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Abstract—The background objective of this work is to analyze 

electroencephalographic (EEG) signals recorded with depth 
electrodes during seizures in patients with drug-resistant epilepsy. 
Usually, different phases are observed during the seizure 
evolution, including a fast onset activity. We aim to ascertain how 
cerebral structures get involved during this phase, in particular 
whether some structures “drive” other ones. Regarding a recent 
theoretical information measure, namely the Transfer Entropy 
(TE), we propose two criteria, the first one based on Akaike's 
information criterion, the second on the Bayesian information 
criterion, to derive models' orders that constitute crucial 
parameters in the TE estimation. A normalized index, named PTE, 
allows for quantifying the contribution or the influence of a signal 
to the global information flow between a p air of s ignals. 
Experiments are first conducted on linear autoregressive models, 
then on a physiology-based model, and finally on real 
intracerebral EEG epileptic signals to detect and identify 
directions of causal interdependence. Results support the 
relevance of the new measures for characterizing the information 
flow propagation whatever unidirectional or bidirectional 
interactions. 
 

Index Terms—Bayesian information criterion, causality, EEG 
signal, physiology-based model, transfer entropy. 
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I. INTRODUCTION 
PILEPSY is a n eurological disorder characterized by 
repetitive seizures. In 30% of cases, seizures remain 

drug-resistant and considerably affect all aspects of the 
patient’s life [1]. Drug-resistant epilepsies are often partial, 
with an epileptogenic zone (EZ) located in a r elatively 
circumscribed brain area. For these partial epilepsies, surgical 
treatment is considered. The difficulty that arises is to 
determine the organization of the EZ and, thus, the part of the 
brain that should be excised to remove seizures without 
affecting normal brain function. In some patients, the 
pre-surgical evaluation may include recording of intracerebral 
ElectroEncephaloGraphic (iEEG) signals using depth 
electrodes. The analysis of such signals which remains a 
difficult task is aimed at determining which sites of the brain 
belong to the EZ, prior to surgery. In this context, signal 
processing techniques provide quantitative information that 
cannot be easily obtained by visual inspection. This is typically 
the case of correlation (in wide-sense) measures that prove 
useful for assessment of functional couplings between remote 
brain sites. Beside functional connectivity, effective 
connectivity provides complementary information on the 
directionality of couplings, i.e. the influence one neural 
population exerts on another one. Recently, a t heoretical 
information measure, namely Transfer Entropy (TE), was 
proposed to identify the direction of the information flow and 
to quantify the strength of coupling between complex systems 
[2]. This “model-free” technique is based on t he transition 
probabilities between states of the considered systems from 
output signals. This method has been applied and tested in 
some nonlinear benchmark models, real EEG signals and 
magnetoencephalographic data in cortical and cerebellar 
networks with no gr ound reference [3]-[6]. Moreover, from 
these foregoing literatures, certain calibration parameters 
involved in the TE estimation play a significant role in 
acquiring the correct information flow direction between the 
two systems under investigation, i.e. the driven system and the 
driving system, for instance, the orders of the underlying 
Markov processes. In [2], only the Markov process order of the 
driving system is mentioned: it is fixed to that of the driven one 
or set to 1 with the reason that the latter is preferable for 
computational reasons. In [3], [4], Sabesan et al. further 
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investigated this problem. Two measures, the delayed mutual 
information and the autocorrelation function [7], [8], were 
proposed to estimate the Markov process order of the driven 
system. However, the Markov process order of the driving 
system was still set to 1 since the authors presumed that the 
current state of the driving system was sufficient to arouse a 
considerable change in the dynamics of the driven system with 
one time step in the future. Furthermore, Vicente et al. [5] and 
Wibral et al. [6] used Cao's criterion [9] based on the false 
neighbor computation and autocorrelation function to estimate 
the Markov process orders. Two other model selection methods, 
the Akaike Information Criterion (AIC) [10] and the Bayesian 
Information Criterion (BIC) [11], have been also applied in 
Vectorial AutoRegressive (VAR) model order estimation and 
to estimate the order of Markov chains [12]. To compute 
transfer entropy on electrophysiological signals, AIC and BIC 
are currently used [13] to select the orders in a VAR model 
(including N channels 1, ..., NX X ) under the constraint that, 
when regressing jX  on iX , the same number =ijq q  of lags 

is used for any ( ,i j ) (where q  must be determined and ijq  is 

named hereafter the regression order from iX  to jX  even if 

no explicit regression procedure is introduced to compute TE). 
In this case, this procedure returns only one value for the 
number of past samples retained on X and on Y to compute TE. 
In many cases, the “true” regression orders for the driven and 
driving systems may be different (this is typically the case for 
the cross regression order when there is no influence from one 
system to another). Consequently, it can lead to erroneous 
estimation in TE when the regression orders for the driven and 
driving systems are chosen artificially identical. To deal with 
this issue, we released the constraint ( , ) :∀ =iji j q q  by 

applying the generalized Akaike information criterion (gAIC) 
or the generalized Bayesian information criterion (gBIC). In 
Section II, after recalling the transfer entropy approach, we 
develop the methodology to estimate the regression orders for 
the driven and driving systems. We also introduce a transfer 
entropy based measure (called PTE) to quantify the 
contribution of an observation to another one and we give some 
details on the physiology-based model used as ground-truth. 
Section III is devoted to experimental results: two linear AR 
models were first introduced to verify the relevance of the two 
new order-estimated measures. Then, TE w as tested on a 
physiological model and on real iEEG signals involving the 
new criteria. Results are discussed and a conclusion is drawn in 
Section IV. 
 

