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Two multilayered plate models with transverse shear warping functions issued
from three dimensional elasticity equations

A. Loredoa,∗, A. Castela

aDRIVE, Université de Bourgogne, 49 rue Mlle Bourgeois, 58027 Nevers, France

Abstract

A multilayered plate theory which uses transverse shear warping functions issued from three-dimensional elas-
ticity is presented. Two methods to obtain these transverse shear warping functions are detailed. The warping
functions are issued from the variations of transverse shear stresses computed at special location points for
a simply supported bending problem. The first method considers an exact 3D solution of the problem. The
second method uses the solution provided by the model itself: the transverse shear stresses are computed by
the integration of equilibrium equations. Hence, an iterative process is applied, the model being updated with
the new warping functions, and so on. These two models are compared to other models and to analytical
solutions for the bending of simply supported plates. Four different laminates and a sandwich are considered,
length-to-thickness values varying from 2 to 100. An additional analytical solution that simulates the behavior
of laminates under the plane stress hypothesis – which is retained by all presented models – shows that the
iterative model almost gives the exact solution for all laminates and all length-to-thickness ratio values.

Keywords: Plate theory, warping function, laminate, multilayered, composite, sandwich, vibration

1. Introduction

In many human-built structures, plates and shells are present. These particular structures are distinguished
from others because a dimension – the transverse dimension – is much smaller than the others. Hence, although
it is always possible, their representation through a three-dimensional domain is not the better way to study
them. To understand and forecast their mechanical behavior, plate models have been developed. These models
permit to study plates and shells through a two-dimensional domain while allowing at least membrane and
bending deformations. What happens in the third direction is not ignored, it is precisely the purpose of the
plate model to integrate the transverse behavior into its equations. The more precise this behavior is integrated,
the more accurate the model will behave. History starts with early works of Kirchhoff, Love, and Rayleigh [1–3]
leading to the Love-Kirchhoff model in which no shear deformation is allowed. Because of the limitation of
this model to thin plates, authors like Reissner, Uflyand, and Mindlin[4–6] have proposed to integrate a shear
deformation of order 1 in z leading to the Mindlin-Reissner model. These two aforementioned models were
proposed for homogeneous plates but their pendent for laminated structures have been later proposed and are
actually called the Classical Lamination Theory (CLT) and the First-order Shear Deformation Theory (FSDT).
The last one has been improved by the use of shear correction factors [7–9]. The need to improve this accuracy
have been motivated by the study of thick plates and laminated plates. In both cases, the early plate models fail
to give precise results. It is even worse if some layers have small mechanical properties compared to others, which
is the case for sandwich structures or when viscoelastic layers are used to improve the damping. To overcome
these difficulties, specific models have been proposed. However, a universal model that can manage plates
of various length-to-thickness ratios, with any lamination scheme and various materials including functionally
graded materials, with good accuracy for the static, dynamic, and damped dynamic behaviors is still a challenge.

Dealing with multilayered plates have given rise to another class of theories, called the Layer-Wise (LW)
models, in which the number of unknowns depend on the number of layers, by opposition to the Equivalent
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Single Layer (ESL) family of models in which the number of unknown is independent of the number of layers.
Obviously, LW models are expected to be more precise than ESL models but they are less easy to use for
complex structures and require more computational resources than ESL models. This has motivated searchers
to propose ESL models in which the transverse shear is taken into account in a more precise way than for the
first models. Following the classification given by Carrerra [10], we can see two approaches that have given
interesting models:

• First, the Vlasov-Reddy [11] theory, also called Higher Shear Deformation Theory (HSDT), later followed
by other higher order theories, proposes kinematic fields with a third-order dependence on z, motivated
by the respect of the nullity of transverse shear at top and bottom faces of the plate. Other functions
(trigonometric, hyperbolic...) have been proposed by other authors [12–14] to integrate the transverse
shear in the kinematic field . Note that these models do not integrate informations about the lamination
sequence in their kinematic field, and do not verify the transverse stress continuity at interfaces.

• Second, some a priori LW models can reduce to ESL models with the help of assumptions between the
fields in each layer. Zig-Zag (ZZ) models enter in this category. Early works of Lekhnitskii [15] and
Ambartsumyan [16] have been classified as such by Carrera [10] who shows also that other authors have
integrated the multilayer structure in their model [17–19] in a very similar manner. The main idea of ZZ
models is to let in-plane displacements vary with z according to the superposition of a zig-zag law to a
global law – cubic for example. With these models, shear stresses can satisfy both continuity at interfaces
and null (or prescribed) values at top and bottom faces of the plate.

In the last category, more recent works can be cited like Refs. [9, 20, 21] and the reader may also refer to recent
reviews on the subject [22, 23].

In this work, the kinematic assumptions are similar of those taken in Ref. [21] but they differ because no
precise choice of the functions describing the transverse behavior is done. These functions, called warping
functions (WF) are the core of the model. The model has been entirely formulated in [24] and it has been
shown that, according to specific choices of the WF, it can also represent most of the classical models (CLT,
FSDT, HSDT) and others, as it will appear in the following. However, and it is precisely the subject of this
article, is is possible to choose and adapt the WF in a completely free manner.

This article presents two different ways of obtaining new sets of WF issued from three dimensional elasticity
laws. The first way consists to build the WF from three-dimensional solutions. Three-dimensional solutions
for the bending of laminates have been obtained since early works of [25, 26] and have been recently obtained
for general lamination schemes [27]. These solutions are obtained for particular boundary conditions and load,
which can be seen as the principal limitation of their use in the present model. The second way is to derive
the WF from the equilibrium equations. This lead to an iterative model: starting with “classical” WF, for
example Reddy’s formula, WF are issued from the equilibrium equations and then integrated to the model, and
so on until that no significant change is detected on the WF. This second method could be of practical interest
because it might be used locally, for example at Gauss’ points in Finite Element, in order to build a local model
which will be sensitive to the local material sequence and to the local deformation state, including the dynamic
behavior if needed.

2. Considered plate theory

In this section, we recall the main components of the theory presented in Ref. [24]. It is a plate theory based
on the use of transverse shear WF. It allows the simulation of multilayer laminates made of orthotropic plies
using different sets of transverse shear WF. The purpose of this paper is to propose enhanced WF issued from
3D elasticity equations (see section 3), but several plate models (among ESL and ZZ models) issued from the
literature can also be formulated in terms of transverse shear WF, as it was shown in Ref. [24]. This is of practical
interest when comparing results issued from different models, because these models can be implemented in a
similar manner.
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2.1. Laminate definition and index convention
The laminate, of height h, is composed of N layers. All the quantities will be related to those of the middle

plane1 which is placed at z = 0; they are marked with the superscript 0. In the following, Greek subscripts
takes values 1 or 2 and Latin subscripts takes values 1, 2 or 3. The Einstein’s summation convention is used
for subscripts only. The comma used as a subscript index means the partial derivative with respect to the
following(s) index(ices).

