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Robust and asymptotically unbiased estimation of extreme quantiles for heavy tailed distributions

A robust and asymptotically unbiased extreme quantile estimator is derived from a second order Pareto-type model and its asymptotic properties are studied under suitable regularity conditions. The finite sample properties of the proposed estimator are investigated with a small simulation experiment.

Introduction

In extreme value statistics, the estimation of extreme quantiles of a distribution function is a central topic. Indeed, many important applications in climatology, finance, actuarial science, hydrology and geology, to name but a few, require extrapolations outside the data range, and extreme value theory provides the only realistic framework for such an exercise. In the present paper we shall address this estimation problem, with special focus on asymptotic unbiasedness and robustness against outliers. F (x) = Cx -1/γ (1 + γ -1 δ(x)), is ultimately nonzero, of constant sign and |δ| ∈ RV τ .

Clearly, condition (R) implies that the tail quantile function U , defined as U (y) := inf{x : F (x) ≥ 1 -1/y}, y > 1, satisfies y -γ U (y) → C γ as y → ∞ and the function a implicitly defined by

U (y) = C γ y γ (1 + a(y)) (1) 
satisfies a(y) = δ(C γ y γ )(1 + o(1)) as y → ∞, so |a| ∈ RV ρ , with ρ = γτ .

The second order condition (R) can be used to derive the so-called extended Pareto distribution, EPD [START_REF] Beirlant | Statistics of Extremes -Theory and Applications[END_REF][START_REF] Beirlant | Second-order refined peaks-over-threshold modelling for heavy-tailed distributions[END_REF], with distribution function given by

G(y) =    1 -[y(1 + δ -δy τ )] -1/γ , y > 1, 0, y ≤ 1, (2) 
where γ > 0, τ < 0, and δ > max{-1, 1/τ }. As shown in Proposition 2. given that X > u can be approximated by ( 2) with δ = δ(u) up to an error that is uniformly

o(δ(u)) for u → ∞. In Dierckx et al. ( 2013 
), a robust and asymptotically unbiased estimator for γ was introduced by fitting the EPD to a sample of relative excesses by the minimum density power divergence (MDPD) criterion [START_REF] Basu | Robust and efficient estimation by minimizing a density power divergence[END_REF]. In particular, let X 1 , . . . , X n be independent and identically distributed (i.i.d.) random variables with a distribution function satisfying (R), and denote by X 1,n ≤ • • • ≤ X n,n the corresponding order statistics. The parameters γ and δ of the EPD are then estimated with the minimum density power divergence criterion applied to the relative excesses over the random threshold u = X n-k,n , namely Y j := X n-k+j,n /X n-k,n , j = 1, . . . , k, i.e. one minimises the empirical divergence

∆ α (γ, δ) := ∞ 1 g 1+α (y)dy -1 + 1 α 1 k k j=1 g α (Y j ),
in case α > 0, and (2009) studied the asymptotically unbiased estimation of small tail probabilities based on the EPD, fitted by the maximum likelihood method. In Gomes and Pestana (2007) an asymptotically unbiased extreme quantile estimator was introduced for heavy-tailed distributions. These approaches are however not robust against outliers. To the best of our knowledge, robust and asymptotically unbiased extreme quantile estimation has not been considered before.

∆ 0 (γ, δ) := - 1 k k j=1 log g(Y j ), in case α = 0,
The remainder of our paper is organised as follows. In the next section we will introduce the robust and asymptotically unbiased estimator for extreme quantiles and study its asymptotic properties under suitable regularity conditions. The finite sample behaviour of the proposed estimator and some alternatives from the literature is illustrated with a small simulation experiment in Section 3.

From the second order condition (R) and using the EPD as approximation to the distribution of X/u n given X > u n we can for F (u n ) → 0 and p n → 0 such that

p n /F (u n ) → c ∈ [0, ∞) introduce U 0 1 p n := u n p n F (u n ) -γ 1 -δ(u n ) 1 - p n F (u n ) -ρ (3) 
as approximation for U (1/p n ).

