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Mapping and localization using GPS, lane markings and proprioceptive

sensors

Z. Tao1,2, Ph. Bonnifait1,2, V. Frémont1,2, J. Ibañez-Guzman3

Abstract— Estimating the pose in real-time is a primary func-
tion for intelligent vehicle navigation. Whilst different solutions
exist, most of them rely on the use of high-end sensors. This
paper proposes a solution that exploits an automotive type L1-
GPS receiver, features extracted by low-cost perception sensors
and vehicle proprioceptive information. A key idea is to use the
lane detection function of a video camera to retrieve accurate
lateral and orientation information with respect to road lane
markings. To this end, lane markings are mobile-mapped by
the vehicle itself during a first stage by using an accurate
localizer. Then, the resulting map allows for the exploitation of
camera-detected features for autonomous real-time localization.
The results are then combined with GPS estimates and dead-
reckoning sensors in order to provide localization information
with high availability. As L1-GPS errors can be large and
are time correlated, we study in the paper several GPS error
models that are experimentally tested with shaping filters.
The approach demonstrates that the use of low-cost sensors
with adequate data-fusion algorithms should lead to computer-
controlled guidance functions in complex road networks.

I. INTRODUCTION

Localization is an important issue in current intelligent

vehicles research activities. An accurate and reliable local-

ization is the basis of vehicle navigation. A vast number

of localization methods can be found in the literature. A

comprehensive overview is given in [1].

If no a priori map data is used in the localization pro-

cess, methods can be divided into two categories: GPS/INS

integration method [2] and Simultaneous Localization And

Mapping (SLAM) methods. The benefits of integrating GPS

with INS are that INS may be calibrated by GPS signals and

can provide position and orientation updates at a quicker rate

than GPS. GPS may lose its signal due to outages. INS can

continue to compute the position and orientation during the

period of lost of the GPS signal. Performance of GPS/INS

integration method mainly depends on the quality of INS,

but a high-performance INS is usually expensive. Dead-

reckoning (DR) sensors already installed on automobiles can

be used instead. SLAM enables the vehicle to build an on-

line map and update the map over time. SLAM has been

used a lot with laser scanners. Its feasibility has been proved

in outdoor experiments [3], [4].

Nowadays, with the development of refined digital maps,

vision-based and map-aided vehicle localization has been a

research trend, in combination with GPS and proprioceptive

sensors. Many methods have been proposed in literature. [5]

develops an algorithm which directly transforms map feature

data into an image of map features, the incorporation of
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Fig. 1. Automotive systems used for mapping and localization

the map information is moved from feature level to signal

level. [6] integrated OpenStreetMap data into the robot tasks

of localization, and in [7] a multi-camera system has been

developed for outdoor localization.

In this paper, we use automotive sensors that have CAN-

bus interfaces. In Europe, every new vehicle must be

equipped with an Electronic Stability Program (ESP) since

January 2012, and Anti-lock Braking System (ABS) has

been part of standard equipments in earlier times. These two

systems contain a wealth of proprioceptive sensors which

are capable of measuring vehicle rotation, individual wheel

speeds and lateral acceleration, etc.. These sensors can be

used as DR sensors. Modern automobiles (Fig. 1) can be

also often equipped with a Lane Departing Warning System

(LDWS) and turn-by-turn GPS navigation. LDWS provides

on the CAN bus lane type, quality of the detection, lane

position, lane marking’s curvature, curvature derivative and

host heading relative to lane marking. The GPS used by the

turn-by-turn navigation system is reused by our localization

system. Therefore, the localization system studied in this

paper reuse sensors already installed for other automotive

functions.

The fusion of all these existing sensors gives the possibility

to improve the localization and navigation performance.

Integration of a low cost L1-GPS receiver (mono-frequency)

and DR sensors is quite easy to achieve but provides insuffi-

ciently accurate results. In order to integrate exteroceptive

perception of the environment in the vicinity, we use a

video camera that detects lane markings since this kind of

feature is well adapted to road conditions. Moreover, we

are interested in applications where the vehicle can learn

a precise map (currently available commercial maps present

serious lacks of accuracy, contents and completeness to be

applicable in high-demanding applications) when driven by

a human operator in a first stage. Then, the vehicle uses this

map for autonomous navigation, so SLAM is not necessary.