2.2. Displacement field
The kinematic assumptions of the theory are:{

uα(x, y, z) = u0α(x, y)− zw0
,α(x, y) + ϕαβ(z)γ0β3(x, y)

u3(x, y, z) = w0(x, y)
(1)

where u0α(x, y), w0(x, y) and γ0α3(x, y), are respectively the in-plane displacements, the deflection and the en-
gineering transverse shear strains evaluated at the middle plane. The ϕαβ(z) are the four WF. The associated
strain field is derived from equation (1):

εαβ(x, y, z) = ε0αβ(x, y)− zw0
,αβ(x, y) +

1

2

(
ϕαγ(z)γ0γ3,β(x, y) + ϕβγ(z)γ0γ3,α(x, y)

)
εα3(x, y, z) =

1

2
ϕ′αβ(z)γ0β3(x, y)

ε33(x, y, z) = 0

(2a)

(2b)

(2c)

which, with the use of Hooke’s law, leads to the following stress field:
σαβ(x, y, z) = Qαβγδ(z)

(
ε0γδ(x, y)− zw0

,γδ(x, y) + ϕγµ(z)γ0µ3,δ(x, y)
)

σα3(x, y, z) = Cα3β3(z)ϕ′βµ(z)γ0µ3(x, y)

σ33(x, y, z) = 0

(3a)

(3b)

(3c)

where Qαβγδ(z) are the generalized plane stress stiffnesses and Cα3β3(z) are the components of Hooke’s tensor
corresponding to the transverse shear stiffnesses.

2.3. Static laminate behavior
The model requires introduction of generalized forces:

{Nαβ ,Mαβ , Pγβ} =

∫ h/2

−h/2
{1, z, ϕαγ(z)}σαβ(z)dz

Qβ =

∫ h/2

−h/2
ϕ′αβ(z)σα3(z)dz

(4a)

(4b)

They are then set, by type, into vectors:

N =

N11

N22

N12

 M =

M11

M22

M12

 P =


P11

P22

P12

P21

 Q =

{
Q1

Q2

}
(5)

and the same is done for the corresponding generalized strains:

ε =


ε011
ε022
2ε012

 κ =


−w0

,11

−w0
,22

−2w0
,12

 Γ =


γ013,1
γ023,2
γ013,2
γ023,1

 γ =

{
γ013
γ023

}
(6)

1The reference plane can be arbitrarily chosen in the laminate assuming that the corresponding transverse shear WF are adapted
in consequence.

3



Generalized forces are linked with the generalized strains by the 10× 10 and 2× 2 following stiffness matrices:N
M
P

 =

 A B E
B D F

ET FT G

ε
κ
Γ

 {
Q
}

=
[
H
] {

γ
}

(7)

with the following definitions:
{Aαβγδ, Bαβγδ, Dαβγδ, Eαβµδ, Fαβµδ, Gνβµδ} =

∫ h/2

−h/2
Qαβγδ(z){1, z, z2, ϕγµ(z), zϕγµ(z), ϕαν(z)ϕγµ(z)}dz

Hα3β3 =

∫ h/2

−h/2
ϕ′γα(z)Cγ3δ3(z)ϕ′δβ(z)dz

(8a)

(8b)

2.4. Laminate equations of motion
Weighted integration of equilibrium equations leads to

Nαβ,β = Rü0α − Sẅ0
,α + Uαβ γ̈

0
β3

Mαβ,βα + q = Rẅ0 + Sü0α,α − Tẅ0
,αα + Vαβ γ̈

0
β3,α

Pαβ,β −Qα = Uβαü
0
β − Vβαẅ0

,β +Wαβ γ̈
0
β3

(9a)

(9b)

(9c)

where q = [σ33(z)]
h/2
−h/2 is the value of the transverse loading (no tangential forces are applied on the top and

bottom of the plate), and:

{R,S, T, Uαβ , Vαβ ,Wαβ} =

∫ h/2

−h/2
ρ(z){1, z, z2, ϕαβ(z), ϕαβ(z)z, ϕµα(z)ϕµβ(z)}dz (10)

3. Warping functions issued from transverse shear stress analysis

We introduce two different ways to obtain WF from transverse shear stress analysis: a first set of WF is
issued from an analytical solution and a second set is issued from an iterative process using the integration of
equilibrium equations. We shall examine first a way to link the searched WF to given shear stresses.

3.1. From transverse shear stresses to WF
Considering equation (3b), we see that the ϕ′αβ are directly linked to the σα3. Introducing the transverse

shear stresses σ0
δ3(x, y) at z = 0 into this equation lead to

σα3(x, y, z) = 4Cα3β3(z)ϕ′βγ(z)Sγ3δ3(0)σ0
δ3(x, y) (11)

where Sγ3δ3 are components of the compliance tensor.
This can be written

σα3(x, y, z) = Ψ′αβ(z)σ0
β3(x, y) (12)

where:
Ψ′αβ(z) = 4Cα3δ3(z)ϕ′δγ(z)Sγ3β3(0) (13)

The Ψ′αβ(z) cannot be issued directly from equation (12) because there are four functions to determine from two
stresses leading to infinitely many solutions. The main idea is to consider a simply supported plate submitted to
a bi-sine load, and to make the four functions Ψ′αβ(z) fit the transverse shear stresses in two separate locations
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on the plate. Since the deformation of the plate is of the form (19), the transverse shear stresses at the reference
plane are of the form: {

σ0
13(x, y) = s13 cos(ξx) sin(ηy) + s13 sin(ξx) cos(ηy)

σ0
23(x, y) = s23 sin(ξx) cos(ηy) + s23 cos(ξx) sin(ηy)

(14a)

(14b)

These shear stresses are evaluated at specific points A and B for which:

– at point A, x = a/2 and y = 0, then σ0
13(A) = s13 and σ0

23(A) = s23

– at point B, x = 0 and y = b/2, then σ0
13(B) = s13 and σ0

23(B) = s23

Setting these local values into formula (12) leads to the following system:
s13 0 s23 0
0 s23 0 s13
s13 0 s23 0
0 s23 0 s13




Ψ′11
Ψ′22
Ψ′12
Ψ′21

 =


σ0
13(B)
σ0
23(A)
σ0
13(A)
σ0
23(B)

 (15)

The Ψ′αβ(z) are obtained from the resolution of this system; ϕ′αβ(z) are then obtained using the reciprocal of
equation (13):

ϕ′αβ(z) = 4Sα3δ3(z)Ψ′δγ(z)Cγ3β3(0) (16)

Then, integrating the ϕ′αβ(z) so that ϕαβ(0) = 0 gives the four WF ϕαβ(z).

