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The use of magnetic-field dependent London atomic orbitals, also called gauge including
atomic orbitals, is known to be an efficient choice for accurate non-relativistic calculations of
magnetizabilities. In this work the appropriate formulas were extended and implemented in
the framework of the four–component relativistic linear response method at the self-consistent
field single reference level. Benefits of employing the London atomic orbitals in relativistic
calculations are illustrated with Hartree–Fock wave functions on the XF3 (X = N, P, As, Sb,
Bi) series of molecules. Significantly better convergence of magnetizabilities with respect to the
basis set size is observed compared to calculations employing a common gauge origin. In fact, it
is mandatory to use London atomic orbitals unless you want to use ridiculously large basis sets.
Relativistic effects on magnetizabilities are found to be quite small (< 5%) for this particular
set of molecules, but should be investigated on a larger set of molecules. We emphasize the
breakdown of the connection between the paramagnetic contribution to magnetizabilities and
rotational g tensors in the relativistic domain and discuss its origin. Finally, we visualize the
magnetizability density which shows markedly atomic features evocative of Pascal’s rules.

Keywords: molecular properties; magnetic properties; molecular magnetizabilities;
relativistic effects; London atomic orbitals; property surfaces

1. Introduction

Presently the preferred way to ensure that calculated magnetic properties of
molecules, such as magnetizabilities, are independent of the gauge origin of the
external magnetic field, is through the use of the physically motivated magnetic-
field dependent London atomic orbitals (LAOs) [1–7], also called gauge including
atomic orbitals (GIAOs) [8]. LAO-based approaches for the calculation of magne-
tizabilities have accordingly been reported with non-relativistic Hamiltonians at
the Hartree–Fock (HF) [9], multiconfiguration self-consistent field (MCSCF) [10],
density functional theory (DFT) [11–14], and coupled cluster CCSD(T) [15] levels.
Schwerdtfeger and co-workers included relativistic effects with relativistic pseu-
dopotentials, but noted a breakdown of the pseudopotential approximation in
LAO-based calculations of magnetizabilities of Au, AuF, and Snn clusters [16].
Proper correction terms were derived by van Wüllen [17] and successfully applied
in a joint publication with the previous authors [18]. Yoshizawa and Hada [19–21]
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have reported HF and MP2 calculations of molecular magnetizabilities based on
the second-order Douglas–Kroll–Hess Hamiltonian, using a common gauge origin
(CGO) combined with extended basis sets [22].

In the present work we present the theory for an LAO-based calculation of mag-
netizabilities at the 4-component relativistic HF level, our implementation of the
theory, and sample applications. This work is a natural extension of our previous
development of a method for gauge origin independent 4-component relativistic
calculations of NMR shielding constants [23, 24]. As a first application we have
chosen to study the magnetizability of the trifluorides of the group 15 elements.
Our choice was motivated by the study of Ruud and Helgaker [25] in which they
demonstrated the crucial role of LAOs for the proper convergence of the magne-
tizability of PF3. The paper is organized as follows: In Section 2 the theory for
4-component relativistic HF calculations of magnetizabilities is derived. Computa-
tional details are given in Section 3, whereas results are presented and discussed
in Section 4. Finally we conclude and provide perspectives in Section 5.

2. Theory

The static 3× 3 magnetizability tensor may be defined as the second derivative of
the molecular energy with respect to the components of the magnetic field:

ζαβ = − d2E

dBαdBβ

∣∣∣∣
B=0

(1)

In the present work we employ SI-based atomic units [26] in which the magnetiz-
ability is given in units of e2a2

0/me = 7.89104·10−29 JT−2 = 4.752042·10−6 erg G−2

mol−1. We will also make extensive use of the Einstein convention of summation
over repeated indices.