Moreover, during the learning stage the vehicle can exploit

an accurate localization system in order to get an accurate

map. This accurate localization system is not needed any

more when the vehicle navigates autonomously since it is

able to infer an accurate positioning using its map and an

embedded exteroceptive sensor like a camera. So, this paper

proposes to use road lane marking information and an a priori

digital map of the lane markings which is made by mobile

mapping [8]. An observation model of camera measurement

is proposed in section II-D. The lane detection result provides

accurate localization information which is both redundant

and complementary with GPS information. Unfortunately,

due to the fact that lane markings are not always available on

roads, GPS information has to be used as much as possible

even if it can be affected by large errors which can affect

deeply the result of the data fusion process. So, a crucial

issue is to model and estimate GPS errors. We study in

this paper several GPS error models and we prove that each

of them is observable. Shaping filters are then used in the

localizer.

The paper is organized as follows. Section II introduces

the system modeling with the model of camera measurement.

Section III describes the mobile mapping process for building

a digital map of the lane markings. Section IV gives a de-

scription of three GPS error models. After having described

the localizer that performs the data fusion, results of real

outdoor experiments are presented in section VI. Conclusions

on system performance and GPS error modeling are given

in section VII.

II. SYSTEM MODELING

A. Navigation frame

As the system exploits global GPS information in geo-

graphic coordinates, a local navigation frame RO tangent

to the Earth is useful to manipulate classical Cartesian

equations.

RO is defined to have its x axis pointing to the East, y to

the North and z oriented upwards with respect to the WGS84

ellipsoid.

Its origin can be any GPS position fix close to the

navigation area. Moreover, as this point can be chosen

arbitrarily close to the navigation area, one can suppose that

the trajectory is planar in 2D.

Any mapping or localization problem will be expressed,

in the following, in this local coordinate system.

B. Frames attached to the mobile

Two more frames have to be defined (see Fig. 2). RM

denotes the mobile vehicle reference frame (xM is the

longitudinal axis pointing forward and yM is such that zM
is upwards). Point C, the origin of the camera frame RC ,

is located at the front of the vehicle since camera systems

do often auto-calibration. In order to stay consistent with

vision system conventions, yC is right-hand oriented. Even

if the camera is located behind the windscreen with a position

offset (Cx, Cy), every detected lane marking is expressed in

RC .

P x is a translation from point M up to the bumper.

Let denote MTC the homogeneous transformation matrix

mapping RC in RM :

MTC =





1 0 P x

0 −1 0
0 0 1



 (1)

The transformationOTM maps RM in RO:

OTM =





cosθ −sinθ x
sinθ cosθ y
0 0 1



 (2)

Let define q = (x, y, θ)
T

the vehicle’s pose which includes

position (x, y) and heading angle θ.

C. Kinematic model

Under the assumption that the rear wheels do not slip,

the speed vector is collinear to xM , which conducts to the

classical unicycle model:






ẋ = v · cosθ
ẏ = v · sinθ

θ̇ = ω
(3)

where the inputs are the linear velocity v and the angular

velocity ω . They are measured by the wheel speed sensors

(ABS system) and the yaw rate gyro (ESP system). They are

provided to several sub-systems of the vehicle through the

CAN bus.

As we use a low cost yaw rate gyro, its drift rate εω
is modeled by a random constant [9]. The dynamic model

becomes:














ẋ = v · cosθ
ẏ = v · sinθ

θ̇ = ω − εω
ε̇ω = 0

(4)

Even if the drift rate εω is affecting an input of the system,

it is easy to prove its observability with a lateral distance

measurement.