3.2. WF issued from exact 3D solutions
Exact 3D solutions of simply supported plates submitted to a bi-sine load are known for cross-ply and

antisymmetric angle-ply laminates since the works of Pagano [25] and Noor [28]. Further works have shown
that they can be obtained by several ways. Solution for general lamination have been proposed recently in
Ref. [27]. The corresponding plate problem is solved with the appropriate method, and the transverse shear
stresses are computed at the points A and B. Then, the procedure described in the previous section is applied.

3.3. WF issued from equilibrium equation integration
Since transverse shear stresses can be obtained from equilibrium equation integration, it is also possible to

get the warping functions following an iterative process2. The process, described in the algorithm 1, starts with
any known WF, says Reddy’s z/h−4/3(z/h)3 formula for example, and, at each iteration, the model is updated
with WF issued from the transverse stresses of the previous iteration. The procedure is also based on the simply
supported plate bending problem with a bi-sine loading. Let us establish the needed formulas, starting from
the equilibrium conditions within a solid, without body forces:

{
σαβ,β + σα3,3 = ρüα

σα3,α + σ33,3 = ρü3

(17a)
(17b)

The transverse shear stresses, for the static case, are therefore computed using:

σα3(z) = −
∫ z

−h/2
σαβ,β(z)dz

= −
∫ z

−h/2
Qαβγδ(z)

(
u0γ,δβ(x, y)− zw0

,γδβ(x, y) + ϕγµ(z)γ0µ3,δβ(x, y)
)
dz (18)

Then, the spatial derivatives of the generalized displacements are eliminated accounting to the specific nature
of the chosen basis (19).

2This iterative process, although based on a simpler formulation, has been proposed in the 1989 unpublished reference [29]
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Algorithm 1: Obtaining warping functions from equilibrium equations
Set i=0, w0 = 0;
Take Reddy’s formula as WF;
repeat

i=i+1;
Compute stiffness matrices;
Solve the displacements with Navier’s method;
Assign the deflection to wi;
Compute transverse shear stresses using equation (18);
Compute new WF using 3.1;

until
∣∣∣∣wi − wi−1wi

∣∣∣∣ >= ε;

3.4. Discussion
The two ways to obtain WF from transverse shear stresses described in the above sections are based on

the study of a simply supported plate submitted to a bi-sine load. As one shall see in the following, the two
methods gives very similar results. This proves that the model, which is strongly implicated in the iterative
process, is able to fit the transverse shear stresses of the 3D solution with good agreement. Of course, there is
no guarantee at this time that these WF will be the best candidates if another plate problem is studied, with
different boundary conditions and/or different loading. It is precisely the reason why the iterative process is
interesting because it might be adapted to a local strategy.

4. Solving method by a Navier-like procedure

A Navier-like procedure is implemented to solve both static and dynamic problems for a simply supported
plate. For the static case, in order to respect the simply supported boundary condition for laminates which are
not of cross-ply nor anti-symmetrical angle-ply types, a specific loading is applied using a Lagrange multiplier
as it is presented below. The dynamic study is restricted to the search of the natural frequencies.

The Fourier series is limited to one term, hence the generalized displacement field is
u1
u2
w
γ13
γ23

 =


umn1 cos(ξx) sin(ηy) +umn1 sin(ξx) cos(ηy)
umn2 sin(ξx) cos(ηy) +umn2 cos(ξx) sin(ηy)
wmn sin(ξx) sin(ηy) +wmn cos(ξx) cos(ηy)
γmn13 cos(ξx) sin(ηy) +γmn13 sin(ξx) cos(ηy)
γmn23 sin(ξx) cos(ηy) +γmn23 cos(ξx) sin(ηy)

 (19)

with
ξ =

mπ

a
and η =

nπ

b

where a and b are the length of the sides of the plate, m and n are wavenumbers, set to 1 for static analysis or
to arbitrary values for the dynamic study of the corresponding mode. Then for a given m and n, the motion
equations of section 2.4 give a stiffness and a mass matrix, respectively [K] and [M], related to the vector
{U} = {umn1 , umn2 . . . γmn13 γ

mn
23 }. The static case is treated solving the linear system [K]{U} = {F}, where {F}

is a force vector containing qmn for its third component (generally set to one). Solving the dynamic case consists
in researching the generalized eigenvalues for matrices [K] and [M]. For cross-ply and antisymmetric angle ply,
w respects the simply supported conditions, i. e. wmn = 0. For the general laminates, the deflection under a
bi-sine loading gives a wmn 6= 0. Since we choose to keep simply supported boundary conditions, wmn may be
set to zero if a bi-cosine term is added to the loading. The amplitude of the bi-cosine term qmn is obtained
using a Lagrange multiplier. The stiffness matrix is then of size 11× 11. K C

CT 0


U

qmn

 =


F

0

 (20)
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with {C} being a vector with on a one on it’s eighth component. For the dynamic case, the matrix [M]
is augmented with a line and a column of zeros so it becomes a 11 × 11 matrix. Detailed formulation of
matrices [K] and [M] are given in Appendix A.1. Note that it is also possible to keep the loading of the form
q(x, y) = qmn sin(ξx) sin(ηy), then the simply supported boundary condition is no longer respected for general
laminates.

5. Numerical results

This section proposes the study of five configurations including four laminates and a sandwich. Only two
materials are involved, an orthotropic composite material for all laminates and an honeycomb-type material for
the core of the sandwich panel. All the properties are given in table 1.

The results obtained with the models involving WF issued from the two methods described in section 3
are compared to results obtained with different models issued from the literature. As these models can be
implemented by means of WF, the solving process described in section 4 can be applied to all models. An exact
three dimensional analytical solution is also computed for all test cases. As mentioned before, this solution
(denoted Exa in tables) is used to create a WF set as explained in section 3, but it also gives deflections and
natural frequencies taken as reference for comparisons.

