamp dimmer,
heat control, universal motor speed control etc.

Suppose that V > 0 and a > 0 are given. The i–v characteristic (see Fig. 3) is
given by

F(z) :=

⎧
⎪⎨

⎪⎩

[−V, V], if z = 0,

V/
√

2az/V + 1, if z > 0,

−V/
√−2az/V + 1, if z < 0.

Note that for each p ∈ R there is a solution z ∈ R to the equation (1). Indeed, as
�(z) = Rz + F(z), z ∈ R, we have rge � = R. Moreover, this solution is unique if
a ≤ R, since for a non-zero z ∈ R one infers that

�′(z) = R − a
(

2a|z|
V + 1

)3/2 =
R
(

2a|z|
V + 1

)3/2 − a
(

2a|z|
V + 1

)3/2 >
R − a

(
2a|z|

V + 1
)3/2 ≥ 0.

In this case, the solution equals to zero if p ∈ [−V, V], it is positive if p > V and
negative when p < V.

Clearly, we can split � into different functions f and F which produce the same
inclusion (1). Namely, from now on, we assume that

f (z) =

⎧
⎪⎪⎨

⎪⎪⎩

Rz + V√
2az/V + 1

− V, z ≥ 0,

Rz − V√−2az/V + 1
+ V, z < 0,

and F(z) :=

⎧
⎪⎨

⎪⎩

[−V, V], z = 0,

V, z > 0,

−V, z < 0.

So,

f ′(z) = R − a
(

2a|z|
V + 1

)3/2 whenever z ∈ R.

Fig. 3 The DIAC schematic
symbol and its i–v
characteristic

+ −

V

i(t)

V

i

−V

V

F (i)
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Indeed, f ′(z) = �′(z) if z �= 0 and f ′(0) = R − a as can be easily justified, e.g.,

lim
h→0+

Rh + V√
2ah
V +1

− V

h
= lim

h→0+

⎛

⎝R − a
( 2ah

V + 1
) 3

2

⎞

⎠ = R − a.

For a fixed p̄ ∈ R, let z̄ be the corresponding solution to (1). Now, (5) reads as
(

f ′(z̄)ξ, ξ
) ∈ −N

(
(z̄, p̄ − f (z̄)); gph F

) =⇒ ξ = 0, (7)

where N
(
(x, y); gph F

)
is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
0
1

)

, if x > 0, y = V or x < 0, y = −V,

R

(
1
0

)

, if x = 0, y ∈ (−V, V),

R

(
0
1

)

∪ R

(
1
0

)

∪ cone

{(
0
1

)

,

(
−1
0

)}

, if x = 0, y = V,

R

(
0
1

)

∪ R

(
1
0

)

∪ cone

{(
0

−1

)

,

(
1
0

)}

, if x = 0, y = −V,

∅, otherwise.

If a < R, then f ′(z) > 0 for each z ∈ R. So, S has the Aubin/Lipschitz-like property
at ( p̄, z̄). Again, the uniqueness of the solution implies that S has also the isolated
calmness property at this point.

If a = R, then f ′(z) > 0 for each non-zero z ∈ R and f ′(0) = 0. Hence S has both
the Aubin/Lipschitz-like and the isolated calmness property at ( p̄, z̄) provided that
p̄ /∈ {−V, V}. If p̄ ∈ {−V, V} then S has not the Aubin/Lipschitz-like property at
( p̄, z̄).

The condition (6) has the form

(b ,− f ′(z̄)b) ∈ T
(
(z̄, p̄ − f (z̄)); gph F

) =⇒ b = 0, (8)

with

T
(
(x, y); gph F

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
1
0

)

, if x > 0, y = V or x < 0, y = −V,

R

(
0
1

)

, if x = 0, y ∈ (−V, V),

R+

(
1
0

)

∪ R+

(
0

−1

)

, if x = 0, y = V,

R+

(
−1
0

)

∪ R+

(
0
1

)

, if x = 0, y = −V,

∅ otherwise.
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Therefore, if a = R, the mapping S has not even the isolated calmness property at
the reference point if p̄ ∈ {−V, V}.

The case a > R could be discussed similarly, but the solution is no more
unique. For example, if z̄ = 0 then f ′(0) < 0 and f (0) = 0. Thus S has both the
Aubin/Lipschitz-like and the isolated calmness property at ( p̄, z̄) if p̄ ∈ (−V, V). If
p̄ ∈ {−V, V} then S has the isolated calmness property at the reference point but
not the Aubin/Lipschitz-like property. Let us summarize the above consideration in
Table 1.

Let us replace the i–v characteristic of the DIAC by its single-valued approxima-
tion ϕ defined by

ϕ(z) =

⎧
⎪⎪⎨

⎪⎪⎩

V

ε
√

2aε/V + 1
z, if z ∈ [−ε, ε],

V/
√

2az/V + 1, if z > ε,
−V/

√−2az/V + 1, if z < −ε,

with ε > 0 sufficiently small. Therefore,

ϕ′(z) =
{

α := V
ε
√

2aε/V+1 , if |z| < ε,

βz := −a(2a|z|/V + 1)−3/2, if |z| > ε.