Our starting point is the 4-component Dirac–Coulomb (DC) Hamiltonian ex-
tended by a uniform external magnetic field B which is represented through the
vector potential

AG(r) =
1

2
B× rG; rG = r−RG, (2)

where the subscript G refers to the arbitrarily chosen gauge origin. The subsequent
development, restricted to closed-shell HF theory, follows closely that of the seminal
paper by Helgaker and Jørgensen [7] (we note that the implementation can be
straightforwardly extended to DFT). We employ an exponential parametrization
of a single reference Slater determinant in terms of the orbital rotation operator κ̂

|0(B)〉 = exp[−κ̂] |0(0)〉; κ̂ = κaia
†i− κ∗aii†a. (3)

Here and in the following we will use indices i, j, . . . and a, b, . . . for occupied and
virtual orbitals, respectively, and reserve p, q, . . . for general orbitals. The molecular
orbitals will be expanded in the magnetic-field dependent LAOs

ωµ(r) = exp[−ieAG(Rµ) · r] χµ(r), (4)

with Rµ representing the center of the basis function χµ. In our case each LAO is
formally a 4-component vector function (a spinor), however, only one of the four
components is non-zero. An immediate advantage of using such an effectively scalar
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basis set expansion is that it allows for a straightforward use of non-relativistic
integral codes. In the LAO basis the integrals of the one-electron part of the DC
Hamiltonian are given by

hµν = 〈χµ | exp
[ i

2
B · (Rµν × r)

]
(ĥD −B · m̂ν) |χν〉 = hD;µν −B ·mν;µν , (5)

where appear integrals over the Dirac Hamiltonian ĥD in the molecular field, that
is, the electrostatic field of fixed nuclei, as well as over the magnetic dipole operator
m̂ν with respect to center Rν of the basis function χν

m̂ν = −1

2
(rν × cα). (6)

One may note that the imaginary phase factor in the above integral vanishes for
one-center integrals due to the presence of the vector Rµν = Rµ −Rν . The corre-
sponding integrals over the two-electron Coulomb term are

gµν,ρσ = 〈χµ χρ | exp
[ i

2
B · (Rµν × r1 + Rρσ × r2)

] 1

r12
|χν χσ〉. (7)

Simplification of the ensuing formalism is obtained by first defining a set of un-
modified molecular orbitals (UMOs) in terms of the zero-field molecular coeffi-
cients [27, 28]

ψq(r,B) = ωµ(r,B)cµq(0). (8)

The electronic Hamiltonian in second-quantized form will, however, be constructed
from a set of orthonormalized molecular orbitals (OMOs) (denoted by tilde)

ψ̃p(r,B) = ψq(r,B)Tqp(B); 〈ψ̃p | ψ̃q〉 = T ∗rp〈ψr |ψs〉Tsq = δpq, (9)

which conserves the algebra of creation and annihilation operators at any field
strength. Orthonormality of the OMOs at any field strength is assured by the
connection matrix T . Throughout this work we will employ the natural connec-
tion [10, 29, 30] which provides maximum similarity in a least-squares sense be-
tween the OMOs and the unperturbed UMOs. In the OMO basis the electronic
Hamiltonian may be separated into two parts

H̃ = H̃0 −B · m̃pq p
†q; H̃0 = h̃D;pq p

†q +
1

2
g̃pq,rs p

†r†sq (10)

and it should be noted that this separation is different from the common gauge
origin (CGO) case where would appear integrals of the magnetic dipole operator
m̂G with respect to the arbitrary gauge origin and not the individual basis function
centers as here.

The HF energy now depends explicitly on the magnetic field through the LAOs in
addition to the magnetic interaction term of the Hamiltonian, Eq. (10), and implic-
itly through the orbital rotation parameters and the connection matrix. At any field
strength we impose that the HF energy is optimized with respect to non-redundant
orbital rotation parameters {κpq}. The components of the magnetizability tensor,
Eq. (1), are accordingly given by

ζαβ = ζ linres
αβ + ζexpval

αβ . (11)
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The linear response part is given by

ζ linres
αβ = −

〈
0
∣∣[ dκ

dBβ
,

(
dH̃0

dBα
− m̃α

)]∣∣0〉∣∣∣∣
B=0

= −(κβ;∗
ai F̃

α
ai + F̃αia κ

β
ai) (12)

where appear magnetic derivatives of the OMO Fock matrix

F̃αpq =
dF̃pq
dBα

∣∣∣∣∣
B=0

= −mα;pq + h̃αD;pq + L̃αpq,jj ; Lpq,rs = (pq|rs)− (ps|rq) . (13)