Another exact solution is computed with stiffness values modified to fit the generalized plane stress assump-
tion. It is done setting E3 = 1010E2 and ν13 = ν23 = 0 for each material. This last solution is of particular
interest because, as we shall see later, it shows that the two aforementioned models are very accurate according
to the plane stress assumption, and also shows that this assumption is no longer accurate when a/h takes small
values. It is designated in tables by the Exa2 symbol. For all exact solutions, the loading is divided into two
equal parts which are applied to the top and bottom faces.

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12 ρ

Composite ply (p) 25Ep2 106 Ep2 0.2Ep2 0.5Ep2 0.5Ep2 0.25 0.25 0.25 1500
Core material (c) Ec2 4× 104 12.5Ec2 1.5Ec2 1.5Ec2 1.5Ec2 0.25 0.25 0.25 100

Table 1: Material properties

Three nondimensionalized quantities are considered and compared to those issued from analytical solutions:

– Deflections w are nondimensionalized using equation

w∗ = 100
Eref

2 h3

(−q)a4
w (21)

– First natural frequencies are nondimensionalized using equation

ω∗ =
a2

h

√
ρref

Eref
2

ω (22)

– Shear stresses are nondimensionalized using equation

σ∗α3 = 10
h

(−q)a
σα3 (23)

where Eref
2 and ρref are taken as values of the core material for the sandwich and as values of the composite ply

for laminates.
Calculations obtained with WF issued from transverse shear stresses of analytical solutions (denoted 3D in

tables) and iterative process (denoted Ite in tables) are compared to those obtained with WF corresponding to
classical models that are formulated as follows:

7



– First order Shear Deformation Theory: this formulation is the Mindlin-Reissner plate theory (denoted
MR in tables) which can be formulated setting in the generic model the following warping functions,

ϕαβ(z) = δKαβz (24)

where δKαβ is Kronecker’s delta. Note that this theory is generally used with shear correction factors, at
least the 5/6 factor which corresponds to an homogeneous plate. As there is several ways to compute
them in the general case, we chose in this study not to use them, what is of course a serious penalty for
this model.

– High order Shear Deformation Theory: this formulation is Reddy’s third order theory (denoted Red in
tables), it verifies that transverse shear stresses are null at the top and bottom planes of the plate. It can
be emulated by means of the following warping functions:

ϕαβ(z) = δKαβ

(
z − 4

3

z3

h2

)
(25)

– Sun & Whitney, Woodcock: This model (denoted SW in tables) defines a zig-zag displacement field which
verifies the continuity of transverse shear stresses at the layers’ interfaces. It was first presented in Ref. [18]
and generalized in Ref. [30]. It is also possible to formulate this model with warping functions as shown
in [24]:

ϕαβ(z) = 4Cγ3β3(0)

∫ z

−h/2
Sα3γ3(ζ)dζ (26)

– Efficient Higher-Order Plate Theory: This formulation, presented by Cho3 [19, 31] (denoted Cho in tables)
consists in superimposing a cubic displacement field, which permits the transverse shear stresses to be null
at the top and bottom planes of the laminates, to a zig-zag displacement field issued from the continuity
of the transverse shears stresses at the layer interfaces. The corresponding WF, which are polynomials of
third order in z, are not detailed. Indeed, as their computation needs the solving of a system of equations,
it is difficult to give here an explicit form. Note also that for coupled laminates, an extension of this
model [21] has been proposed. This model has not been implemented in this study, it could have given
different results for the [−15/15] case which is the only coupled laminate considered in this study.

5.1. Rectangular [0/90/0] cross-ply composite plate
This composite plate is made of three plies with the properties mentioned in table 1 with a [0/90/0] stacking

sequence and b = 3a. Results are presented in table 2. Note that Reddy’s model – with relatively simple WF –
gives quite good results for this laminate. Cho’s model – with more sophisticated WF – gives better values than
the previous, except for the a/h = 2 length-to-thickness ratio. Results also show that the two present models,
3D and Ite, give a very satisfying accuracy for all length-to-thickness ratios. Compared to other models with
reference to the exact solution, values for the deflection are among the best results, values for the transverse
stresses at points A and B, and for the first natural frequency, are the best. However, we can note a weakness
for the prediction of σ23(A), which is probably due to a sandwich-like behavior of this laminate according to
the y direction. The SW model, which is accurate with sandwiches, tends to confirm this point. Both present
model, even though warping functions are generated with two very different methods, give almost identical
results. Compared to the Exa2 plane stress exact solution, the model with iterative WF gives the exact solution
for this problem. This point will be discussed later on section 5.6.

Figure 1 shows the corresponding WF for a/h = 4, for all plate models except the MR. Figure 2 shows
transverse shear variation through the thickness obtained by the integration of equilibrium equations for all
models, compared to the exact solution, in the a/h = 4 case.

3In reference [10], Carrera said that this model was a re-discovery of previous works, and called the model the Ambartsumyan-
Whitney-Rath-Das theory.
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Figure 1: Transverse shear WF of the rectangular [0/90/0] composite plate with a/h = 4 for each model.
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Figure 2: Nondimensionalized transverse shear stresses of the rectangular [0/90/0] composite plate with a/h = 4 for each model.
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5.2. Square [0/c/0] sandwich plate
In order to study the behavior of a structure exhibiting a high variation of stiffness through the thickness,

we propose to study a square sandwich plate with ply thicknesses h1 = h3 = 0.1h and h2 = 0.8h. The face
sheets are made of one ply of unidirectional composite and the core is constituted of a honeycomb-type material.
Material properties are presented in table 1. Results presented in table 3 show this time that Reddy’s model
is not as good as than for the previous case, although Cho’s model obtain better values. This is due to the
particular nature of sandwich materials which gives typically zig-zag variations for displacements through the
thickness and then typically zig-zag WF. Cho’s model is able to fit this kind of variation although Reddy’s
model is not. The SW model has also been proved to be very efficient for sandwiches, which can be verified in
this table. Note that the two present models globally gives the best results. Comparison with the Exa2 model
is discussed in section 5.6.

Figure 3 shows the corresponding WF for a/h = 4, for all plate models except the MR. Figure 4 presents the
transverse shear stresses at points A and B obtained for all models by the integration of equilibrium equations,
compared to the exact solution, in the a/h = 4 case.

−0.4 −0.2 0 0.2 0.4
−h/2

−2h/5

2h/5

h/2

φ11(z)

−0.4 −0.2 0 0.2 0.4
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Figure 3: Transverse shear WF of the [0/c/0] sandwich plate with a/h = 4 for each model.

