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Abstract— A localization system that exploits L1-GPS es-
timates, vehicle data, and features from a video camera as
well as lane markings embedded in digital navigation maps is
presented. A sensitivity analysis of the detected lane markings is
proposed in order to quantify both the lateral and longitudinal
errors caused by 2D-world hypothesis violation. From this, a
camera observation model for vehicle localization is proposed.
The paper presents also a method to build a map of the lane
markings in a first stage. The solver is based on dynamical
Kalman filtering with a two-stage map-matching process which
is described in details. This is a software-based solution using
existing automotive components. Experimental results in urban
conditions demonstrate an significant increase in the positioning
quality.

I. INTRODUCTION

Currently, there is much interest on vision-based and map-

aided vehicle localization due to the availability of detailed

digital navigation maps. Vehicle location tasks can be clas-

sified into three task level scales according to the required

accuracy: Macroscale, Microscale and Mesoscale [1]. Differ-

ent driving functions need different scales. Macroscale needs

an accuracy of 10 m and interests resides on tasks that can

be made using digital road network data. At the mesoscale,

the required resolution accuracy is at the decimeter level;

this is equivalent to lane-level accuracy for a digital map

[1]. Different research endeavours exist on building lane-

level maps [2], [3]. Having accurate maps allows their use

for contextualization and localization for intelligent vehicle

applications.

From an autonomous navigation perspective, microscale

tasks are concerned with lane-keeping or parking functions,

as well as detecting and avoiding obstacles. For this, most

applications use computer vision and lidars and do not

require map objects to be geo-referenced. To position in real-

time a vehicle with decimeter-level accuracy for a microscale

task is a major challenge. The sole use of differential GNSS

receivers (e.g. GPS) cannot guarantee the required accuracy

during the whole task, particularly if GNSS outages exist.

Several sensor fusion approaches have been explored. These

rely often on the use of GPS, Inertial Measurement Unit

(IMU), vehicle odometry and digital maps [4]-[5].

Lane-level digital maps represent a lane by its centre-line

[2], [3]. These are built using a vehicle with a high accuracy

localization, typically a RTK type GPS receiver plus a high

end IMU. Each lane is surveyed by driving as close as

possible to its centre, resulting in some errors. Another

approach is to map features on the road with a mobile
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mapping vehicle equipped with a high accuracy localization

system and calibrated vision sensors [6].

All roads have different types of lane markings. These

are painted in a symmetrical manner and following national

standards [7]. Therefore, the vehicle does not need to follow

the centre-line of the road during mobile mapping. Lane

markings have similar properties with road centre-lines both

are clothoids. They can be simplified to polylines having a

limit number of shape points. In this paper, we exploited

these characteristics to embed lane level information into

digital maps and their extraction from video images [8], [9].

Both are applied to improve the localization function.

The remainder of the paper is organized as follows:

Section II introduces the system model for lane marking

measurements including a camera model that takes into

account for vertical motion of the camera used to extract lane

markings. Section III describes the mobile mapping process

for building a digital map of the lane markings that is to

be used as source of lateral constraints in the localization

estimates. Section IV describes the map aided localization

solver. Section V includes results from a series of road

experiments using a passenger vehicle. Finally, Section VI

concludes the paper.

II. LANE MARKING MEASUREMENTS

A. Frames

The system exploits GPS information expressed in global

geographic coordinates. All estimations are made in Carte-

sian coordinates with respect to a local navigation frame

RO tangent to the Earth surface. Defined with its x-axis

pointing to the East, y-axis to the North and z-axis oriented

upwards with respect to the WGS84 ellipsoid. Its origin can

be any GPS position fix close to the navigation area. As

this point can be chosen arbitrarily close to the navigation

area, the trajectory can be considered as planar in 2D. Two

more frames as shown in Fig. 1 are needed. RM denotes the

vehicle reference frame (xM is the longitudinal axis pointing

forward and yM is oriented such that zM points upwards).

Point C represents the origin of the camera frame RC located

at the front of the vehicle. To stay consistent with the vision

system conventions, yC is right-hand oriented. Even if the

camera is located behind the windscreen with a position

offset (Cx;Cy), every detected lane marking is expressed

w.r.t. RC .