The non-redundant first-order amplitudes κβ are found by solving a response equa-
tion involving the generalized property gradient F̃ β as described in Ref. 23. The
expectation value part is given by

ζexpval
αβ = −

〈
0
∣∣ d2H̃0

dBαdBβ
− dm̃α

dBβ
−

dm̃β

dBα

∣∣ 0〉∣∣∣∣
B=0

(14)

= −(h̃αβD;ii +
1

2
L̃αβii,jj) + Pαβ m̃

β
α,ii,

where Pαβ symmetrizes the expression with respect to components α and β of the
magnetic field. The first- and second-order magnetic derivatives appearing in the
above expressions can be expressed compactly using the brace notation of Helgaker
and Jørgensen [7] for the one-index transformation of one- and two-electron matrix
elements

{Tα, h}pq = Tα∗p′p hp′q + hpq′ T
α
q′q (15)

{Tα,L}pq,rs = Tα∗p′p Lp′q,rs + Lpq′,rs Tαq′q + Tα∗r′r Lpq,r′s + Lpq,rs′ Tαs′s (16)

For one-electron operators in OMO basis the first and second magnetic derivatives
are then given as1

h̃αD;mn = hαD;mn + {Tα, hD}mn (17)

h̃αβD;mn = hαβD;mn + Pαβ {Tα, hβD}mn + {Tαβ, hD}mn (18)

+
1

2
Pαβ ({Tα, {T β, hD}}mn − {T βTα, hD}mn).

The corresponding expressions for two-electron operators are equivalent, but in-
volve four indices and the brace notation of Eq. (16).

The final expressions, Eqs. (12) and (14), for components of the magnetizability
tensor are quite similar to non-relativistic theory [7, 9, 10], but involve some new
integrals such as the first- and second derivatives of the Dirac Hamiltonian in
LAO-basis

hαD;µν =
i

2
〈χµ | (Rµν × r)α ĥD |χν〉, (19)

hαβD;µν = −1

4
〈χµ | (Rµν × r)α (Rµν × r)β ĥD |χν〉, (20)

1These expressions may be compared to Eqs. (32) and (33) of Ref. 10; it will be seen that for the second
magnetic derivative there is a sign difference in the second term which we believe is correct for our
expression.
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which has been implemented in the integral driver HERMIT [31] in a develop-
ment version of the DIRAC12 code for relativistic molecular calculations [32]. An
important difference, though, is that the relativistic expression does not contain
an explicit diamagnetic term. In a CGO formalism the diamagnetic contribution
can be extracted from the part of the linear response function involving rotations
between occupied positive-energy and virtual negative-energy orbitals [33, 34]. In
an LAO-based formalism the situation is somewhat more complicated since re-
orthonormalization of UMOs, Eq. (8), involve both positive- and negative-energy
orbitals. The separation of para- and diamagnetic contributions in a LAO frame-
work will not be pursued in the present work.

3. Computational details

Using a development version of the DIRAC12 code [32] we have calculated HF
magnetizabilities of the series of molecules XF3 (X = N, P, As, Sb, Bi) in differ-
ent basis sets of increasing size. We have employed the experimental structures,
as given in Table 1, all corresponding to trigonal pyramidal structures. Most cal-
culations were based on the 4-component DC Hamiltonian, but in order to in-
vestigate separately scalar and spin-orbit effects on magnetizabilities we have also
performed spin-orbit free and non-relativistic calculations based on the modified
Dirac [35, 36] and the Lévy-Leblond [37] Hamiltonians, respectively. In addition,
for non-relativistic reference values we have performed calculations with the Dal-
ton [38] code. In all calculations we have chosen a Gaussian model for the nuclear
charge distributions [39].