5.3. Square [−15/15] antisymmetric angle-ply composite plate
As the two previous cases enters in the cross-ply family, let us now consider an antisymmetric angle-ply square

plate with two layers of equal thicknesses and stacking sequence [−15/15]. Transverse stresses σ23(0, b/2, z) and
σ13(a/2, 0, z) are no longer null for this laminate but σ23(B) and σ13(A) are. Hence, these stresses have been
computed respectively at points D(0, b/2, h/2) and C(a/2, 0, h/2) in order to make comparisons between all
models. Results are presented in table 4. The tendency of predictions is almost the same than for the [0/90/0]
case but it can be noticed that poor values are obtained for the stresses at points D and C. These values are
influenced by the way the model is able to couple the x and y direction in the kinematic field, i.e. the presence
of non null ϕ12(z) and ϕ21(z) functions. This is only the case for the Cho, 3D and Ite models. However, Cho’s
model does not give very good values for the lowest length-to-thickness values, but it was also the case for the
[0/90/0] laminate, which may signify that the problem comes from another reason. The two present models,
3D and Ite, globally gives the best results, but also with quite poor estimations of transverse stresses at points
C and D in the a/h = 2 case. Comparison with the Exa2 model is let to the section 5.6.
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Figure 4: Nondimensionalized transverse shear stresses of the [0/c/0] sandwich plate with a/h = 4 for each model.

Figure 5 shows the corresponding WF for a/h = 4, for all plate models except the MR. Figure 6 presents the
transverse shear stresses at points A and B obtained for all models by the integration of equilibrium equations,
compared to the exact solution, in the a/h = 4 case.

5.4. Square [0] single ply composite plate
This square composite plate is made of a single ply with the properties mentioned in table 1. In this single

layer case, the MR model (without shear correction factors) and the SW exactly coincides. It is also the case
for Cho’s and Reddy’s models. Note that the x and y directions are not equivalent for the considered laminate,
but even for Cho’s model, in this case, ϕ11(z) = ϕ22(z). This is not true for 3D and Ite models which exhibits
different ϕ11(z) and ϕ22(z) functions due to the different longitudinal/shear modulus ratios in each direction.
Note also that, even if it cannot be seen in the figures presented in this paper, the WF for these two models
depend on the length-to-thickness ratio. Present models, 3D and Ite, give poorer values for the deflection than
Reddy’s model. However, the stresses and the fundamental frequency are best predicted. As we shall see later
in section 5.6, the plane stress hypothesis is no longer valid for such low length-to-thickness ratios, that is the
reason why the Exa2 solution has been introduced.

Figure 7 shows the corresponding WF for a/h = 4, for all plate models except the MR. Figure 8 presents the
transverse shear stresses at points A and B obtained for all models by the integration of equilibrium equations,
compared to the exact solution, in the a/h = 4 case.

5.5. Square [0/30/0] composite plate
Let us now consider a symmetric angle-ply square plate with three layer of equal thicknesses and stacking

sequence [0/30/0]. This configuration is chosen since it doesn’t involve any simplification in the linear sys-
tem (20), i. e. matrix [K] doesn’t have any null coefficient. Although this laminate does not represent the
more general case (because of its symmetry) it involves an additional qmn cos(ξx) cos(ηy) term in the loading
to fulfill the simply supported condition. In other words, it is the only laminate considered in this study which
requires a (non-null) Lagrange multiplier in the solving process presented in section 4. Results presented in
table 6 show the same tendency than for the [0] laminate, which in fact is not so different. Present models, 3D
and Ite, give globally better stresses and fundamental frequency, and a poorer deflection, compared to Reddy’s
or Cho’s model when the Exa solution is taken as reference.
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Figure 5: Transverse shear WF of the [−15/15] antisymmetric angle-ply composite plate with a/h = 4 for each model.
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Figure 6: Nondimensionalized transverse shear stresses of the [−15/15] antisymmetric angle-ply composite plate with a/h = 4 for
each model.
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Figure 7: Transverse shear WF of the [0] single ply composite plate with a/h = 4 for each model.
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Figure 8: Nondimensionalized transverse shear stresses of the [0] single ply composite plate with a/h = 4 for each model.
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Figure 9 shows the corresponding WF for a/h = 4, for all plate models except the MR. Figure 10 presents the
transverse shear stresses at points A and B obtained for all models by the integration of equilibrium equations,
compared to the exact solution, in the a/h = 4 case.
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Figure 9: Transverse shear WF of the [0/30/0] composite plate with a/h = 4 for each model.

5.6. Discussion
The five studied cases have been chosen in order to represent a wide range of the laminates diversity. In

addition to particular comments done for each case, general results may be issued from these studies. The MR
model without the help of appropriate shear correction factors gives relatively poor values, except for thin plates.
For moderately thick plates, Reddy’s model is very accurate, except for the sandwich case because the high
modulus ratio between layers is not properly managed by the model. On the contrary, the SW zig-zag linear
model can manage it but fails for classical laminates, especially the single ply. Cho’s model which a priori takes
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Figure 10: Nondimensionalized transverse shear stresses of the [0/30/0] composite plate with a/h = 4 for each model.
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both advantage of a cubic variation coupled to a zig-zag variation of displacements gives sometimes poor values,
especially for thick or very-thick plates. The Cho’s model gives sometimes poor estimations, probably because
the WF are too constrained by their formulation: as the cubic term is unique for all the layers, the functions
adopt sometimes shapes that are not pertinent. In addition, its WF do not depend on the length-to-thickness
ratio. Both present models, 3D and Ite, gives globally better results in all studied cases than other models. The
Ite model seems to be the best of all. However, some values of the deflection are no so good. This is the reason
why the Exa2 solution has been introduced.

Indeed, all plate models presented in this study consider the generalized plane stress hypothesis, which
consists on assuming σ33 = 0. This stress component is then eliminated from Hooke’s law and a reduced
Hooke’s law with modified stiffnesses is issued from this process. This assumption is classically done in plate
theories in order to manage the transition from 3D to 2D elasticity. For thin or moderately thick plates, this
assumption is correct because moderate loadings on bottom and/or top faces of the plate cause bending, and
then lead to in-plane stresses that over-exceed σ33. For thick plates, the bending requires so high bottom and
top loadings that the σ33 is no longer negligible.