Let denote MTC the homogeneous transformation matrix

mapping RC in RM and OTM the one mapping RM in RO.
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Fig. 1. Reference frames. [A; B] is a detected lane marking segment.

B. Intrinsic and extrinsic parameters sensitivity analysis

In practice, the camera is attached to the body of the

vehicle which is itself a suspended mass. So, the 2D-world

hypothesis can be easily violated. However, when a camera is

correctly installed behind the windshield, the camera roll and

yaw angles are very small and can be easily compensated by

calibration and image warping. But when the vehicle crosses

a speed bumper, both the altitude and the tilt angle of the

camera frame undergo changes (see Fig. 2). The same issue

appears when the slope of the road changes or when the

vehicle accelerates or breaks. Moreover, the height of the

camera also depends on the load of the vehicle. Finally, some

calibration errors related to the camera intrinsic parameters

may occur.
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Fig. 2. Parameter variation while climbing a speed bumper

So, it is crucial to evaluate the sensitivity of the parameters

involved in the development of lane marking measures

particularly the tilt angle and the height w.r.t. the road.

1) Nominal model with the camera parallel to the road:

In the camera frame RC , the equation of a detected lane

marking can be written as (by considering a first order

Taylor’s expansion of a clothoid in the camera frame [8]):

{
y = C1 · x+ C0

z = h
(1)

Where C0 and C1 are respectively the lateral distance and

the heading of the detected lane marking and h is the height

of the camera w.r.t. the road.

In the image plane, using perspective projection, we have:

{
u = f · y

x
+ u0

v = f · z
x
+ v0

(2)

with f the focal length, and [u0, v0]
T

the coordinates of

the principal point.

By plugging Eq. 1 into Eq. 2, we can get:

u− u0

f
= C1 +

C0

x
(3)

and

x =
h · f

v − v0
(4)

By plugging Eq. 3 into Eq. 4, we get:

u−
C0

h
· v +

C0 · v0

h
− u0 − C1 · f = 0 (5)

The equation of the detected lane marking [8], [9], ex-

pressed in image plane is:

ap · u+ bp · v + cp = 0 (6)

where ap, bp and cp are the line coefficients. By comparing

Eq. 5 and Eq. 6, we can get:

{
C0 = −

h·bp
ap

C1 = −
ap·u0+bp·v0+cp

ap·f

(7)

2) The camera is tilted downward: Let suppose that the

camera is tilted downward (or upward) with an angle β.

In the camera frame RC , the equation of a detected lane

marking can be written as:
{

y = C1 · (x · cosβ − z · sinβ) + C0

x · sinβ + z · cosβ = h
(8)

We can get:

{
C0 = −

h·bp·f+(ap·u0+bp·v0+cp−f ·bp·tanβ)·h·sinβ
ap·f ·cosβ

C1 = −
ap·u0+bp·v0+cp−f ·bp·tanβ

ap·f

(9)

3) Sensitivity analysis: In this subsection, β, f , h , C0

and C1 stand for the nominal values of these five parameters,

and β+δβ, f+δf , h+δh , C0+δC0 and C1+δC1 are their

true values. We suppose that the range of C1 is [−0.3, 0.3]
rad and the range of C0 is [−127, 128] meters. Let study the

sensitivity to β, f and h.

• Sensitivity to β{
δC0

C0

=
ap·C1·[tan(β+δβ)−tanβ]−bp·[sec(β+δβ)−sec(β)]

ap·C1·tanβ−bp·secβ

δC1

C1

=
bp·[tan(β+δβ)−tanβ]

apC1

(10)

Let suppose that a straight line in the image plane meets:
bp
ap

= −1. In order to see the sensitivity clearly, an example

is given in Table I.

δβ

β
0.4 1 2∣∣ δC0

C0

∣∣ 0.014 0.037 0.083∣∣ δC1

C1

∣∣ 0.118 0.296 0.602

TABLE I

SENSITIVITY ANALYSIS WITH h = 1.5m, C1 = 0.3 rad, β = 5 degree

As shown by Table I, C1 is very sensitive to an error in

β, but C0 is not.

• Sensitivity to f



{
δC0

C0

=
bp·tanβ·sinβ−C1·ap

bp−C1·ap·sinβ
· δf
f+δf

δC1

C1

=
bp·tanβ−ap·C1

ap·C1

· δf
f+δf

(11)

Taking the relationship
bp
ap

= −1, and the ranges of C0

and β into consideration, one can easily find that C0 is not

sensitive to an error in f , but C1 could be very sensitive to

it.