Put �̃(z) = Rz + ϕ(z), z ∈ R. As rge �̃ = R, there is a solution to the equation p =
�̃(z) for each p ∈ R. If a > 0 is such that a ≤ R(2aε/V + 1)3/2, then �̃′(z) > 0 for
any z ∈ R with |z| �= ε. Hence this assumption guarantees the uniqueness. Clearly,
any solution to the equation is close to the solution of (1).

Let z̄ ∈ R. Now, (5) reads as

(Rξ, ξ) ∈ −N
(
(z̄, ϕ(z̄)); gph ϕ

) =⇒ ξ = 0,

where N
(
(z, ϕ(z)); gph ϕ

)
equals to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
−α

1

)

, if |z| < ε,

R

(
−βz

1

)

, if |z| > ε,

R+

(
−α

1

)

∪ R+

(
−βz

1

)

∪ cone

{(
−α

1

)

,

(
−βz

1

)}

, if z = ε,

R+

(
α

−1

)

∪ R+

(
βz

−1

)

∪ cone

{(
α

−1

)

,

(
βz

−1

)}

, if z = −ε.

Table 1 Properties of the solution mapping for DIAC

( p̄, z̄) ∈ (−V, V) × {0} ( p̄, z̄) ∈ {−V, V} × {0} p̄ > V p̄ < −V

a < R AP and IC AP and IC AP and IC AP and IC
a = R AP and IC None AP and IC AP and IC
a > R AP and IC IC Not discusseda Not discussed
aThe properties could be investigated similarly. However, they depend on a particular value of p̄ and
the corresponding solution z̄
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The condition (6) has the form

(b ,−Rb) ∈ T
(
(z̄, ϕ(z̄)); gph ϕ

) =⇒ b = 0, (9)

with

T
(
(z, ϕ(z)); gph ϕ

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
1
α

)

, if |z| < ε,

R

(
1
βz

)

, if |z| > ε,

R+

(
−1
−α

)

∪ R+

(
1
βz

)

, if z = ε,

R+

(
1
α

)

∪ R+

(
−1
−βz

)

, if z = −ε.

Using similar steps as in the case of S one can establish the stability properties of
S̃ := (�̃)−1 (see the Table 2).

Therefore, we can expect the same qualitative behaviour as in the case of the
original solution mapping. However, one has to adjust the value of the parameters
involved in the model. The simulation can be seen in Fig. 4.

Silicon Controlled Rectif ier (SCR) Silicon controlled rectifiers are three-terminal
devices designed for start/stop control circuit for a direct current motor, lamp or
other practical load. The SCR is used in many applications: motor controls, time-
delay circuits, heater controls, phase controls, relay controls to name a few.

Suppose that V1 < 0, α > 0 and a > 0 are given numbers, and that ϕ : R → (0, ∞)

is a continuously differentiable function with ϕ(α) < ϕ(0), ϕ′(0) > 0 and ϕ′(α) > 0.
We suppose that the i–v characteristic (see Fig. 5) is given by

F(z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[V1, ϕ(0)], if z = 0,

az + V1, if z < 0,

ϕ(z), if z ∈ [0, α],
a(z − α) + ϕ(α), if z > α.

Table 2 Properties of the solution mapping for the approximation of DIAC

|z̄| < ε |z̄| = ε |z̄| > ε

a < R(2aε/V + 1)3/2 AP and IC AP and IC AP and IC
a = R(2aε/V + 1)3/2 AP and IC None AP and IC
a > R(2aε/V + 1)3/2 AP and IC IC Not discusseda

aThe properties could be investigated similarly. However, they depend on a particular value of p̄ and
the corresponding solution z̄

10
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Fig. 4 Voltage of the input source and the output voltage across the DIAC (R = 10, V = 2, a = 10,
ε = 0.01)

Note that for each p ∈ R there is a solution (not necessarily unique) z ∈ R to (1). Fix
any ( p̄, z̄) ∈ gph S. Now, (5) and (6) read as

(Rξ, ξ) ∈ −N
(
(z̄, p̄ − Rz̄); gph F

) =⇒ ξ = 0, (10)

and

(b ,−Rb) ∈ T
(
(z̄, p̄ − Rz̄); gph F

) =⇒ b = 0, (11)

Fig. 5 The Silicon controlled
rectifier schematic symbol and
its typical i–v characteristics +

i(t)

−
I G

V i

v I G 1

I G 2

I G 3

0 = I G1 < I G2 < I G3
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respectively, where N
(
(x, y); gph F

)
equals to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
a

−1

)

, if x < 0, y = ax + V1 or x > α, y = a(x − α) + ϕ(α),

R

(
1
0

)