Because all the presented models consider the generalized plane stress hypothesis, an exact solution Exa2

involving the plane stress stiffnesses has been produced. It is really an exact solution, obtained with the same
procedure than the Exa solution, which is described in Ref. [27], but for materials for which stiffnesses have
been replaced by plane stress stiffnesses. As explained in the beginning of the section 5, it has been done by
setting high values for E3 (hence the corresponding compliance is negligible) and null values for ν13 and ν23.
Doing this makes Hooke’s 3D stiffnesses coincide with the plane stress stiffnesses, except for round-off errors,
and the exact solution procedure is usable without any modification.

The comparison for all models can now be done taking the Exa2 exact solution as reference. It clearly
shows that the Ite model surpasses all other models and is able to give almost the exact solution for deflection
and transverse stresses, for all studied cases, and for all length to-thickness ratios. Fundamental frequencies
however are not always exactly predicted by the Ite model, this may be explained by the fact that the successive
integrations of equilibrium equations involved in the model have been done for the ω = 0 frequency, hence
further studies have to be done with emphasis for the dynamic behavior. Indeed, one may think that for higher
frequencies the WF need to be modified.

Of course this spectacular result have to be replaced in the special context of this study. Plate problems
solved in this study are simply supported problems with bi-sine loading. The WF used for the Ite model are
obtained considering this special bending problem. Results show that the generic model is able to manage all
lamination schemes if the good WF are provided, but there is no guarantee that WF obtained for this special
bending configuration will work as well as for other configurations. The model with these WF may be a good
candidate for other configurations, but others WF could perhaps be considered. Again, further studies need to
be done in order to validate or adapt the Ite procedure to other configurations.

6. Conclusion

In this paper, a multilayered equivalent-single-layer plate theory based on warping functions (WF) has been
presented. Two ways to generate the WF from three dimensional elasticity equations are described. The first
one, called 3D, derives directly the WF from a 3D exact solution. The second one, called Ite, is an iterative
process involving integrations of the equilibrium equations. Both process use the same core procedure which
issues the WF from the variations of transverse shear stresses. The needed shear stresses variations are computed
at the middle of the sides of the plate, for a simply supported bending problem with bi-sine load.

These two models are compared to other models and to the exact solution for five lamination sequences.
Considered laminates plates are: a [0/90/0] cross-ply rectangular plate, a square [0/c/0] sandwich plate, a
square [0] single layer plate, a square [−15/15] antisymmetric angle-ply plate, and a square plate with a more
general [0/30/0] lamination sequence. Models for comparison includes Mindlin-Reissner, Sun-Whitney, Reddy,
and Kim-Cho models which have been also formulated in terms of WF, so the solution procedure is unique.
The problem which is solved for comparison is the simply supported plate with bi-sine load, for which exact
solutions are known. The comparisons are made on deflections, stresses and fundamental frequencies for length-
to-thickness ratio varying from 2 to 100. The Mindlin-Reissner and Reddy models are not material-dependent,
in other words, their WF are unique. In addition, ϕ11(z) = ϕ22(z) and they never have non-null cross ϕ12(z)
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or ϕ21(z) WF. All other considered models have WF which depend on the properties of materials and on the
lamination sequence, hence have 4 different WF for general lamination sequences.

Results show that for classical laminates – with moderate modulus ratio between layers – Reddy’s model,
which have cubic WF, is a good choice for thin and moderately thick plates, but is not so accurate for sandwich
structures. On the contrary, Sun-Whitney model, which have zig-zag linear WF, is a good choice for the sandwich
structure but is not enough accurate for classical laminates. Kim-Cho’s model, which combines advantages from
the two previous models, have cubic zig-zag WF. Its results are then better than those of previous models if the
comparison is done on all class of laminates. However, it gives sometimes poor results for low length-to-thickness
values, probably because the WF are too constrained by their formulation. Comparisons also show that the two
presented models, 3D and Ite, gives globally better results than other tested models for all considered lamination
sequences.

For the thick plates (a/h ≤ 4), none of the models can be considered as accurate, even if the 3D and
Ite models give better values on stresses and fundamental frequencies than other models. As all presented
models consider the generalized plane stress hypothesis, an exact plane-stress solution called Exa2 have been
computed for all considered laminates, in order to make further comparisons. This has been done using the
same 3D solution procedure after replacing stiffnesses of all materials with corresponding plane stress stiffnesses.
Comparison with the Exa2 reference clearly shows that the 3D and Ite models gives better results than other
models. It can be seen that the Ite model gives exact values of deflection and stresses, and quasi-exact values
for fundamental frequencies, for all laminates and for all length-to-thickness ratio values.

These last comparisons show clearly that the transverse deformation must be considered if thick plates have
to be studied with equivalent-single-layer theories. It might also be the case for laminates which have high
modulus ratio between layers, and for dynamic studies when the wavelength shortens. They also show that the
generation of WF from an analytical solution or from the integration of equilibrium equations is a relatively
easy way to have a very accurate universal model. Further studies must try to establish if the WF obtained by
these methods are also pertinent for problems involving other boundary conditions, loading, or frequencies. If
it is not the case, is there another way to compute pertinent WF, perhaps with a local approach ?
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a/h Model w∗ % % σ13(B) % % σ23(A) % % ω∗ % %
2 MR 6.6164 −18.98 −21.69 4.2978 +67.17 +64.28 0.54919 −17.76 −13.75 3.8633 +12.97 +13.01

Red 7.8944 −3.32 −6.56 2.4649 −4.12 −5.78 0.59477 −10.93 −6.59 3.5335 +3.33 +3.36
SW 7.8130 −4.32 −7.52 2.0026 −22.11 −23.45 0.66040 −1.11 +3.72 3.5485 +3.76 +3.80
Cho 6.4960 −20.45 −23.11 1.4032 −45.42 −46.36 0.47682 −28.60 −25.11 3.8845 +13.59 +13.63
3D 8.4451 +3.42 −0.04 2.6931 +4.76 +2.94 0.64111 −3.99 +0.69 3.4196 −0.00 +0.03
Ite 8.4487 +3.46 −0.00 2.6163 +1.76 +0.00 0.63670 −4.65 +0.00 3.4186 −0.03 +0.00

Exa2 8.4488 ref. 2.6162 ref. 0.63670 ref. 3.4185 ref.
Exa 8.1659 ref. 2.5709 ref. 0.66779 ref. 3.4197 ref.