• Sensitivity to h

{
δC0

C0

= − δh
h

δC1

C1

= 0
(12)

In this case, the error on parameter C0 is directly related to

the height variation.

As a conclusion:

• a C0 error is proportional to an error in h but δh has a

variation limited to few centimeters in normal driving

conditions;

• C1 is sensitive to errors on f and β. The influence of

the intrinsic parameters of the camera is limited but the

tilt angle is a crucial parameter even in normal driving

conditions.

So, we believe that C0 is an accurate measure while C1

should be used with caution. A way to exploit it accurately

could be to use an IMU providing an estimate of β or to

estimate vanishing points using vision [10].

C. Camera measurement

As mentioned previously, the measurement used for vehi-

cle localization is the lateral distance C0 (see Fig. 1).

In Fig. 1, [A; B] is the detected lane marking segment

which has been extracted from a digital map by a map

matching process. In RO, the equation of segment [A; B]

is:

y = a · x+ b

In RC , the homogeneous coordinates of point L (see Fig.

1) are CL = [0, C0, 1]
T

. So, OL =O TM
MTC ·

C L are the

homogeneous coordinates of point L in frame RO:

OL =




P x · cosθ + C0 · sinθ + x

P x · sinθ − C0 · cosθ + y

1


 (13)

where P x is a translation from point M to the bumper.

Because point L is on the segment [A; B], OL verifies the

equation of the line y = a · x+ b which gives:

C0 =
P x · sinθ − a · P x · cosθ − a · x+ y − b

a · sinθ + cosθ
(14)

The singularity due to a division by zero means that the

detected line is perpendicular to the vehicle which can never

occur in practice.

III. BUILDING A MAP OF LANE MARKINGS

The localization solver can be assisted by providing a

lateral constraint; this can be made using an accurate digital

map that includes geo-localized lane markings. For real-time

purposes, a limited number of parameters must represent the

map line segments.

By definition, mobile mapping is the process of collecting

geospatial data from a vehicle, typically fitted with a range

of video cameras, radars, lasers or any number of remote

sensing systems. All sensors data are acquired and time-

stamped, the results are fused and road features are extracted.

These are localized accurately mainly using a high-precision

localization system (i.e. RTK-GPS, IMU, vehicle odometry).

In this paper, we collect lane features using a driving

assistance series video camera that provides attributes of the

clothoides detected when collecting data.

In the following, we describe the main steps that are

involved in the map building stage. Please note that every

lane of a carriageway can have two lane markings.

A. Referencing detected lane markings

As the mobile mapping is done in post-processing, it

is quite easy to synchronize the positioning data with the

camera measurements by interpolating the trajectory after

having compensated the clock drift of the acquisition system

with respect to the GPS time. This allows geo-referencing

every detected lane marking point L in RO by using Eq.13.

B. Clustering points by lanes

In this paper, we propose to fit the lane marking points

into polylines instead of higher order curves (which could

fit lane markings better) since:

• the camera observation model described in section II-C

is based on line segments;

• polylines need less parameters than high-order curves,

so it is more efficient.

Points are graphically regrouped by polylines. Keeping in

the map every mapped point can provide a huge amount of

data which will not be efficient for real-time navigation par-

ticularly in the map-matching stage. Therefore, the obtained

clusters of marking points are simplified. In the following,

we describe the key stages to do this simplification.

C. Polylines segmentation

We need to find the shape points of the simplified poly-

lines. In other words, we need to identify the segments.

Between every two adjacent shape points, there is a segment,

with a certain bearing, which stands for a length of lane

marking. The Douglas–Peucker’s algorithm [11] is a well

known algorithm for reducing the number of points in a

curve that is approximated by a series of points. It’s used

here to find the shape points which divide the lane marking

into parts with different headings. In this stage, the accuracy

is controlled by choosing suitable tolerance which is the

maximal euclidean distance allowed between the simplified

segments and the origin points.
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Fig. 3. Illustration of the 2 stages lane marking fitting. The tolerance is
20 centimeters.