, if x = 0, y ∈ (V1, ϕ(0)),

R

(
ϕ′(x)

−1

)

, if x ∈ (0, α), y = ϕ(x),

R

(
a

−1

)

∪ R

(
1
0

)

∪ cone

{(
a

−1

)

,

(
1
0

)}

, if x = 0, y = V1,

R

⎛

⎝
−ϕ′(0)

1

⎞

⎠ ∪ R

(
−1
0

)

∪ cone

{(
−ϕ′(0)

1

)

,

(
−1
0

)}

, if x = 0, y = ϕ(0),

R

(
a

−1

)

∪ R

(
ϕ′(α)

−1

)

∪ cone

{(
a

−1

)

,

(
ϕ′(α)

−1

)}

, if x = α, y = ϕ(α),

∅, otherwise,

and T
(
(x, y); gph F

)
equals to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
1
a

)

, if x < 0, y = ax + V1 or x > α, y = a(x − α) + ϕ(α),

R

(
0
1

)

, if x = 0, y ∈ (V1, ϕ(0)),

R

(
1

ϕ′(x)

)

, if x ∈ (0, α), y = ϕ(x),

R+

(
−1
−a

)

∪ R+

(
0
1

)

, if x = 0, y = V1,

R+

(
1

ϕ′(0)

)

∪ R+

(
0

−1

)

, if x = 0, y = ϕ(0),

R+

(
−1

−ϕ′(α)

)

∪ R+

(
1
a

)

, if x = α, y = ϕ(α),

∅, otherwise.

Therefore, S has both the Aubin/Lipschitz-like and the isolated calmness property
for each ( p̄, z̄) ∈ gph S with z̄ /∈ (0, α). On the other hand, if z̄ ∈ (0, α) then S has
these properties if and only if ϕ′(z̄) �= −R. Again, a single-valued approximation of
F as in the previous cases will not effect the qualitative behaviour of the solution
map. The simulation can be seen in Fig. 6.

Example 2 (SCR and Zener Diode in parallel) Consider the circuit in Fig. 7 involving
a load resistance R > 0, two sources E2 > E1 > 0, an input-signal source u with

12



- 10

- 8

- 6

- 4

- 2

0

2

4

6

8

10

0.0e+ 00 5.0e- 05 1.0e- 04 1.5e- 04 2.0e- 04 2.5e- 04 3.0e- 04 3.5e- 04 4.0e- 04

Input

t

y

- 10

- 8

- 6

- 4

- 2

0

2

4

6

8

10

0.0e+ 00 5.0e- 05 1.0e- 04 1.5e- 04 2.0e- 04 2.5e- 04 3.0e- 04 3.5e- 04 4.0e- 04

Output

t

y

Fig. 6 Voltage of the input source and the output voltage across the SCR (R = 10, V1 = 1, a = 0.5,
α = 1.3, ϕ(z) = 24z3 − 46z2 + 19z + 4, ε = 0.01)

corresponding instantaneous current i, and two non-smooth elements - the SCR and
the Zener Diode. A Zener diode is made to permit current to flow in the reverse
direction if the voltage is larger than the rated breakdown. The schematic symbol
and the i–v characteristic of a diode are depicted in Fig. 8. The Zener diode is a good
voltage regulator to maintain a constant voltage regardless of minor variations in
load current or input voltage.

Fig. 7 The circuit considered
in Example 2

u(t)

i(t)

SCR

zd

E 1 E 2<

G

H

i1

i2

VSCR Vzd
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+ -

V1

V2

I1I2

-10

-10

1

V (Volts)

i (mA)

Fig. 8 The Zener diode schematic symbol and its typical i–v characteristic (we assume V1 = −V2 = V)

Suppose that V > 0, V1 < 0, α > 0, a > 0 and b > 0 are given numbers, and that
ϕ : R → (0, ∞) is a continuously differentiable function with ϕ(α) < ϕ(0), ϕ′(0) > 0
and ϕ′(α) > 0. Suppose that the i–v characteristics F1 of SCR and F2 of the Zener
diode are defined by

F1(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[V1, ϕ(0)], z = 0,

az + V1, z < 0,

ϕ(z), z ∈ [0, α],
a(z − α) + ϕ(α), z > α.

F2(z) =

⎧
⎪⎨

⎪⎩

[−V, V], z = 0,

b z − V, z < 0,

b z + V, z > 0.

Using the Kirchhoff’s current and voltage laws, we have

⎧
⎨

⎩

i = i1 + i2
−u + R(i1 + i2) + Vscr + E1 = 0
−u + R(i1 + i2) + Vzd + E2 = 0.