For the lighter atoms (F, N, P and As) we have employed sequences of pre-
cc-pVXZ basis sets of Dunning and coworkers [40–43], where pre may indicate
single (aug) and double (d-aug) augmentation. For the heavier atoms Sb and Bi
we employed the corresponding basis sets by Dyall [44, 45], denoted dyall.vnz
(n = 2, 3, 4, dyall.avnz with augmentation) in the DIRAC basis set library. In this
work we will specify basis sets with the notation pre-XZ which is to be understood
as an alias for both the Dunning basis sets (F, N, P and As) and the Dyall basis sets
(Sb and Bi). All basis sets have been employed in uncontracted form. In the DIRAC
code the small component basis sets were generated by restricted kinetic balance
(RKB) in the SCF step and extended according to the simple magnetic balance
(sMB) scheme in the magnetizability calculations [24]. The (SS|SS) class of two-
electron integrals was neglected throughout the four-component DC relativistic
calculations. For the LAO calculations we used the natural connection [29] in the
reorthonormalization terms. In the CGO calculations the gauge origin was placed
at the center of mass of the molecule.

4. Results and discussion

In Table 2 we report our calculated magnetizabilities for the selected molecules
XF3 (X = N, P, As, Sb, Bi). In addition to parallel (ζ‖) and perpendicular (ζ⊥)
components of the magnetizability with respect to the C3 axis, we also report the
isotropic and anisotropic components defined as:

ζiso =
1

3
(ζ‖ + 2ζ⊥) (21)

ζani = ζ⊥ − ζ‖ (22)



January 28, 2020 16:36 Molecular Physics article

6

In Figure 1 we illustrate the convergence of ζiso of BiF3 in the basis sets XZ and
aug-XZ. As was already shown by Ruud and Helgaker [25] for the PF3 molecule,
the use of LAOs is crucial for obtaining fast convergence of magnetizabilities with
respect to the basis set. Taking the LAO result for ζiso of BiF3 in aug-QZ basis
as reference, the CGO result in the DZ basis is in error by 152%, whereas the
corresponding LAO number is within 1% of the reference value. Augmenting the
basis with diffuse functions reduces the CGO error to 42% (aug-DZ), but even in
the aug-QZ basis the CGO error with respect to the reference value is more than
6%. The effect of augmentation of the basis was studied in more detail for NF3. As
seen from Table 2, the calculated CGO value of ζiso is –11.47 e2a2

0/me and –6.46
e2a2

0/me in the DZ and aug-DZ bases, respectively. Simply adding the diffuse d
functions of fluorine reduces the DZ value to –6.10 e2a2

0/me, whereas the effect of
adding the other diffuse functions is quite small. However, for consistency we have
chosen to employ the same augmentation level for the basis sets of all atoms in
this study. The LAO results are in comparison hardly sensitive to augmentation.
For all molecules the isotropic magnetizability ζiso is converged to within 1% using
LAOs in conjunction with the aug-TZ basis set. In passing we note that adding the
(SS|SS) class of two-electron integrals reduces both the parallel and perpendicular
magnetizabilities of BiF3, obtained with LAOs in aug-QZ basis, by 0.0025 e2a2

0/me,
which is outside the precision with which our results are reported in Table 2, thus
justifying the neglect of this integral class.

Table 2 shows that relativistic effects on magnetizabilities are rather small for
the selected set of molecules; for BiF3 relativity increases the isotropic magnetiz-
ability by about 5%. Under the assumption of additivity of atomic susceptibilities
in diamagnetic molecules, as proposed by Pascal [46–48], and taking his value of
–1.4 e2a2

0/me for the atomic susceptibility of fluorine [49], we find that that the
atomic susceptibility increases as −2.3 · Z0.38 e2a2

0/me for the group 15 atoms.
Furthermore, relativity will increase the atomic susceptibility of the bismuth atom
by 7%, from –9.3 to –8.7 e2a2