Lemma 1 Assume (R). If F (u n ) → 0 and p n → 0 such that p n /F (u n ) → c ∈ [0, ∞) we have that U 0 (1/p n )/U (1/p n ) → 1.
The proof of this lemma is straightforward and therefore it is for brevity omitted from the paper. Now, let X 1 , . . . , X n be i.i.d. random variables with a distribution function satisfying (R), and

denote by X 1,n ≤ • • • ≤ X n,n the corresponding order statistics. Taking u n = X n-k,n , replacing
F by the empirical distribution function in (3), and using the fact that e -x ∼ 1 -x for x → 0, we can introduce the following extreme quantile estimator

U 1 p n := X n-k,n np n k -γn exp -δ n 1 - np n k -ρn , (4) 
where ( γ n , δ n ) is the MDPD estimator for (γ, δ) and ρ n is a consistent estimator sequence for ρ.

In order to study the asymptotic behaviour of U (1/p n ), properly normalised, we need some preliminary results. Firstly, we need the limiting distribution of the MDPD estimator for ( γ n , δ n ). 

This was already derived in

δ n := δ(X n-k,n ). Theorem 1 Let X 1 , . . . , X n be a sample of i.i.d. random variables from a distribution function satisfying (R). Then if k, n → ∞ with k/n → 0 and √ ka(n/k) → λ ∈ R, we have that √ k   γn -γ 0 δn -δ n   (Γ, ∆) with (Γ, ∆) ∼ N 2 0, C -1 (ρ 0 )B(ρ 0 )Σ(ρ 0 )B (ρ 0 )C -1 (ρ 0 ) ,
where Σ(ρ 0 ) is a symmetric (3 × 3) matrix with elements

σ 11 (ρ 0 ) := α 2 (1 + γ 0 ) 2 [1 + α(1 + γ 0 )] 2 [1 + 2α(1 + γ 0 )] , σ 21 (ρ 0 ) := α(1 + γ 0 )[α(1 + γ 0 ) -ρ 0 ] [1 + α(1 + γ 0 )][1 -ρ 0 + α(1 + γ 0 )][1 -ρ 0 + 2α(1 + γ 0 )] , σ 22 (ρ 0 ) := [α(1 + γ 0 ) -ρ 0 ] 2 [1 -ρ 0 + α(1 + γ 0 )] 2 [1 -2ρ 0 + 2α(1 + γ 0 )] , σ 31 (ρ 0 ) := γ 0 1 [1 + 2α(1 + γ 0 )] 2 - 1 [1 + α(1 + γ 0 )] 3 , σ 32 (ρ 0 ) := γ 0 1 [1 -ρ 0 + 2α(1 + γ 0 )] 2 - 1 [1 + α(1 + γ 0 )] 2 [1 -ρ 0 + α(1 + γ 0 )] , σ 33 (ρ 0 ) := γ 2 0 2 [1 + 2α(1 + γ 0 )] 3 - 1 [1 + α(1 + γ 0 )] 4 , C(ρ 0 ) is a symmetric (2 × 2) matrix with elements c 11 (ρ 0 ) := γ -α-2 0 1 + α 2 (1 + γ 0 ) 2 [1 + α(1 + γ 0 )] 3 , c 12 (ρ 0 ) := γ -α-2 0 ρ 0 (1 -ρ 0 )[1 + α(1 + γ 0 ) + α 2 (1 + γ 0 ) 2 ] + α 3 ρ 0 (1 + γ 0 ) 3 [1 + α(1 + γ 0 )] 2 [1 -ρ 0 + α(1 + γ 0 )] 2 , c 22 (ρ 0 ) := γ -α-2 0 (1 -ρ 0 )ρ 2 0 + αρ 2 0 (1 + γ 0 )[α(1 + γ 0 ) -ρ 0 ] [1 + α(1 + γ 0 )][1 -ρ 0 + α(1 + γ 0 )][1 -2ρ 0 + α(1 + γ 0 )] ,
and

B(ρ 0 ) := γ -α-2 0   γ 0 0 -1 γ 0 -γ 0 (1 -ρ 0 ) 0   .
Secondly, we need the limiting distribution of the intermediate order statistic X n-k,n under (R), properly normalised.