II. METHODS AND MATERIALS 

A. Transfer Entropy 

Let ( )p
nu  denote a 1p ×  vector, such that: 

 ( )
1 1, ...,

Tp
n n n n pu u u u− − + =   . (1) 

Considering a thk -order Markov process X, the conditional 
probability measures (continuous or discrete) are such that: 
 ( ) ( ) ( ) ( ) ( ) ( )' '

1 1
1 1/ /

' : k k k k
n n n n n n

n nX X x X X x
k k P dx P dx

+ ++ += =∀ > = .(2) 

The relation in (2) can be extended by considering two 
random processes X  and Y . The absence of information flow 
from Y to X is then formalized by 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1/ / ,+ ++ += = ==k k k k l l

n n n n n n n n
n nX X x X X x Y y

P dx P dx .(3) 

So, in this absence of information flow, the Y process values ( )l
ny  have no influence on the X  transition probabilities from 

the state value ( )k
nx  to the state value 1nx +  ( 1+nX  and ( )l

nY  

are independent conditionally to ( )k
nX ). The deviation from 

this assumption can be quantified using the Kullback entropy, 
which leads to the definition of the transfer entropy 
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where the ratio in (4) corresponds to a derivative of the 
conditional measure in the numerator with respect to the 
conditional measure in the denominator. This measure is not 
symmetric ( )X Y Y XTE TE→ →≠ . The values of the parameters 
k  and l  are the regression orders to predict 1+nX  from X  
past and Y  past. The estimation of TE from the observations ( ), , 1,...,n nx y n N= , is obtained using a discrete kernel 

estimation of ( ) ( )( )1, ,k l
n n nX X Y+  probability distribution [2] 
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 (5) 

which depends on a neighborhood size (radius r ), where ( )k
nx  

and ( )l
nx  are defined as in (1). The kernel function is 

formalized with the step function ( )0 1Θ > =x , ( )0 0Θ ≤ =x  

and the norm •  is the max norm. The summation is performed 

for [ ]1,..., 1m k N∈ + −  by excluding some evident 
redundancies. The value of r  is chosen in the linear region of 
the curve ( )lnC r  vs ln r  obtained as an average of n over 

,n rC . Then, it is used to compute the estimation 

  ( ) ( )( ) ( ) ( )( )
( )( )1

1 2
1

ˆ | ,
ˆ , , log

ˆ |

+→ +
+

= ∑
k l

n n nk l
Y X n n n k

n n n

P x x y
TE P x x y

P x x
. (6) 

In practice, the estimations of the conditional probabilities in 
(6) are computed from the estimated joint probabilities in (5) 
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using Bayes’ rule ( ) ( ) ( )| , /=P A B P A B P B . Thereby, the 
definition in (6) is rewritten as 

 

 ( ) ( )( )
( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

1

1
2

1

ˆ , ,

ˆˆ , ,
log
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k l
Y X n n n

n
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n n n n
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n n n n
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P x x P x y

→ +

+
+

=

×

∑
. (7) 

Considering the more complicated issue of real data [14], we 
define a selective index of the flow direction, named PTE, by 

 →→ → →
= +Y X

Y X
X Y Y X

TE
PTE

TE TE
, (8) 

 →→ → →
= +X Y

X Y
X Y Y X

TE
PTE

TE TE
 (9) 

to help in quantifying the contribution of a signal to another one 
compared to the global information flow induced by these two 
signals. Note that theoretically (i) when only Y  drives X  
(resp. X  drives Y ), →Y XPTE  (resp. →X YPTE ) equals 1, (ii) 
if there exist two equivalent flows for the two directions, values 
of →Y XPTE  and →X YPTE  equal 0.5, and (iii) a null value of 

→Y XPTE  (resp. →X YPTE ) reveals that no information flow 
exists from Y  to X  (resp. from X  to Y ). Clearly, when 
estimations of PTE are substituted for theoretical PTE, some 
caution must be introduced. In practice, the selective index PTE 
is calculated only when the variables are first proven not to be 
independent. 
 

B. Improved Computation of Transfer Entropy 

• Selection of the parameters k  and l  

For the two processes X  and Y , the selection of the 
regression orders k  and l  plays experimentally a primary role 
to acquire dependable values for transfer entropy. As suggested 
before, to get the models' orders, AIC and BIC are often applied 
under the hypothesis that k  and l  are identical, which not only 
produces extra computation but also can result in erroneous 
estimation in TE. To solve this problem, we propose two 
measures, gAIC and gBIC, to choose independently different 
values for the parameters k  and l . The procedures of gAIC 
and gBIC are detailed hereafter. 

 
Given a real m-dimensional vectorial autoregressive process 

( ) ( ) ( )z 1 , 2 ,...,=   T
n n n nz z z m  with zero mean 

 1 1 2 2z z z z w− − −= Φ + Φ + + Φ +n n n q n q n  (10) 

where , 1, 2,...,i i qΦ = , are ×m m  coefficient matrices and q  
the model order. The process wn  is a zero mean independent 
identically distributed vector process with covariance matrix Σ . 
It is assumed that wn  and z −n i  are independent for each 
variable 0>i . In addition, it is assumed that zn  is mean and 
covariance ergodic. 

Suppose that the observations 1 2z ,z ,..., zN  are generated by 
the VAR process given in (10). The least-squares method [15] 
is used to fit a VAR model with order q  to the observations. 
Suppose that the estimated model is as follows: 
    1 21 2z z z z w− − −= Φ + Φ + + Φ + q nn n n n q . (11) 

The coefficient matrices  , 1,2,...,Φ =i i q , of this estimated 
model are obtained by solving the following set of equations: 
 1,ZA z ; 1,2,...,+= =j q j j m  (12) 

where 
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where ( ),:Φi j  is the thj  row of Φi . The least-squares 
solution of (12) is given by 

  ( ) 1
1,A Z Z Z z ; 1,2,...,

−
+= =T T

j q j j m . (13) 

Then, the residual covariance matrix of the VAR model is 
estimated as follows: 

  ( ) ( )
1

1 z z z z
= +

Σ = − −− ∑  N T
n nn n

n qN q
 (14) 

where   1 21 2z z z z− − −= Φ + Φ + + Φ n qn n n q . 