D. Camera measurements

We consider a camera system which provides the follow-

ing lane marking parameters of a Taylor’s expansion of a

clothoid in the camera frame [10]:

y = C3 · x
3 + C2 · x

2 + C1 · x+ C0 (5)

Where C0, C1, C2 and C3 are respectively the lateral

distance, the slope, the curvature and the curvature derivative

of the detected lane marking.

The parameters that are used for vehicle localization are

the lateral distance C0 and the heading C1 (see Fig. 2).

Observations provided by the camera system are denoted

Ycam = [C0, C1]
T

.

Let us establish observation models between Ycam and the

pose vector q.

In Fig. 2, [AB] is the detected lane marking segment which

has been extracted from the digital map by a map matching

process. In RO, the equation of segment [AB] is:
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Fig. 2. Frames. [AB] is a detected lane marking segment.

y = a · x+ b

where a and b are the line coefficients. Let α be the slope

angle of segment [AB], α ∈
[

−π
2
, π
2

]

.

C1 =

{

α− θ, |α− θ| ≤ π
2

α− θ + π · sign (θ) , |α− θ| > π
2

(6)

In RC , the homogeneous coordinates of point L (see Fig.

2) are CL = [0, C0, 1]
T

. So, OL =O TM
MTC ·C L are the

homogeneous coordinates of point L in frame RO:

OL =





P x · cosθ + C0 · sinθ + x
P x · sinθ − C0 · cosθ + y

1



 (7)

Because point L is on the segment [AB], OL verifies the

equation of the line y = a · x+ b which gives:

C0 =
P x · sinθ − a · P x · cosθ − a · x+ y − b

a · sinθ + cosθ
(8)

Please notice that the singularity due to a division by zero

means that the detected line is perpendicular to the vehicle

which can never occur in practice.

III. MOBILE MAPPING

The positioning system needs an accurate digital map of

the road network. For real-time efficiency, the map consists

of line segments which represent the lane markings on the

road. By definition, mobile mapping is the process of col-

lecting geospatial data from a mobile vehicle, typically fitted

with a range of photographic, radar, laser or any number

of remote sensing systems. Such systems are composed of

a set of time synchronized navigation sensors and imaging

sensors mounted on a mobile platform. Mobile mapping is

often assisted by a human operator.

The mobile mapping system used in this approach only

needs to equip the vehicle with a RTK-GPS receiver aided

by an Inertial Measurement Unit (IMU) in order to get

Fig. 3. Map of a test site superimposed on an Open Street Maps image

an accurate pose estimation of the body frame. The vision

system (the same one as the system used by the localization

system) detects lane markings and provides parameters of

the clothoids that are recorded during the trial.

As mobile mapping is done in post-processing, it is quite

easy to synchronize the positioning data with the measure-

ments of the camera by interpolating the trajectory after

having compensated the clock drift of the acquisition system

with respect to the GPS. This allows georeferencing every

detected lane marking point L in RO.

Let denote [xL, yL]
T

the coordinates of point L in RO. It

can be mapped using (Eq.7) which gives:

[

xL

yL

]

=

[

P x · cosθ + C0 · sinθ + x
P x · sinθ − C0 · cosθ + y

]

(9)

It can provide a huge amount of data, which will not

be efficient for real-time navigation, to keep every mapped

lane marking point in the map. Therefore, the obtained lane

marking points are vectorized and filtered to build a precise

vector map by using the Douglas-Peucker’s algorithm [11]

and a least squares algorithm. Douglas–Peucker’s algorithm

is a well known algorithm for reducing the number of points

in a curve that is approximated by a series of points. It’s

used here to divide the lane marking points into parts with

different slopes. The origin set of points p is simplified to ps
(vertexes of simplified line) with a certain tolerance (maximal

euclidean distance allowed between the simplified line and

an origin point).

As this segmentation algorithm is noise sensitive, a least

squares algorithm is then performed on the lane marking

points between the two endpoints of every simplified line

in order to increase the accuracy of the map. Let [ps1ps2]

be one of these simplified lines. If pl denotes every lane

marking points between points ps1 and ps2, by using a least

squares fitting on pl, one gets a new estimation of the line.