Lemma 2 Let X 1 , . . . , X n be a sample of i.i.d. random variables from a distribution function

satisfying (R). For k, n → ∞ such that k = o(n) and √ ka(n/k) → λ ∈ R we have that √ k X n-k,n U (n/k) -1 X
where X ∼ N (0, γ 2 0 ).

In the next theorem we state the limiting distribution of the extreme quantile estimator (4), when properly normalised.

Theorem 2 Let X 1 , . . . , X n be a sample of i.i.d. random variables from a distribution function

satisfying (R). Then if k → ∞ as n → ∞ with k/n → 0, √ ka(n/k) → λ ∈ R, np n /k → 0 and ln(np n )/ √ k → 0 we have that √ k ln k npn   U 1 pn U 1 pn -1   Γ.
Theorem 2 indicates that the normalised extreme quantile estimator inherits the asymptotic distribution of the MDPD estimator for γ 0 . As shown in [START_REF] Dierckx | An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index[END_REF], the MDPD estimator for γ 0 based on the EPD is robust against outliers and asymptotically unbiased.

Simulation experiment

In this section we investigate the finite sample properties of U (1/p n ) as given in (4) with different parameter estimators, in particular the MDPD estimator γ n and δ n with α = 0.1, 0.5 and 1, and the maximum likelihood estimator (corresponding to MDPD with α = 0, see also [START_REF] Beirlant | Second-order refined peaks-over-threshold modelling for heavy-tailed distributions[END_REF]. We also consider the Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] given by

U W (1/p n ) = X n-k,n np n k -H k,n
, with H k,n being Hill's estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. For the parameter ρ we use the estimator of Fraga [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF]. • Uncontaminated Fréchet distribution (Figure 1): F (x) = exp(-x -β ), x > 0, β > 0, denoted Fréchet(β). For this study β was chosen as 2.

• Contaminated Fréchet distribution: F (x) = (1 -)F (x) + F (x) where F (x) represents the uncontaminated Fréchet(2) and F (x) = 1 -(x/x c ) -β , x > x c where β is chosen as 0.5 and x c = 2 times the 99.99% quantile of the uncontaminated Fréchet(2). We take = 0.01 (Figure 2) and = 0.02 (Figure 3).

• Uncontaminated Burr distribution (Figure 4):

F (x) = 1 -(η/(η + x τ )) λ , x > 0, η, τ, λ > 0,
denoted Burr(η, τ, λ). For this study we have chosen η = 1, τ = 1 and λ = 2.

• Contaminated Burr distribution: F (x) = (1 -)F (x) + F (x) where F (x) represents the uncontaminated Burr(1,1,2) and F (x) = 1 -(x/x c ) -β , x > x c where β = 0.5 and x c = 1.2 times the 99.99% quantile of the uncontaminated Burr(1,1,2). We take = 0.01 (Figure 5) and = 0.02 (Figure 6).

We report only the results for quantile 1 -1/500. The 1 -1/1000 quantile was also considered and resulted in similar outcomes.

In with distribution function H(y) = 1 -1/y, y > 1. Thus, For L 1 , use the well-known fact that √ k(k/nY n-k,n -1) Z where Z ∼ N (0, 1) (see for instance Corollary 2.2.2 in de Haan and Ferreira, 2006) and the delta method to obtain that L 1 X under the conditions of the lemma. For the term L 2 , a straightforward application of Taylor's theorem gives Since a is regularly varying we have that a(tx)/a(t) → x ρ as t → ∞, locally uniformly for x > 0.

√ k ln X n-k,n U (n/k) D = √ k ln U (Y n-k,n ) U (n/k) = γ 0 √ k ln k n Y n-k,n + √ k ln 1 + a(Y n-k,n ) 1 + a(n/k) =: L 1 + L 2 .
L 2 = √ ka(n/k) a(Y n-k,n ) a(n/k) -1 + o(1) + o a(Y n-k,n ) a(n/k) .
Combining this with the fact that k/nY n-k,n → 1 a.s. and the assumption √ ka(n/k) → λ ∈ R we have that L 2 P → 0. Lemma 2 follows then by collecting the terms and another application of the delta method. 