To select the order parameter q, the Akaike Information 
Criterion is given by: 

 ( ) ( )( ) 2AIC ln det 2= Σ +q N m q , (15) 

and the Bayesian Information Criterion is: 

 ( ) ( )( ) ( )2BIC ln det ln= Σ +q N m q N . (16) 

 
Rewriting (10) with a 2-dimensional ( 2=m ) VAR process 

( ) ( ) [ ]z 1 , 2 ,= =  T T
n n n n nz z x y , we have 

 
( ) ( )
( ) ( )

,
1 1

,
1 1

α α

α α
− −= =

− −= =

 = + + = + +

∑ ∑
∑ ∑

yxxx

xy yy

qq

n xx n i yx n i n x
i i

q q

n xy n i yy n i n y
i i

x i x i y w

y i x i y w

. (17) 

where α  are the coefficients of the VAR process. AIC and 
BIC can be used to determine a common summation range for 
the four sums in (17): = = = =xx yx xy yyq q q q q . Since we do 

not impose =k l , we estimate independently the four orders 

parameters so that we may have ( ) ( )= ≠ =xx yxk q l q  to 
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compute →Y XTE  and ( ) ( )= ≠ =yy xyk q l q  to compute 

→X YTE . In fact, for most of physical cases, these four orders 
are different, and the standard approach (AIC or BIC) only 
gives the maximal value among them. Moreover, if we choose 
the maximal value for the parameters k  and l , TE 
computational time is drastically increased. Focusing on t his 
point, we propose to minimize the following criteria, namely 
gAIC and gBIC, with respect to the four orders { }, , ,xx yx xy yyq q q q  

 ( ) ( )( ) ( )gAIC ln det 2= Σ + + + + xx yx xy yyq N q q q q , (18) 

( ) ( )( ) ( ) ( )gBIC ln det ln= Σ + + + + xx yx xy yyq N q q q q N , (19) 

where q  is a set of estimated orders { }, , ,   xx yx xy yyq q q q . Using 

gAIC and gBIC criteria is justified by considering that AIC and 
BIC criteria have been developed under less restrictive 
constraints [11], [16], [17] (i.e. not only for linear models such 
as VAR models). In this widened context, the log-likelihood 
function (which corresponds in (16) to the first term on the 
right hand side) must only belong to an exponential family, and 
the tested models do not need to be nested. When applied to 
VAR order selection, even if the search of candidate models 
may be limited to the subclass defined by 

xx yx xy yyq q q q= = = , as it is generally done in most 

applications, this constraint can be interestingly released to 
expect a better fitting without losing optimality relatively to the 
type of criterion. 

Using gAIC and gBIC to get the four orders, the transfer 
entropy computation time is reduced, even though the 
computation time to evaluate the four orders is increased 
compared to the time needed to compute the orders with AIC 
and BIC. For example, given [ ]1,20∈q , procedures (12) to (14) 
merely need to be implemented 20 times to minimize AIC and 
BIC. For gAIC and gBIC, this step needs to be implemented 

214-1 times since { } [ ]4, , , 0, 20∈xx yx xy yyq q q q  respectively 

and, therefore, it becomes prohibitive. To solve this problem, 
we propose a “greedy” strategy [18] to optimize the 
computation. This procedure using gAIC is detailed below (let 
us note that this procedure would be the same using gBIC): 
1) Use AIC to obtain a model order, namely the maximum 

order maxq , and select this order to decide the range for 

gAIC, i.e. [ ]max0,⊂ijq q , { }, ,⊂i j x y ; 

2) Considering the values of ijq  for the first signal (i.e. xxq  

and yxq ), while setting the values of ijq  for the second 

signal equal to maxq  (i.e. xyq  and yyq ), implement the 

procedures from (12) to (14) to get the optimal orders  xxq  

and  yxq  using the definition of (18); 

3) Considering the values of ijq  for the second signal (i.e. 

xyq  and yyq ), while setting the values of ijq  for the first 

signal equal to the optimal order  xxq  and  yxq , implement 

the procedures from (12) to (14) to get the optimal orders 


xyq  and  yyq  using the definition of (18). 

According to this “greedy” strategy, the computation time is 
decreased significantly. As an example, the global procedure 
only needs to be implemented 220 16 2 1+ × −  times (0.27% of 
the computation of AIC) when max 15=q . 

 
• Selection of the Radius r  

For the selection of the radius r , we take the similar notion 
as in [3], [4], [19]. Firstly, the data are normalized to zero mean 
and unit variance in order to establish a common radius r  in 
the state space X  and Y . Then, the joint probability in log 
scale ( ( )lnC r obtained as an average on n over ,n rC  in (5)) is 
calculated and plotted vs the corresponding radius r  in log 
scale (e.g. in Fig. 2(a)). Finally, some optimal value *r  is 
chosen in the linear region of the curve ( )lnC r  vs ln r  so as to 
estimate reliable values of TE at specific values *r . 

 

C. Model of iEEG Signals Generation 

We used a physiology-based time continuous model to 
represent the electrical field activity of some distant - and 
possibly coupled - neuronal populations. Each of them 
generates a local field activity that is converted to an iEEG 
signal in a proximal electrode using a quasi-static transfer 
function [20]. In the model, each population contains three 
subpopulations of neurons that mutually interact via excitatory 
or inhibitory feedback linking main pyramidal cells and two 
other types of local interneurons. Since pyramidal cells are 
excitatory neurons that project their axons to other areas of the 
brain, the model accounts for this organization by using the 
average pulse rate of action potentials from the main cells of 
one population i  as an excitatory input to main cells inputs of 
another population j. In addition, this connection from 
population i  to population j is represented by a parameter ijK  
which is proportional to the number of corresponding axonal 
links. Appropriate setting of this parameter allows for building 
systems where the neuronal populations are unidirectionally or 
bidirectionally coupled. Other introduced parameters are 
intra-population parameters. They include excitatory and 
inhibitory gains in feedback loops as well as coefficients 
related to the number of synaptic contacts between 
subpopulations. These parameters are adjusted to control the 
intrinsic activity of each population (normal background 
activity vs epileptic activity). This population model [20] is 
viewed as a stochastic state variable model. For each 
population j , this model comprises 11=N  state components 

k
js , 1,..,11=k , grouped in a state vector js . Considering two 

populations, each generating a simulated EEG signal, the pair 
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( )1 2,s s  is driven by two coupled Stochastic Differential 
Equations: 
 1 1 1 21 2( ) ( ( )) ( ) ( )= + +ds t A s t dt Bdw t C z t dt , (20) 
 2 2 2 12 1( ) ( ( )) ( ) ( )= + +ds t A s t dt Bdw t C z t dt , (21) 
from which are derived the two outputs 1z  and 2z  