By setting p1 = u − E1, p2 = u − E2, z1 = i1 and z2 = i2, we obtain that

p1 ∈ R(z1 + z2) + F1(z1) and p2 ∈ R(z1 + z2) + F2(z2),

which is in the form of (1) with m = n = 2, B = C = I2, and f (z) = Az, z ∈ R
2,

where A =
(

R R
R R

)

. Given p̄ = ( p̄1, p̄2) ∈ R
2, denote by z̄ = (z̄1, z̄2)

T the correspond-

ing solution to (1). In view of Remark 1, the necessary and sufficient condition for
the Aubin/Lipschitz-like property of S at the reference point is

(R(ξ1 + ξ2), ξ1) ∈ −N
(
(z̄1, p̄1 − R(z̄1 + z̄2)); gph F1

)

(R(ξ1 + ξ2), ξ2) ∈ −N
(
(z̄2, p̄2 − R(z̄1 + z̄2)); gph F2

)
}

=⇒ ξ1 = ξ2 = 0, (12)

14



where the first normal cone was computed in the Example 1—Silicon controlled
rectifier and the latter one is given by N

(
(x, y); gph F2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
b

−1

)

, if x > 0 and y = b x − V, or x < 0 and y = b x + V,

R

(
1
0

)

, if x = 0, y ∈ (−V, V),

R

(
b

−1

)

∪ R

(
1
0

)

∪ cone

{(
b

−1

)

,

(
1
0

)}

, if x = 0, y = −V,

R

(
−b

1

)

∪ R

(
−1
0

)

∪ cone

{(
−b

1

)

,
(
−1
)
}

, if x = 0, y = V,

∅, otherwise.

Multiplying the inclusions in (12) by the matrices M1 :=
(

0 1
1/R −1

)

and M2 :=
(
1/R −1

0 1

)

, respectively, one gets the following equivalent condition

M1

(
N
(
(z̄1, v̄1); gph F1

))⋂
M2

(
N
(
(z̄2, v̄2); gph F2

)) = 0R2 .

Now, one infers that M1

(
N
(
(x, y); gph F1

))
is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

⎛

⎝
−1

a
R

+ 1

⎞

⎠ , if x<0 and y=ax+V1, or x > α and y = a(x − α) + ϕ(α),

R

⎛

⎝
0
1
R

⎞

⎠ , if x=0, y∈(V1, ϕ(0)),

R

⎛

⎝
−1

ϕ′(x)

R
+ 1

⎞

⎠ , if x ∈ (0, α), y = ϕ(x),

R

⎛

⎝
−1

a
R

+ 1

⎞

⎠ ∪ R

⎛

⎝
0
1
R

⎞

⎠ ∪ cone

⎧
⎨

⎩

⎛

⎝
−1

a
R

+ 1

⎞

⎠ ,

⎛

⎝
0
1
R

⎞

⎠

⎫
⎬

⎭
, if x = 0, y = V1,

R

⎛

⎝
1

−ϕ′(0)

R
−1

⎞

⎠∪ R

⎛

⎝
0

−1
R

⎞

⎠∪ cone

⎧
⎨

⎩

⎛

⎝
1

−ϕ′(0)

R
−1

⎞

⎠ ,

⎛

⎝
0

−1
R

⎞

⎠

⎫
⎬

⎭
, if x = 0, y = ϕ(0),

R

⎛

⎝
−1

a
R

+ 1

⎞

⎠∪ R

⎛

⎝
−1

ϕ′(α)

R
+1

⎞

⎠∪ cone

⎧
⎨

⎩

⎛

⎝
−1

a
R

+1

⎞

⎠ ,

⎛

⎝
−1

ϕ′(α)

R
+ 1

⎞

⎠

⎫
⎬

⎭
, if x = α, y = ϕ(α),

∅, otherwise.
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And M2

(
N
(
(x, y); gph F2

))
is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

⎛

⎝
b
R

+ 1

−1

⎞

⎠ , if x > 0 and y = b x − V or x < 0 and y = b x + V,

R

⎛

⎝
1
R
0

⎞

⎠ , if x = 0, y ∈ (−V, V),

R

⎛

⎝
b
R

+ 1

−1

⎞

⎠ ∪ R

⎛

⎝
1
R
0

⎞

⎠ ∪ cone

⎧
⎨

⎩

⎛

⎝
b
R

+ 1

−1

⎞

⎠ ,

⎛

⎝
1
R
0

⎞

⎠

⎫
⎬

⎭
, if x = 0, y = −V,

R

⎛

⎝
−b
R

− 1

1

⎞

⎠∪ R

⎛

⎝
−1
R
0

⎞

⎠∪ cone

⎧
⎨

⎩

⎛

⎝
−b
R

− 1

1

⎞

⎠ ,

⎛

⎝
−1
R
0

⎞

⎠

⎫
⎬

⎭
, if x=0, y=V,

∅, otherwise.

.