4 MR 2.0547 −27.17 −27.80 4.3625 +24.26 +24.05 0.25631 −23.18 −18.89 6.9503 +17.60 +17.64
Red 2.6411 −6.38 −7.20 3.8253 +8.96 +8.78 0.30414 −8.84 −3.75 6.1331 +3.77 +3.80
SW 2.7172 −3.68 −4.52 3.6580 +4.19 +4.02 0.31797 −4.70 +0.62 6.0461 +2.30 +2.33
Cho 2.7331 −3.12 −3.96 3.2669 −6.95 −7.10 0.30071 −9.87 −4.84 6.0265 +1.97 +2.00
3D 2.8459 +0.88 −0.00 3.5182 +0.21 +0.04 0.31616 −5.24 +0.05 5.9084 −0.03 +0.00
Ite 2.8459 +0.88 −0.00 3.5167 +0.17 +0.00 0.31600 −5.29 +0.00 5.9084 −0.03 +0.00

Exa2 2.8459 ref. 3.5167 ref. 0.31600 ref. 5.9083 ref.
Exa 2.8211 ref. 3.5108 ref. 0.33365 ref. 5.9100 ref.

10 MR 0.75314 −18.04 −18.19 4.3895 +4.48 +4.48 0.13418 −11.94 −9.77 11.497 +10.47 +10.49
Red 0.86219 −6.17 −6.34 4.2988 +2.32 +2.32 0.14468 −5.05 −2.71 10.750 +3.29 +3.31
SW 0.88102 −4.12 −4.30 4.2687 +1.60 +1.61 0.14659 −3.80 −1.42 10.635 +2.19 +2.21
Cho 0.91831 −0.07 −0.25 4.1841 −0.41 −0.41 0.14813 −2.79 −0.39 10.418 +0.10 +0.12
3D 0.92059 +0.18 −0.00 4.2011 −0.01 −0.00 0.14871 −2.41 +0.00 10.405 −0.02 +0.00
Ite 0.92059 +0.18 −0.00 4.2012 −0.00 +0.00 0.14871 −2.41 +0.00 10.405 −0.02 +0.00

Exa2 0.92059 ref. 4.2012 ref. 0.14870 ref. 10.405 ref.
Exa 0.91891 ref. 4.2014 ref. 0.15237 ref. 10.408 ref.

100 MR 0.50588 −0.35 −0.35 4.3952 +0.05 +0.05 0.10816 −0.18 −0.15 14.059 +0.18 +0.18
Red 0.50700 −0.13 −0.13 4.3943 +0.03 +0.03 0.10827 −0.08 −0.04 14.043 +0.07 +0.07
SW 0.50721 −0.09 −0.09 4.3940 +0.02 +0.02 0.10829 −0.06 −0.03 14.041 +0.05 +0.05
Cho 0.50766 +0.00 −0.00 4.3931 −0.00 −0.00 0.10832 −0.04 −0.00 14.034 +0.00 +0.00
3D 0.50767 +0.00 −0.00 4.3932 −0.00 +0.00 0.10832 −0.04 +0.00 14.034 −0.00 +0.00
Ite 0.50767 +0.00 −0.00 4.3932 −0.00 +0.00 0.10832 −0.04 +0.00 14.034 −0.00 +0.00

Exa2 0.50767 ref. 4.3932 ref. 0.10832 ref. 14.034 ref.
Exa 0.50766 ref. 4.3932 ref. 0.10836 ref. 14.034 ref.

Table 2: Comparison between the different models for the rectangular [0/90/0] composite plate with a varying length-to-thickness
ratio.
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a/h Model w∗ % % σ13(B) % % σ23(A) % % ω∗ % %
2 MR 0.50904 −44.74 −44.07 2.5177 +31.01 +35.10 1.0476 −30.40 −24.36 6.9339 +29.88 +31.57

Red 0.85344 −7.34 −6.23 1.9150 −0.35 +2.76 1.3300 −11.65 −3.97 5.4307 +1.72 +3.04
SW 0.90224 −2.05 −0.86 1.8459 −3.95 −0.95 1.3963 −7.24 +0.82 5.2900 −0.92 +0.37
Cho 0.88896 −3.49 −2.32 1.8320 −4.67 −1.70 1.3570 −9.85 −2.02 5.3281 −0.20 +1.10
3D 0.90894 −1.32 −0.13 1.8562 −3.41 −0.40 1.3795 −8.36 −0.40 5.2730 −1.23 +0.05
Ite 0.91010 −1.19 −0.00 1.8636 −3.02 +0.00 1.3850 −7.99 +0.00 5.2703 −1.28 +0.00

Exa2 0.91010 ref. 1.8636 ref. 1.3850 ref. 5.2702 ref.
Exa 0.92108 ref. 1.9217 ref. 1.5053 ref. 5.3389 ref.

4 MR 0.16645 −45.57 −45.67 2.8525 +18.99 +19.09 0.69992 −36.72 −34.02 12.233 +33.77 +34.67
Red 0.28349 −7.30 −7.47 2.4657 +2.85 +2.94 1.0011 −9.49 −5.63 9.4350 +3.17 +3.86
SW 0.30453 −0.42 −0.60 2.3971 −0.01 +0.08 1.0651 −3.70 +0.41 9.1084 −0.40 +0.27
Cho 0.30416 −0.54 −0.72 2.3897 −0.32 −0.23 1.0560 −4.52 −0.45 9.1152 −0.33 +0.34
3D 0.30636 +0.18 −0.01 2.3947 −0.11 −0.02 1.0603 −4.13 −0.04 9.0843 −0.67 +0.00
Ite 0.30638 +0.19 −0.00 2.3952 −0.09 +0.00 1.0607 −4.09 +0.00 9.0840 −0.67 +0.00

Exa2 0.30638 ref. 2.3952 ref. 1.0607 ref. 9.0840 ref.
Exa 0.30581 ref. 2.3973 ref. 1.1060 ref. 9.1452 ref.

10 MR 0.057970 −34.15 −34.25 3.1506 +5.10 +5.00 0.39042 −26.89 −25.45 21.096 +22.82 +23.06
Red 0.082517 −6.27 −6.41 3.0293 +1.05 +0.96 0.49783 −6.77 −4.95 17.716 +3.14 +3.35
SW 0.087730 −0.34 −0.50 3.0029 +0.17 +0.08 0.52287 −2.08 −0.16 17.185 +0.05 +0.25
Cho 0.087908 −0.14 −0.30 3.0001 +0.08 −0.01 0.52265 −2.12 −0.20 17.168 −0.05 +0.15
3D 0.088171 +0.16 −0.00 3.0005 +0.09 −0.00 0.52371 −1.93 −0.00 17.143 −0.20 +0.00
Ite 0.088172 +0.16 −0.00 3.0005 +0.09 +0.00 0.52373 −1.92 −0.00 17.143 −0.20 +0.00

Exa2 0.088172 ref. 3.0005 ref. 0.52373 ref. 17.143 ref.
Exa 0.088033 ref. 2.9978 ref. 0.53399 ref. 17.177 ref.