The intersection of the new estimated lines provides new

segment [ps
′

1
ps

′

2
] which is finally stored in the digital map

(blue lines in Fig. 3).
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IV. GPS ERRORS

As well known, loosely coupling L1-GPS1 with other

sensors is a challenging task since GPS positioning errors

are not white, can be affected by strong biases (due to

atmosphere propagation delays) and multi-path, particularly

in urban areas. Fig. 12 (the red line displays L1-GPS

position errors) illustrates these issues: wrong biases can

affect estimated fixes for significant duration and positioning

errors often reach few meters.

Anyway, GPS positioning is useful for system initializa-

tion and when there is no lane marking to correct the drift

of DR. Therefore, we study here three different models of

GPS errors and compare their performance. Recent work on

GPS bias correction can be found in [12].

A. GPS error models

Let suppose that L1-GPS position errors are stationary.

Autocorrelations of 3 different sequences of a low cost L1-

GPS receiver (1000 samples each at 5Hz) are shown in Fig.

4. Clearly, errors are colored since there is no Delta-Dirac at

zero. Moreover, for short correlation times (smaller than 30

seconds), the different curves superimpose quite well which

indicates a quite repeatable behavior which can be modeled

by a shaping filter. Here, we suggest to model the correlation

by a first order regressive system, the autocorrelation of

which is a decreasing exponential. The time constant is

simply given by the intersection of the initial tangent with

the final asymptote which gives here 25s in x and in y.

Let
[

εx, εy
]T

denote the vector of GPS errors. A

classical way to handle this kind of modeling is to augment

the state vector with a shaping filter [9]:

X =
[

x, y, θ, εω εx, εy
]T

And to use a first order auto-regressive process:

Model 1

{

ε̇1,x = −ε1,x/τx + υεx
ε̇1,y = −ε1,y/τy + υεy

(10)

Where υεx and υεy are the driving white noises of the

shaping filter. τx and τy are the time constants. Time con-

stants of the shaping filter give an idea of the time required

for the system to be in steady state.

GPS error can be also modeled by a random constant,

where αεi is a zero mean white noise:

1L1-GPS means mono-frequency receiver with C/A pseudo-ranges

Model 2

{

ε̇2,x = 0 + αεx

ε̇2,y = 0 + αεy

(11)

Finally, a more refined model of the error is to combine

both of them:

Model 3

{

εx = ε1,x + ε2,x + αεx

εy = ε1,y + ε2,y + αεy

(12)

In this latter case, the length of vector X is augmented up

to 6 components.

B. Observability of GPS errors

Since GPS component errors are additive, their observ-

ability is not obvious. We prove here that this is the case.

A system variable x is said to be observable, if and only

if there is an algebraic equation linking x, the outputs, the

inputs and a finite number of the derivatives of inputs and

outputs. This algebraic definition of observability was in [13]

to prove that angular measurements provided by a camera are

enough to perform localization in challenging conditions. For

non-linear systems, this definition of observability is more

powerful than geometrical concepts based on Lie derivatives

since it provides necessary and sufficient conditions [14]. In

order to prove the observability of GPS measurement errors,

let us simplify the state-space model by :

• Supposing that point C and the GPS antenna are coin-

ciding with point M ;

• Ignoring the gyro drift rate.

Moreover, one can do an interesting frame-to-frame trans-

formation by choosing the origin point O of Ro on the lane

marking and x axis of Ro parallel to the lane marking.

This simplification yields Px = 0, a = 0, b = 0 and

θ̇ = ω, and the state vector becomes:

X =
[

y, θ, εy
]T

Consequently, (Eq. 8) and GPS observation are simplified

to:

C0 = y/cosθ (13)

and

yGPS = y + εy (14)

By taking the derivative of (Eq. 13), we have:

ẏ = Ċ0 · cosθ − ω · C0 · sinθ (15)

By plugging ẏ = v · sinθ into (Eq. 15), we can obtain:

θ = arctan

(

Ċ0

(v + ω) · C0

)

(16)

So θ is observable, thus y is observable by (Eq. 13) and

εy is observable by (Eq. 14).