Again, in view of Remark 1, the necessary and sufficient condition for the isolated
calmness property of S at the reference point is

(b 1,−R(b 1 + b 2)) ∈ T
(
(z̄1, p̄1 − R(z̄1 + z̄2)); gph F1

)

(b 2,−R(b 1 + b 2)) ∈ T
(
(z̄2, p̄2 − R(z̄1 + z̄2)); gph F2

)
}

=⇒ b 1 = b 2 = 0, (13)

where the first tangent cone was computed in the Example 1—Silicon controlled
rectifier and T

(
(x, y); gph F2

)
is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
1
b

)

, if x < 0 and y = b x − V or x > 0 and y = b x + V,

R

(
0
1

)

, if x = 0, y ∈ (−V, V),

R+

(
−1
−b

)

∪ R+

(
0
1

)

, if x = 0, y = −V,

R+

(
1
b

)

∪ R+

(
0

−1

)

, if x = 0, y = V,

∅, otherwise.

Multiplying the inclusions in (13) by the matrices M3 :=
(

1 0
−1 −1/R

)

and M4 :=
(−1 −1/R

1 0

)

, respectively, one gets the following equivalent condition

M3

(
T
(
(z̄1, v̄1); gph F1

))⋂
M4

(
T
(
(z̄2, v̄2); gph F2

)) = 0R2 .
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Hence, M3

(
T
(
(x, y); gph F1

))
is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
1

−a/R − 1

)

, if x < 0, y = ax + V1 or x > α, y = a(x − α) + ϕ(α),

R

(
0

−1/R

)

, if x = 0, y ∈ (V1, ϕ(0)),

R

(
1

−ϕ′(x)/R − 1

)

, if x ∈ (0, α), y = ϕ(x),

R+

(
−1

a/R + 1

)

∪ R+

(
0

−1/R

)

, if x = 0, y = V1,

R+

(
1

−ϕ′(0)/R − 1

)

∪ R+

(
0

1/R

)

, if x = 0, y = ϕ(0),

R+

(
−1

ϕ′(α)/R + 1

)

∪ R+

(
1

−a/R − 1

)

, if x = α, y = ϕ(α),

∅, otherwise.

And M4

(
T
(
(x, y); gph F2

))
is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

(
−b/R − 1

1

)

, if x < 0, y = b x − V or x > 0, y = b x + V,

R

(
−1/R

0

)

, if x = 0, y ∈ (−V, V),

R+

(
b/R + 1

−1

)

∪ R+

(
−1/R

0

)

, if x = 0, y = −V,

R+

(
−b/R − 1

1

)

∪ R+

(
1/R

0

)

, if x = 0, y = V,

∅, otherwise.

Hence, the properties of the solution map depend on the parameters of a particular
circuit. For the sake of completeness, let us illustrate this on the isolated calmness
property. For example, assume that R = 10, V1 = 1, a = 0.5, α = 1.3, ϕ(z) = 24z3 −
46z2 + 19z + 4, V = 5 and b = 1, as in the simulation (see Fig. 9). For any (x1, y1) ∈
gph F1 with x1 /∈ (0, 1.3) and any (x2, y2) ∈ gph F2 one has

M3

(
T
(
(x1, y1); gph F1

)) ⊂ R

{(−1
1.05

)

,

(−1
2.9

)

,

(−1
3.08

)

,

(
0
1

)}

and

M4

(
T
(
(x2, y2); gph F2

)) ⊂ R

{(−1.1
1

)

,

(
1
0

)}

= R

{( −1
1/1.1

)

,

(
1
0

)}

.
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Fig. 9 Voltage of the input source and the output voltage between the nodes G and H in Fig. 7
(R = 10, V1 = 1, a = 0.5, α = 1.3, ϕ(z) = 24z3 − 46z2 + 19z + 4, V = 5, b = 1, ε = 0.01)

If x1 ∈ (0, 1.3) then we loose the isolated calmness property provided it is a solution
to the equation

(
72x2 − 92x + 19

)
/10 + 1 = 1/1.1,

which happens precisely for two points lying in the interval (0, 1.3). Therefore, S has
the isolated calmness property at ( p̄, z̄) if and only if z̄1 does not solve the above
mentioned quadratic equation.

Example 3 (Transistor) Consider the circuit in Fig. 10 involving load resistances
RB > 0 and RL > 0, two input-signal sources u1 and u2, and a P-N-P transistor (see
Fig. 11) having three terminals labeled emitter, base and collector. Its behaviour can
be described by the Ebers-Moll model [7, p. 409] involving two diodes placed back
to back and two dependent current-controlled sources αI I′ and αN I shunting the
diodes. Here αN ∈ [0, 1) is known as the current gain in normal operation and αI ∈
(0, 1] is known as the inverted common-base gain current. Therefore iE = I − αI I′
and iC = I′ − αN I. This means that

(
iE

iC

)

=
(

1 −αI

−αN 1

)(
I
I′

)

.