Let consider the example described in Fig. 3. p is a set of

lane marking points. By using Douglas–Peucker’s algorithm,

one can obtain shaping points ps1, ps2 and ps3 which are

three points chosen from p. For every point between ps1
and ps2, their Euclidean distances to segment [ps1; ps2] are

smaller than the tolerance, the same stands for the points

between ps2 and ps3.

If we choose a very small tolerance, the segments in a

polyline can be too short, and there can be too many shape

points in the polyline. For this reason, we propose to choose

a tolerance of decimeter-level.

D. Improving map accuracy

In order to further improve the accuracy of the polylines by

reducing the errors effects due to the segmentation process,

a least-squares algorithm is performed with every point

between two adjacent shape points of the segmented polyline.

For instance, in Fig. 3, one can notice that every point

between ps1 and ps2 is above segment [ps1; ps2].
Let consider a polyline with n points. After n − 1 least-

squares stages, n − 1 new straight lines are formed (blue

lines in Fig. 3). It is then necessary to retrieve the nodes

(endpoints) and shape points of the new polyline. There are

two cases. The intersection of two successive lines define a

new shape point (e.g. ps
′

2). By convention, the new nodes

are defined as the orthogonal projection of the previous node

on the new line (e.g ps
′

1). To come back to the example, the

new polyline is
[
ps

′

1; ps
′

2; ps
′

3

]
at the end of the process. It

is the result that is finally stored in the digital map.

The algorithm 1 resumes this process.

E. Modifying the clustering stage

In order to perform the Douglas–Peucker’s algorithm [12],

it should be noticed that the set of points has to be linked

by a function (i.e. each abscissa value must have only one

image). It means that the points in the same cluster have to be

arranged in a way that the x-coordinates are monotonically

increasing or decreasing. Therefore, lane markings sets have

to be divided into subsets when this condition is not verified.

The Fig. 4 gives an example.

As a conclusion, the clustering described in subsection

III-B is modified as follows:

Algorithm 1 Polyline fitting algorithm

Input: set of points p in the working frame R0

Output: shape points ps
′

of the polyline

1)
(
ps1, ... , psn

)
= dpsimplify(p, tolerance)[12]

2) For i = 2 to n

3) linei−1 ←Least_squares_fitting(points between

psi−1 and psi)

4) If i 6=n

5) ps
′

i ←intersection of linei−1 and linei
6) End if

7) End for

8) ps
′

1 ←orthogonal projection of ps1 on line1
9) ps

′

n ←orthogonal projection of psn on linen−1

10) Return
(
ps

′

1, ... , ps
′

n

)

−852 −850 −848 −846 −844 −842
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−1620

−1600

−1580

−1560
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y 
(m

)

−1680

set 1
set 2

Fig. 4. Example where consecutive points of the same lane marking are
divided into two clusters

• the points in one set have to physically belong to the

same lane marking;

• the points in one set should meet the requirement of a

function because of the Douglas–Peucker’s algorithm;

• the points in one set should be close to each other. In-

deed, when doing the collection of lane marking points,

the camera can miss some lane markings, especially

when the vehicle is making a turn. So, the distance

between two following points in one set can be high

and the resulting segment between them can be far from

the real lane marking.

In practice, in order to do a good quality mapping, the lane

marking points are divided into suitable different clusters

under human supervision.

Please note that some close lane marking detections may

belong to two sides of the same physical marking. In this

case, we fit both edges of the lane marking. This can occur

when the marking is located between two adjacent lanes (See

Fig. 5). As an example: when the vehicle is traveling on lane

1, it detects segment 2; when traveling on lane 2, it detects

segment 3; these two segments are two edges of the same

lane marking located between lane 1 and lane 2.

F. Normal angle of lane marking segments

Each lane can have two border lines, both of them mapped

into two polylines. Fig. 5 gives an example. The four blue
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Fig. 5. Lane marking map of a two-lanes roadway

straight-line segments are part of the lane marking map.

Please remind that both sides of the central lane marking

are mapped. Segment 1 and 2 are two border lines of lane

1; segment 3 and 4 are two border lines of lane 2.

In order to improve the map-matching process when the

vehicle is traveling, a normal vector is defined for every

segment. By convention, it is perpendicular to the segment

and it points to the lane center-line (See red arrows in Fig. 5).

In practice, this vector can be managed by an angle denoted

ϕ which is by convention defined w.r.t. the x-axis of frame

RO with a range [0, 2π].