0/me. This result is in line with the rather small re-
lativistic effects on magnetizabilities of noble gas atoms and group 14, 15, 16 and
17 hydrides reported by Yoshizawa and Hada [20, 21]. However, the same authors
found relativistic effects on the order of 20% for the IF molecule. Qualitatively we
can understand these observations in the following way: One would expect large ef-
fects of 4-component calculations of magnetizabilities compared to non-relativistic
calculations when spin-orbit coupling is important for the valence electrons. As the
fluorine atoms are very electronegative, the central atom of the XF3 (X = N, P,
As, Sb, Bi) series of molecules will have an oxidation state of +3, that is, the va-
lence np orbitals are formally not occupied. Indeed, projection analysis [50] of BiF3

gives a charge of +2.2 of bismuth with a valence configuration of 6s1.8
1/26p0.5

1/26p0.6
3/2

in terms of the calculated atomic orbitals of neutral bismuth in its ground state
electronic configuration. Further analysis, using the modified Dirac [35, 36] and
the Lévy-Leblond [37] Hamiltonians, shows that the relativistic effect is almost
completely dominated by scalar relativistic effects. On the other hand, for IF the
valence np orbitals are formally occupied, so it is perhaps not surprising to observe
large relativistic effects on the magnetizability of this molecule. Clearly relativistic
effects on magnetizabilities merit further study.

Experimental values for our selected set of molecules are scarce, but have been
included in Table 2 whenever available. Comparison of our HF results with ex-
periment is meaningful since the effects of electron correlation and vibrational
corrections are found to be generally small for magnetizabilities [13, 15, 51, 52]
of diamagnetic molecules. For instance, a recent benchmark study by Lutnæs et
al. [13] of a set of 28 small molecules shows that the contribution from electron
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correlation and zero-point vibrational corrections are typically within 2% and 1%,
respectively, but with outliers such as paramagnetic O3 and BH [15] for correlation
and N2, CO, O3, LiH, and PN for vibration. The anisotropic component of the
magnetizability can be obtained from microwave spectroscopy of molecules in an
external magnetic field [53]. Experimental values of ζani obtained in this manner
have been reported for NF3 and PF3 by Stone et al. [54] and later refined for PF3

by Hüttner and co-workers [55]. For NF3 the agreement with our HF/LAO-results
is quite good, but less so for PF3. For the latter molecule Stone et al. [54] provide
an estimate of the isotropic contribution based on Pascal’s rules. The discrepancy,
on the order of 15%, may in part be due to the possible breakdown of Pascal’s
rules for fluorine-containing molecules [52]. Experimental data for bulk suscepti-
bilities of SbF3 (ζiso=–9.68 e2a2

0/me) and BiF3 (ζiso=–12.8 e2a2
0/me) can be found

in the compilation by Föex [56], referring to experimental work by Pascal [49] and
Chowdhury [57], respectively, and agree reasonably well with our HF values.

In a non-relativistic framework the paramagnetic component of the magnetiz-
ability can be extracted from the rotational g tensor [53] much in the same way
as the paramagnetic component of the NMR shielding tensor can be related to
the spin-rotation constant [58–60], and has accordingly been given for the PF3

molecule by Stone et al. [54]. It is important, however, to stress that these con-
nections do not hold in the relativistic domain [61–63]. This can be understood
from the following argument: Component ζαβ of the magnetizability tensor can be
interpreted as component α of the magnetic dipole moment induced to first order
by component β of an external magnetic field and has the general form

ζαβ =
1

2

∫
dr (rG × j(Bβ)(r))α. (23)

The current density j corresponds to the electron charge times the density asso-
ciated with the appropriate velocity operator, which is different in the relativistic
and non-relativistic domains. Starting from the Legendre transformation

p · v = H (r,p) + L (r,v) (24)

one can extract the relativistic and non-relativistic velocity operators as

vR =
∂HR

∂p
= cα; vNR =

∂HNR

∂p
=
π

m
; π = p + eA (25)

The relativistic form, in terms of the Dirac α matrices scaled with the speed
of light c, can be interpreted in terms of the Zitterbewegung superimposed on
the mean trajectory of the electron [64]. The non-relativistic form of the velocity
operator naturally splits into a paramagnetic and diamagnetic part, where the
former, inserted into Eq. (23), gives rise to an orbital angular momentum operator
with respect to the gauge origin G. Setting the gauge origin to the center of mass of
the molecule then provides the connection to the rotational g tensor, a connection
which is absent in the relativistic case.