 ( ) ( )1 1 2 2( ) ( ) , ( ) ( )= =z t f Ds t z t f Ds t . (22) 
The quantities 1w  and 2w  are internal Brownian noise sources 
representing distal influences from other neural populations not 
explicitly modeled, B  and ijC  are 11-dimensional vectors and 

the A  operator is a mapping from 11  to 11  including four 
instantiations of a nonlinear mapping from   to +  defined 
as a smooth non l inear sigmoid function f . This type of 
function is necessary to take into account effects of 
thresholding and saturation in neurons [20]. In (22), D  is an 
11-dimensional row vector and the populations’ outputs (which 
are not directly measured) are obtained through the sigmoid 
function. The time discretization of (20) and (21), needed to get 
a computational model, cannot lead to a linear representation as 
in (17) and so the resulting model induces nonlinear dynamics. 
Finally, both observations x  and y  are obtained as a l inear 
combination of three of the eleven state variables. 

 

D. Real Signals 

The tested signals correspond to ictal epileptiform activities 
obtained from an animal model (epilepsy induced in guinea pig 
brain with bicuculline). Simultaneous signals were recorded in 
the medial entorhinal cortex and in the perirhinal cortex. The 
recorded EEG signals are plotted in Fig. 5. In the following 
section, a particular phase of these signals, the FOA (Fast Onset 
Activity), corresponding to the time interval [ ]30s, 40s , is 
tested by the measures we developed. 

 

III. EXPERIMENTS AND RESULTS 
Simulations were carried out 200 times on 2048-point 

signals (corresponding to 4-s length EEG signals in current 
acquisition systems) both for linear and physiology-based 
models. For each computation of TE, the orders are estimated 
by the 4 different measures (AIC, BIC, gAIC, and gBIC) 
discussed in section II, and the values of r  is chosen from 

1.5−e  to 2.0e  with a step of 0.05e . 
 

A. Linear Models 

For the first linear stochastic system we considered, the 
following signals with unidirectional relation were generated: 

 1 2

3 2

0.95 2 0.9025
0.5 0.4

− −
− −

 = − + = − +
t t t t

t t t t

x x x u

y x y v
 (23) 

where tu  and tv  were independent white Gaussian noises with 
zero means and unit variances. To compare the performance of 

the 4 criteria (AIC, BIC, gAIC, and gBIC), we indicated in 
Table I the number of times the orders obtained with these 4 
measures equal the expected optimal orders over the 200 trials. 

As discussed in Section II. B, the expected optimal order 
values of the model described by (23) are ˆ 2=xxq , ˆ 0=yxq , 

ˆ 3=xyq , and ˆ 2=yyq . In this way, considering TE, we must 

obtain ˆ 2= =xxk q , ˆ 0= =yxl q  for  →Y XTE , and ˆ 2= =yyk q , 

ˆ 3= =xyl q  for  →X YTE . As recalled before, the estimated 

order values using AIC and BIC are all the same, and are equal 
to the maximum order value, i.e. 3= = = =xx yx xy yyq q q q  in 

the present case (see Table I). So, in this experiment, 3 
parameters out of 4 a re not correctly estimated. The gAIC 
measure is a reasonable estimator since most of the estimated 
orders are the optimal ones (for example, 189 correct 
estimations over a total of 200 (94.5%) for xxq ). In this 
experiment, the gBIC measure behaves the best (100% of 
accuracy estimation for the 4 parameters). 

Given the orders estimated by the 4 techniques, we computed 
the means of the corresponding TE values over the 200 
simulations. Results are shown in Fig. 1 for different values of 
the radius r . Using gBIC,  →X YTE  is the greatest in some 
range of ln r  (around the vertical dotted line) when there is 
effective information flow from x  to y  while  →Y XTE  is 
zero when there is no information flow from y  to x  (see Fig. 
1(d)). Using AIC and BIC (see Figs. 1(a) and 1(b)), we note 
some non-zero values for  →Y XTE  due to some erroneous 
model orders: the estimated orders k  ( )= xxq  and l  ( )= yxq  

are always equal to 3 which are not the optimal orders. Using 
gAIC, the transfer entropy from x  to y  is close to the same 

measure using gBIC, while the reciprocal quantity  →Y XTE  is 
mostly close to zero (see Fig. 1(c)) thanks to only a few 
incorrect estimated orders. For each technique, to ensure a 
correct analysis of the information flow direction, a s pecific 
radius *r  is chosen in the linear region of the curve ( )lnC r  vs 
ln r  (Fig. 2(a)). Then, the means and standard deviations 
(shown in parentheses) of the corresponding TE values at this 
specific radius *r  are given in Table II as well as those of the 
PTE index. For sake of clarity, the notation  →X YTE (M) 

represents the  →X YTE  results corresponding to the technique 
noted M (the technique refers here to the model order criterion). 
From this table, we observe that  →X YTE (gBIC) gives the 
greatest values when the direction of information flow is from 
x  to y , and  →Y XTE (gBIC) is zero when no information flow 
exists from y  to x  since the estimated orders are always 

identical to the optimal orders. On the opposite,  →Y XTE (AIC), 
 →Y XTE (BIC), and  →Y XTE (gAIC) still provide some non 

zero values due to different values of the estimated order. 
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To test the reliability of the new criteria, some parameters 
values of our linear models were modified and the 
corresponding effects summarized in Annex A. Finally, to 
complete these results and test the relevance of the approach, an 
extended range of model orders values around the best ones 
chosen by the algorithm was tested and subsequent impacts on 
TE estimation are reported in Annex B. 