If we use now the double-error model (Eq. 12), we get

ε̇y = ε̇1,y+ ε̇2,y . By plugging (Eq. 10) and (Eq. 11) into this

equation, we get:

ε̇y = −ε1,y/τy + 0 (17)



So ε1,y is observable and thus ε2,y = εy − ε1,y is

observable.

As a consequence, the two GPS errors are observable and

so reconstructable by any convergent state observer, like a

Kalman filter for instance.

In a similar way, one can prove the observability of GPS

errors on x when the lane marking is North oriented. This

shows that, even if the lane marking measurements provide

essentially a lateral correction, the GPS errors are observable

as soon as the trajectory presents changes of direction.

V. LOCALIZATION SOLVER IMPLEMENTATION

For an accurate data fusion, the lever arm has to be taken

into account. The position of the L1-GPS antenna in RM

is denoted by MG =
[

tx, ty
]T

. An efficient way to

compensate for the latency GPS fixes (denoted ∆t) is to

extrapolate the fix at the right time using the speed. The

GPS observation model becomes:

{

xGPS = cosθ · (tx −∆t · v)− sinθ · ty + x+ εx
yGPS = sinθ · (tx −∆t · v) + cosθ · ty + y + εy

(18)

The evolution and camera models have been described in

section II.

Many solvers can be used to do the estimation problem

(e.g. Extended Kalman filter EKF, Particle filter and Un-

scented Kalman filter). In this paper, a full-state EKF with

measured inputs v and ω is adopted (the covariance matrix

of the input noise is propagated into the computation). As it

is triggered by the CAN frequency (100 Hz), the EKF is also

“time continuous” with discrete exteroceptive measurements.

Camera measurements are used in estimation stages after

having been map-matched. An innovation gate is also applied

to reject outliers due to wrong matching or bad detections.

The same rejection strategy is adopted for the GPS data. We

also use GPS only when the speed is non zero, since it is

well known that satellite multi-path is badly rejected by GPS

correlators at low speed.

VI. RESULTS

A. Experimental set-up

Outdoor experiments have been carried out in the city of

Compiègne (France). A digital map of the lane markings of

the experimental road (Fig. 3) has been made by using the

method described in section III in May 2012. We report here

experiments realized in February 2013 (9 months later).

The approach detailed in this paper has been tested with

the experimental vehicle showed in Fig. 5.

The vehicle was equipped with a NovAtel RTK-GPS

receiver coupled with a SPAN-CPT IMU running at 10Hz.

The system received RTCM 3.0 corrections through a 3G

connection from a GPS base station Septentrio PolaRx2e@

equipped with a Zephyr Geodetic antenna. This high accu-

racy system (few tens of centimeter) was used during the

mobile mapping process. It also provided ground truth data

for the localization method. The station was located at the

research center in Compiègne. Its position was the origin

-BOF�NBSLJOH

$BNFSB

Fig. 5. Experimental vehicle. The camera is located behind the windscreen.

O of the local coordinate system (latitude 49.4◦, longitude

2.796◦, ellipsoidal height 83 m). A CAN-bus gateway was

used to access to wheel speed sensors (WSS) and to a

yaw rate gyro. A Mobileye camera was used to detect the

lane markings, on the basis of lane detection function of

Mobileye’s Lane Keeping and Guidance Assistance System

(LKA). The output is described in Mobileye’s LKA common

CAN protocol. The low-cost GPS was a U-blox 4T with a

patch antenna.

Fig. 6 shows the ground truth of the test path and some

images taken during the mobile mapping. During the local-

ization test, it should be noticed that the weather was rainy.

The vehicle was normally driven. Three stops and a backward

maneuvered occurred.

A point-to-curve map-matching process [15] with distance,

direction and heading was used to identify the correct lane

marking segments. This was applied on right and left detec-

tions. Moreover, a lane change has been done because of the

overtaking of a bus. This was particularly useful to test the

map-matching performance.