Kirchhoff’s laws also reveal that iB = −(iE + iC), so RB(−iC − iE) + u1 − VE = 0
and 0 = VC + u2 + RLiC − VE = VC + u2 + RLiC + RB(iC + iE) − u1. Given VE1 <

18



Fig. 10 The circuit considered
in Example 3

RL

RB

u1

u2

VE VC

VRB

VRL

iE iC

iB

0 < VE2 and VC1 < 0 < VC2, assume that the characteristics of the diodes involved
in Ebers-Moll model are defined by

F1(x) :=

⎧
⎪⎨

⎪⎩

[VE1, VE2], x = 0,

VE1, x < 0,

VE2, x > 0,

and F2(x) :=

⎧
⎪⎨

⎪⎩

[VC1, VC2], x = 0,

VC1, x < 0,

VC2, x > 0,

one has VE ∈ F1(I) and VC ∈ F2(I′). To sum up, we obtained that
(

u1
u1 − u2

)

∈
(

RB RB

RB RB + RL

)(
1 −αI

−αN 1

)

︸ ︷︷ ︸
=:A

(
I
I′

)

+
(

F1(I)
F2(I′)

)

.

iE iC

iB

PNP Transistor

Emitter Collector

Base

E C

B

VE VCiB

E C

B

I I

α I I αN I

iCiE

EBERS-MOLL Model

Fig. 11 The P-N-P transistor and its Ebers-Moll model
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So we arrived at (1) with n = m = 2, B = C = I2, p := (u1, u1 − u2)
T , z := (I, I′)T ,

f (z) := Az and F(z) = (F1(z1), F2(z2))
T .

Fix p̄ ∈ R
2 and let z̄ ∈ R

2 be the corresponding unique solution to (1) which exists
due to [3, Theorem 2.1]. Note that

AT =
(
(1 − αN)RB (1 − αN)RB − αN RL

(1 − αI)RB (1 − αI)RB + RL

)

.

The principal minors of AT equal to

(1 − αN)RB > 0, (1 − αI)RB + RL > 0, and det AT = (1 − αIαN)RL RB > 0.

Therefore, AT is a P-matrix. As both F1 and F2 are maximal monotone, Corollary 1
says that S has the Aubin/Lipschitz-like property at the reference point. The unique-
ness of the solution guarantees the isolated calmness property of S. The simulation
can be seen in Fig. 12.
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Fig. 12 Input and Output voltage (RL = 3000, RB = 30000, αI = 0.7, αN = 0.1, VE1 = −15, VE2 =
1, VC1 = −15, VC2 = 1, and ε = 0.01). The output voltage is measured between the Emitter and the
Collector
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4 Isolated Calmness Without Injectivity Assumption

We have assumed that m ≤ n. However, one can have m > n in some applications.
In such a case, one cannot expect the assumptions (A1) and (A4) to hold. From now
on, m, n ∈ N are not related to each other by an inequality. Let us define a set-valued
mapping FC : R

m ⇒ R
m by FC(u) = F(u) if u = Cz for some z ∈ R

n and FC(u) = ∅
otherwise. We assume the following (instead of (A1)):

(Ã1) Suppose that there is v̄ ∈ F(Cz̄) such that

p̄ = f (z̄) + Bv̄ and
⋃

t>0

rge FC − v̄

t

⋂
ker B = {0Rm}.

Of course, if v̄ is an interior point of rge FC then (Ã1) reduces to (A1). Let us start
with two geometrical lemmas.

Lemma 1 Let E ∈ R
k×d be any matrix and � be a subset of rge E. Put  = E−1(�).

Then

T(ȳ; ) = {
w ∈ R

d : Ew ∈ T(Eȳ, �)
}

whenever ȳ ∈ .

Proof This was shown in the first part of the proof of [Adly, S., Cibulka, R.:
Quantitative stability of a generalized equation. Application to non-regular electrical
circuits. to appear in J. Optim. Theory Appl., Lemma 6]. ��
Lemma 2 Let G ∈ R

l×d, let  ⊂ R
d, and set � = G(). Suppose that x̄ ∈ � and ȳ ∈ 

are such that

G(ȳ) = x̄ and
⋃

t>0

 − ȳ
t

⋂
ker G = {0Rd}.

Then

T(x̄;�) = G
(
T(ȳ; )

)
.

Proof To prove that G
(
T(ȳ; )

) ⊂ T(x̄; �), pick any w ∈ G
(
T(ȳ;)

)
. Find v ∈

T(ȳ; ) with G(v) = w. Thus there is (tn)n∈N in (0,∞) converging to 0 and (vn)n∈N

in R
d converging to v such that ȳ + tnvn ∈  whenever n ∈ N. For each n ∈ N, put

wn := G(vn). Clearly, (wn)n∈N converges to w. Moreover,

x̄ + tnwn = G(ȳ + tnvn) ∈ G() = � whenever n ∈ N.