Starting from Eq. (23) one may define a magnetizability density

ζCGO
αβ (r) =

1

2
(rG × j(Bβ)(r))α. (26)

which integrates to a specific component ζαβ of the magnetizability tensor. The

first-order magnetically induced current density j(Bβ) can be constructed from the
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perturbed orbital rotation parameters κβ which appear in Eq. (12). In the relativis-
tic case the orbital rotation parameters split into two classes,

{
κ++
ai

}
and

{
κ−+
ai

}
,

corresponding to rotations between the occupied positive-energy orbitals and vir-
tual positive- and negative-energy orbitals, respectively. This separation provides a
separation of the para- and diamagnetic contributions to the induced current den-
sity, as demonstrated in Ref. 34. In Figure 2 the total isotropic average of ζCGO

αβ (r)
in BiF3 is represented using an isosurface plot together with its para- and dia-
magnetic contributions using the above recipe. For technical reasons the plots are
based on calculations using a common gauge origin and a large basis (aug-QZ). We
indeed observe that the para- and diamagnetic densities have opposite signs. The
diamagnetic contribution resembles a superposition of atomic contributions, evoca-
tive of Pascal’s rules, and dominates the total isotropic average density in BiF3.
While the density isosurface around Bi atom is negative, the contributions from
the F atoms are polarized and exhibit both positive and negative isosurfaces. The
densities corresponding to the parallel and one of the perpendicular contributions,
ζCGO
‖ (r) and ζCGO

⊥ (r), are visualized in Figures 3 and 4, respectively. Figure 3 rep-

resenting the parallel component ζCGO
‖ (r) gives direct visual evidence that there is

almost no contribution to the paramagnetic part from the Bi atom. The diamag-
netic contribution on the other hand features a torus-shaped isosurface around the
Bi atom.

5. Conclusions and Perspectives

We have presented the theory and an implementation of 4-component relativistic
LAO-based HF calculations of molecular magnetizabilities. An obvious extension
of the present work would be to the Kohn-Sham DFT framework. We have already
implemented the DFT extension of the linear response term ζ linres

αβ , Eq. (12), and

have applied it to the calculation of NMR shielding constants [24]. We will next

add the missing DFT contributions to the expectation value term ζexpval
αβ , Eq. (14).

It would also be interesting to explore static correlation effects in the framework
of 4-component relativistic MCSCF [65]. We furthermore foresee a study of the
separation of para- and diamagnetic contributions of the magnetizability in an
LAO-based relativistic framework.

As a first application we have calculated magnetizabilities of the XF3 (X = N, P,
As, Sb, Bi) molecules with LAOs. We observe, contrary to CGO-based calculations,
fast basis set convergence in 4-component calculations, just as in the non-relativistic
domain [9, 25]. Our code also allows visualization of the magnetizability density
which for BiF3 shows markedly atomic features evocative of Pascal’s rules. Since
the effects of electron correlation and vibrational corrections are generally small
for magnetizabilities [51], the agreement to experiment, when available, is quite
reasonable. For the selected set of molecules relativistic effects are rather small
(5%), but a study by Yoshizawa and Hada [21] indicates that relativistic effects
on magnetizabilities may reach 20%. We therefore plan further studies of magne-
tizabilities of molecules containing heavy elements. Another interesting aspect to
explore is the breakdown of the connection between rotational g tensor and the
paramagnetic contribution to the magnetizabilities in the relativistic domain.
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[56]G. Föex, Constantes Sélectionnées. Diamagnétisme et Paramagnétisme., Vol. 7 (Masson and Co.,

Paris, 1957).
[57]A A Chowdhury, Current Sci., India 8 (12), 550 (1939).
[58]N.F. Ramsey, Phys. Rev. 78, 699 (1950).
[59]W.H. Flygare, J. Chem. Phys. 41 (3), 793 (1964).

http://www.diracprogram.org
http://daltonprogram.org/
http://daltonprogram.org/
http://www.few.vu.nl/~visscher/FiniteNuclei/FiniteNuclei.htm
http://www.few.vu.nl/~visscher/FiniteNuclei/FiniteNuclei.htm
http://diracprogram.org/