B. Localization results

The different filters have been tested by using data replay.

The initial state given to the filter was the first L1-GPS fix

and the components of the GPS errors were initialized to

zero in order to respect real-time conditions.

Fig. 8 shows localization errors on x and y by only fusing

DR sensors and camera. The red line is the ±3σ confidence

interval estimated by the EKF. The blue and green points

separately indicate lane detection on left and right side. On

one hand, the camera provides efficient information to correct

the DR drift without GPS. On the other hand, DR predictions

are useful to estimate the vehicle pose when there is no lane

marking (typically near junctions).

Fig. 9, 10 and 11 show localization errors on x and y when

fusing DR sensors, camera and L1-GPS with the different

models (first order auto-regressive process, random constant
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Horizontal positioning errors (m)
Model 1 Model 2 Model 3

mean 1.82 1.57 1.21

std. dev. 0.81 1.01 0.75

max 4.62 3.44 3.04

median 1.79 1.35 1.03

95th percentile 3.69 3.38 2.59

TABLE I

STATISTICS FOR THE FILTER WITH THE THREE GPS ERROR MODELS

and combination of both). In each figure, errors are plotted

with ±3σ bounds to show the well tuning of the filters.

Performance metrics of the different error models are

given in Table I. Globally speaking, Model 2 is better than

Model 1 and Model 3 gives the best performance. The

accuracy gain obtained by an adequate GPS errors model

is very significant compared to Fig. 12.

In Fig. 12, the red line displays the real L1-GPS position

errors with respect to the SPAN-CPT. The blue, green and

black lines correspond respectively to the estimated GPS

position errors of Model 1, 2 and 3. They confirm the results

of Table I.

Let us now study more in detail the lateral and longitudinal

errors when using Model 3 (see Table II). Logically, the

lateral accuracy is much better than the longitudinal one (e.g.

95% of the lateral error is less than 30 cm). The maximum

error occurs at the strong U-turn which was performed

with a very small radius of curvature with no lane marking

detection. Moreover, one can notice that longitudinal error is

also controlled by taking profit of the heading variation of

the trajectory. This is verified by the fact that the trajectory

was making a loop (the vehicle came back at its starting) and

the error between the starting and the end points is 0.31 m.

We believe that this accuracy is sufficient for autonomous

navigation on normal roads.

Fig. 7 gives an illustration of the system at a junction. It

can be seen that the DR drift is quickly corrected as soon as

map-matched camera measurements are available. Moreover,

lateral error (m) longitudinal error (m)

mean 0.11 1.08

std. dev. 0.12 0.69

max 1.03 2.78

median 0.07 0.91

95th percentile 0.30 2.50

TABLE II

ERROR STATISTICS WITH MODEL 3
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Fig. 7. Bird view zoom around t = 260 s

the position estimate stays in the correct lane and the large

GPS errors are well managed by the filter.

VII. CONCLUSION

This paper has presented a new vehicle localization

method which fuses L1-GPS, CAN-bus sensors, video cam-

era and digital map data. Since there is no ready-made

digital map which contains the lane marking information,

a digital map of the lane markings has been made by mobile

mapping. Moreover, the method uses natural features and

so does not need any change of the road environment.

Precise observation models of the vision system have been

proposed in order to correct efficiently the DR drift but

also GPS errors. Moreover, three GPS error models have

been compared. The GPS shaping filter combining random

constant and first order auto-regressive models gives good

results with a limited computational complexity. Thanks to

this modeling, the filter is able to fuse continuously GPS

fixes even if they can be affected by large errors. Finally, real

results have shown that the proposed method can improve the

lateral localization up to a centimeter-level accuracy with low

cost sensors already installed on modern vehicles.
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Fig. 9. Positioning errors when using GPS Model 1
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Fig. 10. Positioning errors when using GPS Model 2
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Fig. 11. Positioning errors when using GPS Model 3
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Fig. 12. Estimated GPS errors