For the second linear stochastic system, the following signals 
with bidirectional relation were generated: 

 1 2 2

3 2

0.95 2 0.9025 0.45
0.5 0.4

− − −
− −

 = − + + = − +
t t t t t

t t t t

x x x y u

y x y v
 (24) 

where tu  and tv  were independent white Gaussian noises with 
zero means and unit variances. The numbers of trials (over 200 
trials) for which the model orders obtained by the 4 criteria 
equal the expected optimal order are presented in Table III. 
Given these orders, TE is computed on 200 t rials and the 
averaged values are displayed in Fig. 3 when the radius r  in 
log scale is in the range [-1.5; 2]. In the same way as previously, 
a specific radius *r  is retained, and the means and standard 
deviations (shown in parentheses) of the corresponding TE and 
PTE values are given in Table IV. From Table III, the gBIC 
order estimator is still the more accurate. This criterion leads to 
the highest values for  →X YTE (gBIC) and  →Y XTE (gBIC) 
(see Table IV). 

 
If we focus on the PTE index (see Tables II and IV), both 

PTE(AIC) and PTE(BIC) conclude to a bidirectional 
information flow whatever the actual situation (unidirectional 
or bidirectional flow) whereas the two other indices PTE(gAIC) 
and PTE(gBIC) allow us to illustrate the two different 
situations: unidirectional vs bidirectional flow. For example, 
when the propagation is unidirectional (see Table II), the index 
 →X YPTE (gBIC) is always 1 and the index  →Y XPTE (gBIC) 

zero, concluding to a unidirectional flow from x  to y . When 
the propagation is bidirectional (see Table IV), the 
 →X YPTE (gBIC) index equals 0.6205 and  →Y XPTE (gBIC) 

is 0.3795 which is coherent with the propagation graph. Note 
that PTE cannot be solely interpreted without verifying that 
 →X YTE  or  →Y XTE  is significantly high. 

 

B. Physiology-based Models 

The model described in Section II.C was used to simulate 
long duration signals (800 s) for a fixed connectivity pattern 
(“ground truth”) among neuronal populations. Sampling rate 
was equal to 512 Hz. Two simulated physiology-based models 
with uni- and bi-directionally coupled connectivities are 
considered. Model parameters were such that a fast 
quasi-sinusoidal (25 Hz) activity (similar to that observed 
during seizure onset) was generated by the two populations 
when they were uni- or bi-directionally coupled. The coupling 
parameters were such as: 12 1500=K , 21 0=K  for 
unidirectionally coupled populations 1 and 2, and 

12 21 1500= =K K  for bidirectionally coupled populations 1 
and 2. 

In this section, according to the results obtained on t he 
simulated linear models, we only tested the performance of the 
gBIC technique and compared it to the BIC. Given the orders 
estimated by gBIC, we computed the corresponding TE values 
and averaged them on 200 trials for different values of the 
radius r  as shown in Fig. 4. As previously, a specific radius 

*r  is chosen for each pair (1, 2), and the means and standard 
deviations (in parentheses) of the corresponding TE and PTE 
values are displayed in Table V. 

As expected, the important values of 1 2→TE (gBIC) (both for 
unidirectional and bidirectional connectivities) and 
2 1→TE (gBIC) (for reciprocal connectivity) indicate that an 

actual information flow exists from one population to the other. 
The non significant value of 2 1→TE (gBIC) for unidirectional 
connectivity indicates that there is no information flow, 
whereas the strong value for 2 1→TE (BIC) is erroneous. 

Focusing on t he PTE index, the value of 2 1→PTE (BIC) 
(0.4034) is incorrect for unidirectional connectivity since there 
is no causal influence from population 2 t o population 1. In 
other words, PTE(BIC) fails in identifying unidirectional 
connectivity. On the contrary, PTE(gBIC) performs well and 
allows distinguishing unidirectional and bidirectional 
connectivities. For one-way propagation, 1 2→PTE (gBIC) is 1 

and 2 1→PTE (gBIC) is zero. For two-way propagation, where 
12 21 1500= =K K , the values of 1 2→PTE (gBIC) and 

2 1→PTE (gBIC) are close to 0.5. 
 
To confirm these results, we conducted a statistical test. Two 

independent populations were first simulated (using 
12 21 0= =K K ). Then, we computed TE with the 

order-estimated methods of BIC and gBIC when these 
populations are coupled or not. The results of the 
Mann-Whitney test are summarized in Table VI 
( 12 211500, 0= =K K  vs 12 21 0= =K K  for unidirectional 

relation and 12 21 1500= =K K  vs 12 21 0= =K K  for 
bidirectional relation). In this table, the statistical analysis is 
presented in two columns, the first one corresponding to the 
p-value and the second one to the result h  of the hypothesis 
test (a value of h  = 1 indicates that the null-hypothesis tested 
on the 200 trials is rejected). The expected value according to 
our simulation is also given into brackets. A value of h  = 1 
proves the presence of an information flow. For the statistical 
analysis on TE (gBIC), all values are identical to the expected 
values whatever unidirectional or bidirectional propagation 
flows. As for 2 1→TE (BIC), in the case of unidirectional flow, 
the null-hypothesis is rejected which indicates that a 
propagation flow from population 2 t o population 1 is 
erroneously detected. 
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C. Real Signals 