So w ∈ T(x̄;�). To see the opposite inclusion, pick any w ∈ T(x̄;�). Find (tn)n∈N in
(0, ∞) converging to 0 and (wn)n∈N in R

l converging to w such that

G(ȳ) + tnwn ∈ G() for each n ∈ N.

For each n ∈ N, find vn ∈  such that wn = G
(
(vn − ȳ)/tn

)
, and put un = (vn − ȳ)/tn.

We claim that (un)n∈N is bounded. Suppose on the contrary that this is not the case.
Passing to a subsequence if necessary, we may assume that (un/‖un‖)n∈N converges,
to ū ∈ SRd , say. For each n ∈ N, one has that

un

‖un‖ = vn − ȳ
‖vn − ȳ‖ and

wn

‖un‖ = G
(

un

‖un‖
)

.
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Passing to the limit for n → ∞ one gets, that ū ∈ ⋃t>0
−ȳ

t and 0 = G(ū), a con-
tradiction since ū �= 0. Having the claim in hand, one may assume without a loss of
generality that (un)n∈N converges to some u ∈ R

d. For each n ∈ N, we have ȳ + tnun =
vn ∈ , therefore u ∈ T(ȳ;). Moreover, w = G(u). The proof is finished. ��

The above statement is false without an additional assumption on a relation
between the set and the kernel of the matrix G.

Example 4 Let l = 1, d = 2, G = (1 0),  = gph ∂| · |, ȳ = (0, 0)T and x̄ = 0.
Then G(ȳ) = x̄, � = G() = R and T(ȳ, ) = {0} × R. So {0} = G

(
T(ȳ, )

) �=
T(x̄, �) = R.

Given H : R
d ⇒ R

l , the contingent (graphical) derivative of H at (x̄, ȳ) ∈ gph H is
the mapping DH(x̄, ȳ) : R

d ⇒ R
l defined by

DH(x̄, ȳ)(u) = {v ∈ R
l : (u, v) ∈ T((x̄, ȳ); gph H)}, u ∈ R

d.

Proposition 1 Assume that (Ã1) and (A2) hold true. Then

D�(z̄, p̄)(b) = ∇ f (z̄)b + BDFC(Cz̄, v̄)(Cb) whenever b ∈ R
n.

Proof Fix any b ∈ R
n. By [2, Proposition 4A.2], we have

D�(z̄, p̄)(b) = ∇ f (z̄)b + DQ(z̄, p̄ − f (z̄))(b).

Define H : R
n ⇒ R

m by H(z) := F(Cz), z ∈ R
n. Then

gph Q = G(gph H) with G :=
(

In 0
0 B

)

.

Then ker G = {0Rn} × ker B and gph H ⊂ Rn × rge FC. Therefore

⋃

t>0

gph H − (z̄, v̄)

t

⋂
ker G ⊂ {0Rn} ×

(
⋃

t>0

rge FC − v̄

t

⋂
ker B

)

= {0Rn+m} .

Lemma 2 (with l := 2n, d := n + m,  := gph H, x̄ = (z̄, p̄ − f (z̄)), and ȳ = (z̄, v̄))
reveals that

T
(
(z̄, p̄ − f (z̄)); gph Q

) =
{(

b
Bc

)

:
(
b
c

)

∈ T
(
(z̄, v̄); gph H

)
}

.

This means that DQ(z̄, p̄ − f (z̄))(b) = BDH(z̄, v̄)(b). Moreover,

gph H =
{(

z
v

)

∈ R
n × R

m : E
(

z
v

)

∈ gph FC

}

with E :=
(
C 0
0 Im

)

.
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Lemma 1 (with k := 2m, d := n + m, � := gph FC, and ȳ = (z̄, v̄)) reveals that

T
(
(z̄, v̄); gph H

) =
{(

b
c

)

∈ R
n × R

m : E
(
b
c

)

∈ T
(
(Cz̄, v̄); gph FC

)
}

.

Hence DH(z̄, v̄)(b) = DFC(Cz̄, v̄)(Cb). Combining the above facts, the statement
follows. ��

Theorem 3 Suppose that (Ã1), (A2) and (A3) hold true. Then S has the isolated
calmness property at ( p̄, z̄) if and only if

0 ∈ ∇ f (z̄)b + BDFC(Cz̄, v̄)(Cb) ⇒ b = 0Rn . (14)

Proof Note that x ∈ D�(z̄, p̄)(y) if and only if y ∈ DS( p̄, z̄)(x). Combine
[2, Corollary 4C.2 and Theorem 4C.1] and Proposition 1 to conclude the proof. ��

To use the above statement, one has to know the range of the matrix C. Sometimes
the following sufficient condition may be useful.

Corollary 2 Under the assumptions of Theorem 3, S has the isolated calmness prop-
erty at ( p̄, z̄) provided that b = 0Rn is the only point such that

∇ f (z̄)b + Bw = 0 and (Cb , w) ∈ T((Cz̄, v̄); gph F) for some w ∈ R
m.