January 28, 2020 16:36 Molecular Physics article

Molecular Physics 11

[60]T.D. Gierke and W.H. Flygare, J. Am. Chem. Soc. 94 (21), 7277 (1972).
[61]L. Visscher, T. Enevoldsen, T. Saue, H.J.Aa. Jensen and J. Oddershede, J. Comp. Chem. 20, 1262

(1999).
[62]T. Enevoldsen, T. Rasmussen and S.P.A. Sauer, J. Chem. Phys. 114 (1), 84 (2001).
[63]T. Saue, Adv. Quant. Chem. 48, 383 (2005).
[64]T. Saue, ChemPhysChem 12 (17), 3077 (2011).
[65]J. Thyssen, T. Fleig and H.J.Aa. Jensen, J. Chem. Phys. 129 (3), 034109 (2008).
[66]H. Najib, N. Ben Sari-Zizi, J. Demaison, B. Bakri, J.M. Colmont and E.B. Mkadmi, J. Mol. Spectrosc.

220, 214 (2003).
[67]Y. Morino, K. Kuchitsu and T. Moritani, Inorg. Chem. 8, 867 (1969).
[68]H. Bürger, H. Ruland, J. Demaison and P. Dréan, J. Mol. Struct. 517, 105 (2000).
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Table 1. Experimental structure parameters of the XF3 (X = N, P, As, Sb, Bi) molecules.

NF3
a PF3

b AsF3
c SbF3

d BiF3
d

R(XF)/Å 1.3676 1.5644 1.7043 1.880 1.987
angle(FXF)/deg 101.84 97.8 95.88 94.9 96.1

aRef. 66; bRef. 67; cRef. 68; dRef. 69.

Table 2. Magnetizabilities (in e2a20/me) of XF3 (X = N, P, As, Sb, Bi). The relativistic effect ∆rel is calculated

as the difference between Dirac-Coulomb (DC) and non-relativistic (NR) results, the latter obtained with the

Dalton code. The basis set notation pre-XZ refers to pre-cc-pVXZ basis sets of Dunning and co-workers [40–43]

for the atoms F, N, P and As and corresponding basis sets by Dyall [44, 45] for Sb and Bi.

CGO LAO
Molecule Basis ζ‖ ζ⊥ ζiso ζani ζ‖ ζ⊥ ζiso ζani

NF3 DC DZ –14.83 –9.78 –11.47 5.04 –4.27 –4.87 –4.67 –0.60
TZ –7.88 –6.52 –6.97 1.37 –4.36 –4.96 –4.76 –0.60
QZ –5.65 –5.54 –5.58 0.11 –4.43 –5.04 –4.83 –0.61

aug-DZ –6.75 –6.31 –6.46 0.44 –4.57 –5.22 –5.00 –0.65
aug-TZ –5.01 –5.42 –5.28 –0.41 –4.64 –5.24 –5.04 –0.60
aug-QZ –4.70 –5.26 –5.08 –0.56 –4.64 –5.24 –5.04 –0.60

d-aug-DZ –6.37 –6.18 –6.24 0.19 –4.57 –5.22 –5.00 –0.65
d-aug-TZ –5.01 –5.45 –5.31 –0.44 –4.69 –5.27 –5.08 –0.58
d-aug-QZ –4.76 –5.31 –5.13 –0.55 –4.68 –5.28 –5.08 –0.60

NR aug-QZ –4.68 –5.28 –5.08 –0.60
Exp.a –0.63 (±0.32)

∆rel aug-QZ 0.04 0.04 0.04 0.00

PF3 DC DZ –19.52 –14.04 –15.87 5.48 –6.68 –6.31 –6.43 0.37
TZ –10.39 –9.18 –9.59 1.21 –6.66 –6.27 –6.40 0.39
QZ –7.74 –7.71 –7.72 0.02 –6.66 –6.29 –6.41 0.37

aug-DZ –9.91 –9.52 –9.65 0.39 –6.84 –6.61 –6.69 0.23
aug-TZ –7.29 –7.96 –7.74 –0.67 –6.82 –6.50 –6.61 0.33
aug-QZ –6.88 –7.46 –7.27 –0.58 –6.76 –6.43 –6.54 0.33