As discussed in Section II.D, we analyzed two real signals 
recorded during ictal onset. This phase is characterized by a 
peculiar pattern of fast activity that originates from the 
entorhinal/hippocampal region and, secondarily, visually 
propagates to the perirhinal cortex. Signal 1 was recorded in the 
medial entorhinal cortex (m-EC) and signal 2 in the perirhinal 
cortex (PRC). The time duration of the fast onset activity phase 
was 10 seconds. To detect the relations at different time instants, 
a 4-s sliding window with a step of 0.125 s was chosen for the 
estimation of the TE index, leading to a total of 49 TE values. In 
Fig. 6, we represented the evolution of this index with the 
orders estimated by gBIC and BIC over time during the 
analyzed period corresponding to this fast onset activity phase. 
To estimate the actual influence of signal i on signal j, and to 
evaluate the statistical significance of the TE measure, we 
tested this index against the null hypothesis of independent 
time series. To this end, we needed surrogate data for which we 
destroyed the causal dependency. We used box plots 
corresponding to this null hypothesis represented respectively 
at the bottom-left for the relation from signal 1 to signal 2, and, 
at the bottom-right for the relation from signal 2 to signal 1 in 
Fig. 6. Let us indicate that, in Fig. 6, the boxes correspond to 
TE estimation using gBIC knowing that results were quite 
comparable using BIC in this case of independence. These 
boxes have been obtained by randomizing the phase [21] of 
signal 2 without modifying signal 1, to simulate the 
independence hypothesis 0H  (between signal 1 and signal 2). 
Note that, if shuffling the phase destroyed the dependence 
between the two signals, it also destroyed the nonlinearity in 
signal 2. Even if this effect was not desired, it had only a small 
influence on the statistical dispersion in TE estimation. Another 
approach would consist in shuffling the samples time instants. 
In this case, to test the 0H  hypothesis, the gBIC procedure and 
TE estimation should be performed using the pairs of signals 

( )( )1, k
n nx x+  and ( )( )' 1 ', l

n ny y+  with a difference in time, 'n n− , 

sufficiently large to ensure statistical independence between 

these signals (instead of the pairs ( )( )1, k
n nx x+  and 

( )( )1, l
n ny y+ ). Both approaches (shuffle phase based approach 

and shuffle time based approach) leave invariant the 
second-order properties of the modified signal. In our 
experiment, we considered the whole duration, i.e. 10 seconds 
of observation, and we chose 4 windows of 4 s econds each, 
with an overlap of 2 seconds. For each window, we performed 
50 realizations by randomizing the phase so as to get 200 values 
( 4 50× ) of the index under 0H  merged in these box pl ots. 
From the results in Fig. 6, using gBIC, it is obvious that a strong 
relation exists from signal 1 to signal 2 in the former part of the 
interval whereas the relation from signal 2 t o signal 1 is 
completely non-existent. In the latter part of the sequence, the 

propagation from the entorhinal region to the perirhinal cortex 
still holds at a non negligible level, this result being consistent 
with currently accepted propagation pathways. Compared to 
BIC, the gBIC criterion allowed for getting larger dynamics on 
the whole sequence and helped for concluding on the a priori 
predominant flow direction. On the first part of the sequence, it 
is clear that the m-EC structure drove the PRC one whatever the 
criterion. For the second part of the sequence, some estimated 
orders were the same using either BIC or gBIC, which justifies 
the superposition of the two curves of TE for the relation from 
signal 1 to signal 2. Since some orders differed, even if the TE 
index remained low when estimated in the opposite direction 
(from signal 2 t o signal 1), its values revealed higher when 
using the classical criterion instead of the new one. 

 

IV. DISCUSSION AND CONCLUSION 
In this paper, we improved the estimation of transfer entropy 

by introducing a greedy strategy to derive a suitable 
order-estimated measure which is decisive in acquiring 
coherent and trustworthy results, as shown in bivariate linear 
AR models displaying either unidirectional or bidirectional 
flows. The approach including the new order-estimated 
measure was successfully applied to detect effective 
connectivity in iEEG signals simulated by physiology-based 
models. Moreover, the introduction of a second index, namely 

→i jPTE , allowed us to quantify the contribution of population 

i  towards population j  in the global information flow 
between the two populations under study. When tested on real 
signals, the proposed approach appeared robust and helpful in 
the determination of the organization of the epileptogenic zone. 

On account of computational efficiency, we just investigated 
bivariate signals in this study and TE was only employed to 
identify flow direction using pairs of signals. We are aware that 
the problem of direct and indirect interactions may arise when 
considering multivariate signals [22]. We therefore plan to 
extend this work on TE for multivariate signals to solve this 
issue. 
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Fig. 1. Means of TE values in the first linear model. The x-axis 
is the value of radius r (in ln scale), and the y-axis is the value 
of TE (bits). (a) The orders are estimated by AIC. (b) The 
orders are estimated by BIC. (c) The orders are estimated by 
gAIC. (d) The orders are estimated by gBIC. Solid line: flow 
direction x→y, dotted line: flow direction y→x. 
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Fig. 2. Results on TE with the orders estimated by gBIC 
between signals x and y in the first linear model. (a) Plot of the 
mean of Cn,r with respect to n vs r (in ln scale), where C and r 
denote average joint probability and radius in the state space 
respectively. (b) Plot of TE (bits) vs radius r (in ln scale) (same 
as Fig. 1(d)). Solid line: flow direction x→y, dotted line: flow 
direction y→x. 
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Fig. 3. Means of TE values in the second linear model. (a) The 
orders are estimated by AIC. (b) The orders are estimated by 
BIC. (c) The orders are estimated by gAIC. (d) The orders are 
estimated by gBIC. Solid line: flow direction x→y, dotted line: 
flow direction y→x. 
 