Proof of Theorem 2

First we comment on the joint convergence in distribution of the random vector 

( √ k( γ n -γ 0 ), √ k( δ n -δ n ), √ k(X n-k,n /U (n/k) -1), ρ n ).
( √ k( γ n -γ 0 ), √ k δ n ) (Γ, ∆), where (Γ, ∆) ∼ N 2 ((0, λ), C -1 (ρ 0 )B(ρ 0 )Σ(ρ 0 )B (ρ 0 )C -1 (ρ 0 )).

  3 of Beirlant et al. (2009), for distribution functions satisfying (R), the distribution function of the relative excess Y := X/u

  where g denotes the density function of G. The parameter ρ is estimated externally, e.g. by using one of the estimators proposed in Fraga Alves et al. (2003) or Goegebeur et al. (2010). Other robust estimators for γ were proposed by e.g. Peng and Welsh (2001), Juárez and Schucany (2004), Vandewalle et al. (2007), Kim and Lee (2008).In the present paper we will consider robust and asymptotically unbiased extreme quantile estimation under model (R), using the MDPD estimator of[START_REF] Dierckx | An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index[END_REF].Beirlant et al. 

  Dierckx et al. (2013), but we repeat the result for completeness here. Let the arrow denote convergence in distribution, and let P → denote convergence in probability. From now on we denote by γ 0 and ρ 0 the true values of the parameters γ and ρ, respectively, and
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 6 Figures 1 to 6 illustrate the results of a small simulation study based on 100 datasets, each of size n = 200, simulated from the distributions given below. The same distributions were considered in Dierckx et al. (2013).
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 65612 Figure 1: Fréchet simulation, quantile 1-1/500. Top: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (solid), MLE based estimator (dotted) and Weissman estimator (dashed).

Figure 3 :

 3 Figure 3: Fréchet simulation, quantile 1-1/500, 2% contamination. Top: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid), MLE based estimator (dotted) and Weissman estimator (dashed).

Figure 4 :

 4 Figure 4: Burr simulation, quantile 1-1/500. Top: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (solid), MLE based estimator (dotted) and Weissman estimator (dashed).

Figure 5 :

 5 Figure 5: Burr simulation, quantile 1-1/500, 1% contamination. Top: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid), MLE based estimator (dotted) and Weissman estimator (dashed).

Figure 6 :

 6 Figure 6: Burr simulation, quantile 1-1/500, 2% contamination. Top: median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid), MLE based estimator (dotted) and Weissman estimator (dashed).

C - 1 → λ and ρ n P → ρ 0 1 + a 1 pn-δ n 1 -d ρn n ( 5 )=: T 1 + T 2 + T 3 -T 4 .

 10151234 From the proof of Lemma 1 and Theorem 2 in[START_REF] Dierckx | An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index[END_REF] we can deduce that γ n and δ n are independent of X n-k,n , and therefore( √ k( γ n -γ 0 ), √ k δ n , √ k(X n-k,n /U (n/k) -1)) (Γ, ∆, X),where (Γ, ∆, X) ∼ N 3 ((0, λ, 0), Ψ)(ρ 0 )B(ρ 0 )Σ(ρ 0 )B (ρ 0 )C -1 (ρ 0 ) we have also that( √ k( γ n -γ 0 ), √ k( δ n -δ n ), √ k(X n-k,n /U (n/k) -1), ρ n ) (Γ, ∆, X, ρ 0 ). Now, consider ln( U (1/p n )/U (1/p n )). Let d n := k/(np n ). Straightforward calculations give ln n -γ 0 ) ln d n + ln 1 + a n k Clearly T 1 = O P (1/ √ k) byLemma 2 and T 2 = O P By using the regular variation properties of the function a and the fact that d n → ∞ we have that a(1/p n )/a(n/k) → 0, and thus under the conditions of the theorem T 3 = O(a(n/k)). Finally, for T 4 note that d ρn n = o P (1) and δ n = O P (1/ √ k). Collecting all the terms we see thus that the rate of convergence of ln( U (1/p n )/U (1/p n )) is given by ln dn √ k . Multiplying both sides of (5) by √ k/ ln d n , the result of the theorem follows.

Appendix Proof of Lemma 2

Using the inverse probability integral transform we have that

denotes order statistic n -k of a random sample Y 1 , . . . , Y n from the unit Pareto distribution