100 MR 0.035362 −0.93 −0.94 3.2418 +0.06 +0.06 0.29572 −0.60 −0.56 27.275 +0.47 +0.47
Red 0.035631 −0.18 −0.18 3.2404 +0.01 +0.01 0.29705 −0.15 −0.12 27.172 +0.09 +0.09
SW 0.035691 −0.01 −0.01 3.2400 +0.00 +0.00 0.29738 −0.05 −0.01 27.149 +0.00 +0.01
Cho 0.035694 −0.00 −0.01 3.2400 +0.00 +0.00 0.29738 −0.04 −0.00 27.148 +0.00 +0.00
3D 0.035697 +0.00 −0.00 3.2400 +0.00 +0.00 0.29740 −0.04 −0.00 27.147 −0.00 −0.00
Ite 0.035697 +0.00 −0.00 3.2400 +0.00 +0.00 0.29740 −0.04 −0.00 27.147 −0.00 −0.00

Exa2 0.035697 ref. 3.2400 ref. 0.29740 ref. 27.147 ref.
Exa 0.035695 ref. 3.2399 ref. 0.29751 ref. 27.148 ref.

Table 3: Comparison between the different models for the square [0/c/0] sandwich plate with a varying length-to-thickness ratio.
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a/h Model w∗ % % σ13(B) % % σ23(A) % % ω∗ % %
2 MR 4.3108 −3.63 −9.94 3.7502 +31.36 +24.72 1.0244 +2.65 +8.26 4.7281 +4.85 +5.05

Red 4.5262 +1.19 −5.44 2.0291 −28.93 −32.52 0.85739 −14.09 −9.39 4.6223 +2.50 +2.70
SW 4.3108 −3.63 −9.94 3.7502 +31.36 +24.72 1.0244 +2.65 +8.26 4.7281 +4.85 +5.05
Cho 4.5262 +1.19 −5.44 2.0291 −28.93 −32.52 0.85739 −14.09 −9.39 4.6223 +2.50 +2.70
3D 4.7804 +6.87 −0.13 3.1758 +11.24 +5.62 0.95157 −4.65 +0.56 4.5040 −0.12 +0.07
Ite 4.7861 +7.00 −0.01 3.0077 +5.35 +0.03 0.94628 −5.18 +0.00 4.5009 −0.19 +0.00

Exa2 4.7864 ref. 3.0069 ref. 0.94624 ref. 4.5007 ref.
Exa 4.4730 ref. 2.8549 ref. 0.99796 ref. 4.5093 ref.

4 MR 1.4643 −8.42 −10.16 4.0792 +12.44 +11.18 0.69540 −6.14 −0.98 8.1438 +5.17 +5.34
Red 1.6206 +1.35 −0.57 3.5324 −2.63 −3.72 0.69382 −6.35 −1.21 7.7522 +0.11 +0.28
SW 1.4643 −8.42 −10.16 4.0792 +12.44 +11.18 0.69540 −6.14 −0.98 8.1438 +5.17 +5.34
Cho 1.6206 +1.35 −0.57 3.5324 −2.63 −3.72 0.69382 −6.35 −1.21 7.7522 +0.11 +0.28
3D 1.6298 +1.93 −0.00 3.6718 +1.21 +0.08 0.70227 −5.21 −0.00 7.7311 −0.16 +0.00
Ite 1.6298 +1.93 −0.00 3.6693 +1.14 +0.01 0.70231 −5.21 +0.00 7.7311 −0.16 +0.00

Exa2 1.6299 ref. 3.6690 ref. 0.70231 ref. 7.7310 ref.
Exa 1.5989 ref. 3.6280 ref. 0.74089 ref. 7.7436 ref.

10 MR 0.60418 −4.82 −5.17 4.3281 +2.50 +2.32 0.44658 −3.85 −1.85 12.795 +2.59 +2.66
Red 0.63709 +0.37 −0.01 4.2249 +0.06 −0.12 0.45479 −2.08 −0.05 12.464 −0.06 +0.00
SW 0.60418 −4.82 −5.17 4.3281 +2.50 +2.32 0.44658 −3.85 −1.85 12.795 +2.59 +2.66
Cho 0.63709 +0.37 −0.01 4.2249 +0.06 −0.12 0.45479 −2.08 −0.05 12.464 −0.06 +0.00
3D 0.63714 +0.37 −0.00 4.2300 +0.18 −0.00 0.45499 −2.03 −0.00 12.463 −0.06 +0.00
Ite 0.63714 +0.37 −0.00 4.2301 +0.18 +0.00 0.45500 −2.03 −0.00 12.463 −0.06 +0.00

Exa2 0.63715 ref. 4.2300 ref. 0.45500 ref. 12.463 ref.
Exa 0.63477 ref. 4.2223 ref. 0.46444 ref. 12.471 ref.

100 MR 0.43300 −0.08 −0.08 4.3973 +0.03 +0.02 0.37735 −0.06 −0.03 15.196 +0.04 +0.04
Red 0.43335 +0.00 −0.00 4.3962 +0.00 −0.00 0.37746 −0.03 −0.00 15.190 −0.00 −0.00
SW 0.43300 −0.08 −0.08 4.3973 +0.03 +0.02 0.37735 −0.06 −0.03 15.196 +0.04 +0.04
Cho 0.43335 +0.00 −0.00 4.3962 +0.00 −0.00 0.37746 −0.03 −0.00 15.190 −0.00 −0.00
3D 0.43335 +0.00 −0.00 4.3962 +0.00 +0.00 0.37746 −0.03 −0.00 15.190 −0.00 +0.00
Ite 0.43335 +0.00 −0.00 4.3962 +0.00 +0.00 0.37746 −0.03 −0.00 15.190 −0.00 +0.00

Exa2 0.43335 ref. 4.3962 ref. 0.37746 ref. 15.190 ref.
Exa 0.43333 ref. 4.3961 ref. 0.37756 ref. 15.190 ref.

Table 5: Comparison between the different models for the square [0] single ply composite plate with a varying length-to-thickness
ratio.
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