-1.5 2   
0

6

(b)
 

 

2 → 1

1 → 2

-1.5 2   
0

6

(a)
 

 

2 → 1

1 → 2

-1.5 2   
0

6

(d)

 

 

2 → 1

1 → 2

-1.5  2   
0

6

(c)

 

 

2 → 1

1 → 2

 
Fig. 4. Means of TE values in physiology-based models where 
the models’ orders are estimated by BIC and gBIC. (a) 
Populations 1 and 2 are unidirectionally coupled and the orders 
are estimated by BIC. (b) Populations 1 a nd 2 a re 
unidirectionally coupled and the orders are estimated by gBIC. 
(c) Populations 1 and 2 are bidirectionally coupled and the 
orders are estimated by BIC. (d) Populations 1 a nd 2 a re 
bidirectionally coupled and the orders are estimated by gBIC. 



9 

Solid line: flow direction 1→2, dotted line: flow direction 
2→1. 
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Fig.5. Typical pattern of interictal-to-ictal transition induced by 
bicuculline in the guinea pig brain. (a) in medial entorhinal 
cortex (m-EC), (b) in perirhinal cortex (PRC). (c) and (d): fast 
onset activity on t he interval [30s,40s] extracted from m-EC 
and PRC, respectively. 
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TABLE V 
RESULTS ON TE AND PTE IN PHYSIOLOGY-BASED MODELS 

 TE PTE 
1→2 2→1 1→2 2→1 

Unidirectional 
BIC 5.0743 

(2.6330) 
3.6785 

(2.3692) 
0.5966 

(0.1002) 
0.4034 

(0.1002) 

gBIC 5.5393 
(3.0851) 

0.0000 
(0.0000) 

1.0000 
(0.0000) 

0.0000 
(0.0000) 

Bidirectional 
BIC 4.1299 

(3.3139) 
3.9693 

(3.1104) 
0.5017 

(0.1444) 
0.4983 

(0.1444) 

gBIC 4.2004 
(3.8541) 

2.8840 
(2.7001) 

0.5535 
(0.2447) 

0.4465 
(0.2447) 

 

TABLE VI 
MANN-WHITNEY TEST ON TE IN PHYSIOLOGY-BASED MODELS 

TE 

1→2 2→1 

p 

h, 
[expected 

value] 
p 

h, 
[expected 

value] 
Uni-
dir. 

BIC 8.01e-63 1, [1] 1.39e-56 1, [0] 
gBIC 2.74e-66 1, [1] 0.3197 0, [0] 

Bi- 
dir. 

BIC 6.35e-37 1, [1] 2.72e-34 1, [1] 
gBIC 3.41e-72 1, [1] 1.12e-65 1, [1] 

 

TABLE I 
RESULTS ON THE ORDERS ESTIMATED BY THE 4 DIFFERENT MEASURES IN 

THE FIRST LINEAR MODEL 
 qxx=2 qyx=0 qxy=3 qyy=2 

AIC 0/200 0/200 200/200 0/200 
BIC 0/200 0/200 200/200 0/200 

gAIC 189/200 174/200 200/200 190/200 
gBIC 200/200 200/200 200/200 200/200 

 

TABLE II 
RESULTS ON TE AND PTE FOR THE FIRST LINEAR MODEL 

 TE PTE 
x→y y→x x→y y→x 

AIC 65.1007 
(2.9843) 

14.3390 
(2.1793) 

0.8203 
(0.0179) 

0.1797 
(0.0179) 

BIC 65.1007 
(2.9843) 

14.3390 
(2.1793) 

0.8203 
(0.0179) 

0.1797 
(0.0179) 

gAIC 87.1233 
(7.5735) 

6.3522 
(17.2288) 

0.9542 
(0.1225) 

0.0458 
(0.1225) 

gBIC 88.4243 
(4.9077) 

0.0000 
(0.0000) 

1.0000 
(0.0000) 

0.0000 
(0.0000) 

 

TABLE III 
RESULTS ON THE ORDERS ESTIMATED BY THE 4 DIFFERENT MEASURES IN 

THE SECOND LINEAR MODEL 
 qxx=2 qyx=2 qxy=3 qyy=2 

AIC 0/200 0/200 200/200 0/200 
BIC 0/200 0/200 200/200 0/200 

gAIC 187/200 189/200 200/200 180/200 
gBIC 200/200 200/200 200/200 200/200 

 

TABLE IV 
RESULTS ON TE AND PTE FOR THE SECOND LINEAR MODEL 

 TE PTE 
x→y y→x x→y y→x 

AIC 57.2852 
(2.8155) 

19.5017 
(0.9358) 

0.7459 
(0.0097) 

0.2541 
(0.0097) 

BIC 57.2852 
(2.8155) 

19.5017 
(0.9358) 

0.7459 
(0.0097) 

0.2541 
(0.0097) 

gAIC 118.7760 
(22.1809) 

73.6934 
(19.0563) 

0.6182 
(0.0991) 

0.3818 
(0.0991) 

gBIC 125.5434 
(8.2244) 

77.1255 
(9.0390) 

0.6205 
(0.0147) 

0.3795 
(0.0147) 
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Annex A 
When adding different regressors in the model (see equation 

(A.1)) or modifying the values of the weighted coefficients 
(equation (A.2)), or increasing the delay from one signal to the 
other one (equation (A.3)), the new gBIC criterion remained 
robust and allowed for a better estimation of the transfer 
entropy (Tables A.1 to A.6) compared to the standard criteria. 
In all of these cases, the unidirectional flow was detected with 
accuracy. 