NR aug-QZ –6.81 –6.47 –6.59 0.34
Exp.a (–7.87) 0.278 (±0.04)

Exp.b 0.286 (±0.04)

∆rel aug-QZ 0.06 0.04 0.05 –0.01

AsF3 DC DZ –23.87 –19.08 –20.68 4.80 –8.30 –8.01 –8.11 0.29
TZ –13.16 –12.49 –12.71 0.68 –8.38 –8.13 –8.21 0.25
QZ –9.85 –10.39 –10.21 –0.55 –8.39 –8.17 –8.24 0.22

aug-DZ –12.15 –12.26 –12.22 –0.10 –8.48 –8.31 –8.37 0.17
aug-TZ –9.12 –10.29 –9.90 –1.18 –8.50 –8.30 –8.37 0.20
aug-QZ –8.62 –9.77 –9.39 –1.14 –8.49 –8.29 –8.36 0.20

NR aug-QZ –8.59 –8.36 –8.44 0.23

∆rel aug-QZ 0.09 0.07 0.08 –0.03

SbF3 DC DZ –30.68 –25.42 –27.17 5.26 –11.12 –10.73 –10.86 0.38
TZ –17.28 –17.18 –17.22 0.10 –11.22 –10.91 –11.01 0.30
QZ –12.92 –14.14 –13.74 –1.22 –11.16 –10.89 –10.98 0.26

aug-DZ –15.93 –15.72 –15.79 0.20 –11.23 –11.00 –11.08 0.23
aug-TZ –12.03 –13.85 –13.24 –1.82 –11.25 –11.00 –11.08 0.26
aug-QZ –11.38 –13.14 –12.55 –1.76 –11.23 –10.97 –11.06 0.26

NR aug-QZ –11.42 –11.10 –11.21 0.32
Exp.c –9.68

∆rel aug-QZ 0.19 0.13 0.15 –0.06

BiF3 DC DZ –35.97 –30.39 –32.25 5.58 –12.83 –12.59 –12.67 0.24
TZ –20.44 –19.08 –19.53 1.36 –12.80 –12.68 –12.72 0.13
QZ –15.24 –15.44 –15.37 –0.20 –12.80 –12.70 –12.74 0.10

aug-DZ –18.43 –17.99 –18.14 0.44 –12.97 –12.86 –12.90 0.10
aug-TZ –13.78 –14.43 –14.22 –0.65 –12.85 –12.75 –12.79 0.10
aug-QZ –13.06 –13.92 –13.63 –0.86 –12.86 –12.76 –12.79 0.10

NR aug-QZ –13.59 –13.32 –13.41 0.27

Exp.d –12.8

∆rel aug-QZ 0.73 0.56 0.62 –0.17

aRef. 54; bRef. 55; cRef. 49; dRef. 57.
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Figure 1. Convergence of ζiso (in e2a20/me) of BiF3 in XZ and aug-XZ basis sets using LAOs or CGO.

Figure 2. Isotropic average total (left), paramagnetic (middle), and diamagnetic (right) magnetizability
density ζiso(r) in BiF3 (CGO aug-QZ; DC Hamiltonian; gray/light isosurface: –0.035 e2/mea0; red/dark
isosurface: +0.035 e2/mea0).

Figure 3. Parallel paramagnetic (left) and diamagnetic (right) magnetizability density ζ‖(r) in BiF3

(CGO aug-QZ; DC Hamiltonian; gray/light isosurface: –0.035 e2/mea0; red/dark isosurface: +0.035
e2/mea0).
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Figure 4. Perpendicular paramagnetic (left) and diamagnetic (right) magnetizability density ζ⊥(r) in
BiF3 (CGO aug-QZ; DC Hamiltonian; gray/light isosurface: –0.035 e2/mea0; red/dark isosurface: +0.035
e2/mea0).


