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Abstract –We study two two-level atomic quantum systems (qubits) placed close to a body held
at a temperature different from that of the surrounding walls. While at thermal equilibrium the
two-qubit dynamics is characterized by not entangled steady thermal states, we show that absence
of thermal equilibrium may bring to the generation of entangled steady states. Remarkably, this
entanglement emerges from the two-qubit dissipative dynamic itself, without any further external
action on the two qubits, suggesting a new protocol to produce and protect entanglement which
is intrinsically robust to environmental effects.

Introduction. – Entanglement represents one of the
key features in quantum mechanics [1] due to its connec-
tion to non locality [2, 3] and its crucial role in quantum
information [4]. Environmental noise [5] induces decoher-
ence [6] and is typically responsible for the fragility of
entanglement [7]. This represents one of the major ob-
stacles to the concrete realization of quantum technolo-
gies related to quantum information processing [1, 4]. A
huge effort has been dedicated to the comprehension of
the detrimental environmental effects [7–12] and in con-
ceiving suitable approaches to contrast the natural decay
of quantum correlations [13]. They include reservoir engi-
neering [13], feedback methods [14], distillation protocols
[15], decoherence free-subspaces [16], non-Markovian ef-
fects [8], weak measurements [17], quantum Zeno effect
[18], dynamical decoupling [19] and reservoir monitoring
[20]. Different protocols exploiting dissipative effects to
realize steady entanglement have been proposed [21–23].

Here, we introduce a direct procedure to protect entan-
glement realized by bringing the environment of a two-
qubit system out of thermal equilibrium. Physical sys-
tems consisting of two qubits in a common environment
in absence [24–26] or presence [27,28] of matter have been
largely investigated at thermal equilibrium, pointing out
the creation of entanglement due to the field mediated
interaction, which however typically washes off asymptot-
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ically. Efforts have been also done considering two or more
qubits interacting with independent thermal reservoirs at
different temperatures, pointing out the possible creation
of steady entangled states [29–34]. Thermal reservoirs at
distinct temperatures are also exploited in thermal ma-
chines involving few atoms [35]. On the other hand, new
possibilities emerging in realistic systems out of thermal
equilibrium, keeping into account the scattering matrices
of the bodies present in the system, have been recently
pointed out in different contexts ranging form heat trans-
fer [36, 37], to Casimir-Lifshits forces [38–45] and atomic
dynamics [46, 47]. In particular, near field effects in the
case of atoms close to bodies are relevant.

In this Letter we investigate how entanglement between
two qubits can be manipulated by means of a complex
electromagnetic field out of thermal equilibrium resulting
from the presence of bodies at different temperature whose
geometrical and dielectric properties can be used as a re-
source. We will show that this environmental noise has
two remarkable effects: it contrasts the usual dechoer-
ence between the qubits, and it generates steady entan-
gled states. This is obtained without any further external
actions on the two qubits, such as the use of lasers or com-
plex procedures involving measurements on the qubits or
on the environment. Differently from [31], the main effects
emerging out of equilibrium are here obtained by means
of a single common field.

Physical system and model.—We consider two qubits
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Fig. 1: (color online). Two qubits close to a slab at temperature TM
different from the temperature of the surrounding walls, TW. The
two qubits are placed in (r1, z1) and (r2, z2), where r1 and r2 are
vectors in the xy plane and r12 = |r1 − r2|.

q = 1, 2, whose ground |g〉q and excited |e〉q internal levels

are separated by the frequency ω = ω1
e−ω1

g = ω2
e−ω2

g , in-
teracting with a complex environment consisting in a sta-
tionary out of thermal equilibrium electromagnetic field.
This is the result of the field emitted by a body of arbitrary
geometry and dielectric permittivity, held at the tempera-
ture TM, and of the field emitted by far surrounding walls
held at temperature TW, eventually reflected and trans-
mitted by the body (see Fig. 1 when the body is a slab).
The walls have an irregular shape and are distant enough
from the qubits such that the field they would produce at
the qubits position (in the absence of the body) would be a
blackbody radiation independent from the walls composi-
tion and geometry [38–41]. The total Hamiltonian has the
form H = HS+HE+HI , where HS =

∑
q

∑
n=g,e ~ωqnσqnn,

being σqmn = |m〉qq〈n|, is the free two-qubit Hamiltonian
and HE the free environmental Hamiltonian. The interac-
tion between the qubits and the environment in the mul-
tipolar coupling and in dipole approximation is described
by HI = −

∑
qDq · E(Rq) [48], where Dq is the electric-

dipole operator of qubit q (being q〈g|Dq|e〉q = dq), and
E(Rq) is the electric field at the position Rq of qubit q.