IV. MAP-AIDED LOCALIZATION

In this section, we present the key stages of the localization

system that uses L1-GPS loosely coupled with proprioceptive

sensors and lane marking detections map-matching with a

previously built map.

A. Localization solver

Fig. 6 shows the structure of the localization solver. X̂ is

the estimated state, and P is the estimated covariance matrix.

The inputs are:

• proprioceptive data, i.e. linear and angular velocities

provided by the ABS wheel speed sensors and the ESP

yaw rate gyro made accessible through a CAN bus

gateway,

• L1-GPS (mono-frequency receiver with C/A pseudo-

ranges) with PPS for time synchronization and latency

compensation,

• camera observations C0,

• map of the lane markings obtained by using the method

described in section III.

The data fusion is realized by using an Extended Kalman

Filter (EKF) with innovation gates, a well-known technique

that consists to reject observations that are away from the

prediction from a statistical point of view.

A classical unicycle model is used to predict the vehicle

pose. GPS errors (biases) are also estimated by the lo-

calization solver. Let [xgps, ygps]
T

denote the measurements

X P X P X P

Fig. 6. Diagram of the localization solver

provided by the GPS receiver. The used observation model

is {
xgps = x+ εx
ygps = y + εy

(15)

where εx and εy are the colored errors of GPS fixes that are

added to the Kalman state vector X = [x, y, θ, εx, εy]
T

.

The camera observation model has been described in

section II-C. Hereafter, we detail the map-matching process

and an internal integrity test used to reject miss-matches if

they occur.

B. Map-matching

Generally, map-matching algorithms integrate positioning

data with spatial road network data (roadway centre-lines) to

identify the correct link on which a vehicle is traveling and

to determine the location of a vehicle on a link [13].

When the vehicle is traveling on a lane with lane markings,

the camera is supposed to be able to detect one or both

border lines of the lane. Map-matching here is to determine

which are the segments in the built lane marking map that

the camera have detected. It works by sequentially applying

each stage described in the following.

1) Lane side selection: This is the first step of the process.

The idea is to select only the polylines that are on the correct

side. Conceptually, it works as if every candidate solution is

located inside the lane in order to consider only angles. Let

take Fig. 5 as an example. The vehicle is traveling following

the green arrow direction but we don’t know in which lane.

With the normal angle of the lane marking segment defined

in subsection III-F, one can calculate on which side of

vehicle the segment is located:

side =





left,
−π ≤ θ − ϕ ≤ 0

or
π ≤ θ − ϕ ≤ 2π

right, otherwise

(16)

where the range of θ (vehicle heading angle) is [0, 2π].
The detected lane markings are easily localized on left or

right:

side =

{
left, C0 ≤ 0
right, C0 > 0

(17)

Only when the calculated side by Eq. 16 is the same as the

lane side provided by C0, the segment can be chosen as a

candidate.

Let suppose that the camera gives a measurement C0 < 0,

which means a lane marking detection on the left side. Only
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Fig. 7. Experimental vehicle

segment 2 and 4 can be chosen as the candidate segments.

This guarantees that the vehicle always lies in the region of

the road after a correction of camera observation.

2) Matching degree of candidate segments: To do the

selection among the candidates, for each candidate segment,

a matching degree D = D
(
C0, Ĉ0

)
is defined based on the

Mahalanobis metric using only the lateral distance (since the

heading is sensitive to errors as shown before):

D =
(
C0 − Ĉ0

)T (
HPHT +R

)
−1

(
C0 − Ĉ0

)
(18)

where:

• Ĉ0 is the predicted camera measurement using the cam-

era observation model and X̂ after the GPS correction;

• R is the covariance of the observation noise;

• H is the Jacobian matrix of the camera observation

model at X̂ after the GPS correction.

The most probable segment is selected by the minimization

of D.

3) Innovation gating: The Mahalanobis metric defined in

subsection IV-B.2 is also used for integrity check. Only when

the Mahalanobis distance is less than a threshold, camera

measurements can be regarded as a good lane marking

detection, and the observation C0 can be used to correct the

estimated state by GPS and IMU. This integrity test is useful

to exclude wrong lane marking detections and mismatches.

V. RESULTS

Outdoor experiments have been carried out in the city of

Compiègne (France). Fig. 7 shows the experimental vehicle.