Proof Clearly, gph FC ⊂ gph F, so T((Cz̄, v̄); gph FC) ⊂ T((Cz̄, v̄); gph F). Take
any b ∈ R

n such that 0 ∈ ∇ f (z̄)b + BDFC(Cz̄, v̄)(Cb). Find w ∈ R
m such that 0 =

∇ f (z̄)b + Bw and (Cb , w) ∈ T((Cz̄, v̄); gph FC). Thus b = 0Rn . ��

Example 5 (Sampling gate) The circuit in Fig. 13 is a sampling gate involving a bridge
of four diodes D1, D2, D3, D4 and symmetrically controlled by gate voltages +Vc

and −Vc through the control resistors Rc > 0. The input-signal is given by Vi and
the output signal is defined by the voltage Vo through the load resistor RL > 0.

Fig. 13 Four-diode-bridge
sampling gate

R L

Vi

Vo

x 1 x 2

x 3 x 4

x 5 x 6

D 1 D 2

D 3 D 4

x 7

R c R c

+ Vc − Vc
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Given j ∈ {1, 2, 3, 4}, denote by V j and x j the voltage and the current across the
diode D j, respectively. Moreover, let x5 be the current through the left resistor
Rc, x6 be the current through the right resistor Rc and x7 be the current trough
resistor RL. Kirchhoff’s laws yield that Vi − V4 + V2 − RLx7 = 0, 2Vc − V3 − V4 −
Rcx6 − Rcx5 = 0, and −V1 − V2 + V3 + V4 = 0. And also, that x1 + x3 = x2 + x4 =
x5 = x6 and x1 − x2 = x4 − x3 = x7. Put z = (x7, x6, x1)

T , v = (V1, V2, V3, V4)
T , u =

(Vi, 2Vc)
T ,

D =
⎛

⎝
1 0
0 1
0 0

⎞

⎠ , A =
⎛

⎝
RL 0 0
0 2RC 0
0 0 0

⎞

⎠ , and B =
⎛

⎝
0 −1 0 1
0 0 1 1
1 1 −1 −1

⎞

⎠ .

Hence, Du = Az + Bv. Assume that all the diodes have the same characteristics
given for VD1 < 0 < VD2 by

FD(x) :=

⎧
⎪⎨

⎪⎩

[VD1, VD2], x = 0,

VD1, x < 0,

VD2, x > 0.

Thus V1 ∈ FD(x1), V2 ∈ FD(x2) = FD(x1 − x7), V3 ∈ FD(x3) = FD(x6 − x1), and
V4 ∈ FD(x4) = FD(x7 + x6 − x1). Putting C = BT and F(y) = (FD(y1), FD(y2),
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Fig. 14 Input voltage Vi and the output voltage Vo of the sampling gate (RL = 1000, RC = 10, and
VC = 11)
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FD(y3), FD(y4))
T , y ∈ R

4, we have v ∈ F(Cz). So, we arrived at (1) with n = 3,
m = 4, p := Du, and f (z) := Az.

Let p̄ = (0, 2VD1, 0)T and z̄ = (0, 0, 0)T . Put v̄ = (VD1, VD1, VD1, VD1)
T . Then

(z̄, p̄) ∈ gph �, p̄ = Az̄ + Bv̄ and v̄ ∈ F(Cz̄).

Moreover rge FC ⊂ rge F = [VD1, VD2]4. Therefore

⋃

t>0

rge FC − v̄

t

⋂
ker B ⊂ R

4
+
⋂

ker B = R
4
+
⋂

R
{
(−1, 1, −1, 1)T} = {0R4}.

Let b ∈ R
3 be such that

Ab + Bw = 0 and (Cb , w) ∈ T((0, v̄); gph F) for some w ∈ R
4.

Clearly, T((0, v̄); gph F) equals to

4∏

i=1

T((0, VD1); gph FD) = [{
(x, y)T ∈ R

2 : x ≤ 0, y ≥ 0, xy = 0
}]4

.

Hence, 0 = (Cb , w) = (BTb , w) = (b , Bw) = −(b , Ab) = −RLb 2
1 − 2RCb 2

2. This
reveals that b 1 = b 2 = 0. So Cb = (b 3, b 3,−b 3,−b 3)

T . All the coordinates of this
vector have to be non-negative, so b 3 = 0. Applying Corollary 2 one concludes that
S has the isolated calmness property at the reference point. The simulation can be
seen in Fig. 14.

5 Conclusion

We studied the quantitative stability of a solution mapping corresponding to several
important circuits appearing in electronics and we provided their input-output
simulation. We also showed that the assumption on injectivity (surjectivity) of the
matrices involved in the model may be slightly weakened. It would be preferable to
find a simpler and weaker qualification condition than (Ã1) ensuring the validity of
the corresponding calculus rules. This is out of the scope of the current manuscript
and will be probably the aim of future work.
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