 1 2

2 3 2

0.95 2 0.9025
0.35 0.5 0.4

t t t t

t t t t t

x x x u

y x x y v

− −
− − −

 = − + = − + − + . (A.1) 

 

 

 1 2

3 2

0.95 2 0.9025
0.7 0.7

t t t t

t t t t

x x x u

y x y v

− −
− −

 = − + = − + . (A.2) 

 

 

 

 1 2

5 2

0.95 2 0.9025
0.7 0.7

t t t t

t t t t

x x x u

y x y v

− −
− −

 = − + = − + . (A.3) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE A.1 
RESULTS ON THE ORDERS ESTIMATED BY THE 4 DIFFERENT MEASURES IN 

EQUATION (A.1) 
 qxx=2 qyx=0 qxy=3 qyy=2 

AIC 0/200 0/200 200/200 0/200 
BIC 0/200 0/200 200/200 0/200 

gAIC 190/200 182/200 200/200 183/200 
gBIC 200/200 200/200 200/200 199/200 

 

TABLE A.2 
RESULTS ON TE AND PTE FOR THE MODEL IN EQUATION (A.1) 

 TE PTE 
x→y y→x x→y y→x 

AIC 34.5670 
(1.8184) 

5.9612 
(0.9828) 

0.8536 
(0.0176) 

0.1464 
(0.0176) 

BIC 34.5670 
(1.8184) 

5.9612 
(0.9828) 

0.8536 
(0.0176) 

0.1464 
(0.0176) 

gAIC 54.6408 
(5.1603) 

2.0719 
(5.6763) 

0.9711 
(0.0778) 

0.0289 
(0.0778) 

gBIC 55.7624 
(3.8396) 

0.0000 
(0.0000) 

1.0000 
(0.0000) 

0.0000 
(0.0000) 

 

TABLE A.3 
RESULTS ON THE ORDERS ESTIMATED BY THE 4 DIFFERENT MEASURES IN 

EQUATION (A.2) 
 qxx=2 qyx=0 qxy=3 qyy=2 

AIC 0/200 0/200 200/200 0/200 
BIC 0/200 0/200 200/200 0/200 

gAIC 188/200 183/200 200/200 193/200 
gBIC 200/200 200/200 200/200 200/200 

 

TABLE A.4 
RESULTS ON TE AND PTE FOR THE MODEL IN EQUATION (A.2)  

 TE PTE 
x→y y→x x→y y→x 

AIC 62.9057 
(2.6545) 

19.4879 
(2.1043) 

0.7640 
(0.0148) 

0.2360 
(0.0148) 

BIC 62.9057 
(2.6545) 

19.4879 
(2.1043) 

0.7640 
(0.0148) 

0.2360 
(0.0148) 

gAIC 84.4181 
(6.9006) 

5.6985 
(15.6086) 

0.9565 
(0.1154) 

0.0435 
(0.1154) 

gBIC 85.9249 
(4.4645) 

0.0000 
(0.0000) 

1.0000 
(0.0000) 

0.0000 
(0.0000) 

 

TABLE A.5 
RESULTS ON THE ORDERS ESTIMATED BY THE 4 DIFFERENT MEASURES IN 

EQUATION (A.3) 
 qxx=2 qyx=0 qxy=5 qyy=2 

AIC 0/200 0/200 200/200 0/200 
BIC 0/200 0/200 200/200 0/200 

gAIC 188/200 183/200 200/200 186/200 
gBIC 200/200 200/200 200/200 200/200 

 

TABLE A.6 
RESULTS ON TE AND PTE FOR THE MODEL IN EQUATION (A.3)  

 TE PTE 
x→y y→x x→y y→x 

AIC 34.8387 
(1.2853) 

3.8929 
(0.8332) 

0.8999 
(0.0192) 

0.1001 
(0.0192) 

BIC 34.8387 
(1.2853) 

3.8929 
(0.8332) 

0.8999 
(0.0192) 

0.1001 
(0.0192) 

gAIC 76.6072 
(8.1165) 

0.6591 
(3.3145) 

0.9918 
(0.0400) 

0.0082 
(0.0400) 

gBIC 78.6284 
(4.4936) 

0.0000 
(0.0000) 

1.0000 
(0.0000) 

0.0000 
(0.0000) 
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Annex B 
In the model described by (23), we extended the range of 

model orders by changing successively the values of one and 
only one of  the four orders xxq , yxq , xyq  and yyq  in the 

range [1; 6]. As discussed in Section III.A, the true model 
orders were 2=xxq , 0=yxq , 3=xyq , and 2=yyq . For TE 

calculation, when xxq  or yxq  is modified, only →Y XTE  can 

be theoretically impacted. In the same way, when xyq  or yyq  

is modified, only →X YTE  can be influenced. Consequently, 
we represented in Table B the means and standard deviations 
(shown in parentheses) of the corresponding TE estimated 
values at the specific radius to compare them with results 
displayed in Table II. As can be seen from this table, the 
unidirectional flow from signal x  to signal y  was perfectly 

detected whatever the value of xxq  as  →Y XTE  remained null. 
On the other hand, the transfer entropy from signal y  to 
signal x  was erroneous as soon as the order yxq  used for TE 

estimation differed from the true value, 0=yxq , not reported 

in the table, and leading to  0→ =Y XTE . Now, when 
analyzing the transfer entropy from signal x  to signal y  with 

a false value of xyq , the value of  →X YTE  was not as high as 

expected (all the more since the order was lower than the true 
one). In the same manner,  →X YTE  decreased drastically 
when the order yyq  was larger than the true value. To 

summarize, these examples illustrate the benefits that can be 
expected when selecting correctly the orders.  
 

 
 
 

TABLE B 

RESULTS ON TE WHEN 
* 0.5r e=  

order 1 2 3 4 5 6 
 →Y XTE , xxq  in the range [1; 6] 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

 →Y XTE , yxq  in the range [1; 6] 55.1835 
(5.7597) 

57.9085 
(6.5732) 

48.0994 
(5.9302) 

43.1869 
(5.4855) 

42.2638 
(5.6660) 

37.8527 
(5.4543) 

 →X YTE , xyq  in the range [1; 6] 15.3217 
(2.1962) 

67.2140 
(4.5509) 

90.4821 
(4.8040) 

86.8531 
(4.7981) 

82.5186 
(4.8169) 

81.7844 
(5.2656) 

 →X YTE , yyq  in the range [1; 6] 113.2201 
(5.6794) 

90.4821 
(4.8040) 

65.6312 
(2.9434) 

44.4543 
(1.5272) 

33.0680 
(1.2150) 

28.2080 
(1.1906) 
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