It should be noticed that the weather was cloudy.

A. Experimental set-up

The experimental vehicle was equipped with a NovAtel

RTK-GPS receiver coupled with a SPAN-CPT IMU running

at 10Hz. The system received RTCM 3.0 corrections through

a 3G connection from a GPS base station Septentrio Po-

laRx2e@ equipped with a Zephyr Geodetic antenna. This

high accuracy system (few tens of centimeter) was used

during the mobile mapping process. It also provided ground

truth data for the localization method. The station was

located at the research center in Compiègne. It was the origin

O of the local coordinate system (latitude 49.4◦, longitude

2.796◦, ellipsoidal height 83 m). A CAN-bus gateway was

used to access to wheel speed sensors (WSS) and to a

yaw rate gyro. A Mobileye camera was used to detect the

lane markings, on the basis of lane detection function of

Mobileye’s Lane Keeping and Guidance Assistance System

(LKA). The output is described in Mobileye’s LKA common

CAN protocol. The low-cost GPS was a U-blox 4T with a

patch antenna with no EGNOS correction.

B. Mobile mapping results

We performed two paths on the same road (one-way

double lane). The length of the path is 3736 m. The vehicle

passed three crossroads and a fork road. During the first path,

lane marking points have been collected to make the digital

map. The second path is used to test the localization solver.

Fig. 8 shows the obtained lane marking map (blue lines).

Fig. 8. Map of a test site superimposed on an Open Street Maps image

One can notice that the blue lines are quite consistent

with the lane markings on the road. Though not all the

lane markings are mapped (only one path is used for mobile

mapping and the camera also missed some lane markings,

especially at the crossroads), this map is enough to test the

performance of the localization system proposed in section

IV.

C. Localization results

The localization solver described in section IV has been

tested by using data replay.

Fig. 9 shows changes of localization errors on x and y

over time, plotted with ±3σ bounds (red lines) to show how

the filter is well tuned.

Fig. 10 shows lateral and longitudinal positioning errors.

Three methods are compared: L1-GPS (green lines), IMU

coupled with L1-GPS (red lines) and map-aided localization

(black lines). The blue/green points indicate there are good

lane marking detection on left/right side at the moment.

One can see that, first, the data fusion of GPS with CAN
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Fig. 9. Positioning errors on x and y

sensor enhances the accuracy. Second, the use of the camera

with the mapped lane marking increases significantly the

performance.
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Fig. 10. Lateral and longitudinal positioning errors

Table II gives performance metrics of the localization

solver. Logically, lateral accuracy is highly improved since

the camera observation C0 is relative to the lateral distance

between the vehicle and the detected lane marking. One can

notice that longitudinal accuracy is also improved by the

camera system due to heading variations of the path. Camera

observations are available 45.9% of the time. 95% horizontal

positioning error is less than 1.25 m.

VI. CONCLUSION

A localization solver based on the use of road lane mark-

ings has been presented. It is based on information stored

on road lanes in the form of polylines in an a priori map.

The uniqueness of our solution is that it exploits information

from detected lane markings from a driving assistance series

Horizontal PE (m) Lateral PE (m) Longitudinal PE (m)

I II I II I II

mean 2.74 0.54 1.49 0.26 1.96 0.39

std. dev. 1.23 0.39 1.26 0.34 1.16 0.39

max 4.85 1.56 3.92 1.56 4.31 1.46

median 3.23 0.53 1.09 0.11 1.74 0.36

95th percentile 4.23 1.25 3.73 1.06 3.76 0.94

TABLE II

ERROR STATISTICS. (PE: POSITIONING ERROR; I: RESULTS WITHOUT MAP; II:

RESULTS WITH MAP)

video camera. This information is matched to the information

stored in the navigation maps and then used to assist the

estimations of a L1-GPS receiver together with vehicle

proprioceptive data. The importance of height variations of

the video camera due to road profiles has been demonstrated

and so measured camera relative heading angles have to

be considered carefully. So, we recommend only the use

of lateral distance. Results in real traffic conditions have

shown the high potential of the proposed approach. Future

work resides on enhancing results when approaching tight

curves when road markings are difficult to extract. Envisaged

applications are on actuating advanced driving assistance and

autonomous driving.
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