Master equation. – The starting point to study the
two-qubit dynamics is the von Neumann equation for the
total density matrix, which in the interaction picture is
ρ̇tot(t) = − i

~ [HI(t), ρtot(t)]. By tracing over the environ-
mental degrees of freedom, after the Born, Markov and
rotating wave approximations, the master equation for the
reduced two-qubit density matrix becomes [49,50]

d

dt
ρ = − i

~
[HS + δS , ρ]− i

∑
q 6=q′

Λqq
′
(ω)[σq †ge σ

q′

ge, ρ]

+
∑
q,q′

Γqq
′
(ω)
(
σq
′

geρσ
q †
ge −

1

2
{σq †ge σq

′

ge, ρ}
)

+
∑
q,q′

Γqq
′
(−ω)

(
σq
′†
ge ρσ

q
ge −

1

2
{σqgeσq

′ †
ge , ρ}

)
,

(1)

where δS is an operator related to the level frequency
shifts, not playing any role in the following. Func-

tion Λqq
′
(ω) represents temperature independent induced

coherent (dipole-dipole) interaction between the qubits,
while Γqq

′
(±ω) are individual (q = q′) and common field

mediated collective (q 6= q′) qubit transition rates, related
to both quantum and thermal fluctuations of the electro-
magnetic field at the qubits positions.

In the following, we will use two different basis: the
decoupled bases {|1〉 ≡ |gg〉, |2〉 ≡ |eg〉, |3〉 ≡ |ge〉, |4〉 ≡
|ee〉}, and the coupled bases {|G〉 ≡ |1〉, |A〉 ≡ (|2〉 −
|3〉)/

√
2, |S〉 ≡ (|2〉 + |3〉)/

√
2, |E〉 ≡ |4〉}, where the col-

lective anti-symmetrical and symmetrical states |A〉 and
|S〉 are combinations of the decoupled states |2〉 and |3〉.

X states and concurrence. – In the decoupled ba-
sis, master equation (1) implies that the dynamics of the
elements along the two main diagonals of the two-qubit
density matrix (forming an X-structure) is independent
from that of the remaining ones. Then, an initial state
with an X-structure maintains its form in time. More-
over, terms outside the two main diagonals, are washed off
asymptotically. Bell, Werner and Bell diagonal states be-
long to the class of X states [51], which arise in a wide va-
riety of physical situations and are experimentally achiev-
able [52]. In the following we will deal with X states.

We quantify the two-qubit entanglement by means of
the concurrence C(t) (C = 0 for separable states, C = 1
for maximally entangled states) [53]. For X states, using
ρij = 〈i|ρ|j〉, it takes the simple form [54]

C(t) = 2 max{0,K1(t),K2(t)},

K1(t) = |ρ23(t)| −
√
ρ11(t)ρ44(t),

K2(t) = |ρ14(t)| −
√
ρ22(t)ρ33(t).

(2)

Eq. (1) induces an exponential decay for ρ14(t), so that in
the steady state only K1(t) could lead to C(∞) > 0.

Thermal equilibrium. – For TW = TM master equa-
tion (1) describes the qubits thermalization towards the
diagonal thermal equilibrium state1

ρ11(∞)
ρ22(∞)
ρ33(∞)
ρ44(∞)


eq

=
1

Zeq


[1 + n(ω, T )]2

n(ω, T )[1 + n(ω, T )]
n(ω, T )[1 + n(ω, T )]

n(ω, T )2

 , (3)

where Zeq = [1 + 2 n(ω, T )]2 and n(ω, T ) = (e
~ω

kBT − 1)−1.
This state is universal, it depends only on the ratio
~ω/kBT , remaining insensible to all system details. Be-
ing |ρ23(∞)| = 0, K1(∞) is always negative, resulting in
not entangled steady states. In terms of the density matrix
in the coupled bases, using ρX ≡ ρXX = 〈X|ρ|X〉, ρ23 is
equal to zero in the steady state since ρAS(∞) = 0 and
ρS(∞) = ρA(∞). The latter identity has not to be valid
out of thermal equilibrium, allowing K1(∞) > 0 hence
producing steady entanglement.

1The thermal state is not reached asymptotically if Γii(±ω) =
Γij(±ω). In this case, both at and out equilibrium, the steady state
depends on the initial state.
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Out of thermal equilibrium. – For TW 6= TM, the
analysis of Eqs. (1-2) is much more rich and delicate. The
Γ and Λ functions depend on the correlation functions
of the electromagnetic field, which at thermal equilib-
rium can be directly evaluated exploiting the fluctuation-
dissipation theorem (FDT). Out equilibrium, the FTD is
not valid in general. Nevertheless, we assume that the ra-
diation emission by the body and the walls has the same
characteristics it would have at thermal equilibrium at the
source temperature [38–41, 44, 45]. This allows to com-
pute the correlation functions by indirectly using the FDT,
as recently used to study the dynamics of a single atom
[46, 47]. The transition rates in Eq. (1) can be set under
the form

Γqq
′
(ω) =

√
Γq0(ω)Γq

′

0 (ω)
{

[1 + n(ω, TW)]αqq
′

W (ω)

+ [1 + n(ω, TM)]αqq
′

M (ω)
}

Γqq
′
(−ω) =

√
Γq0(ω)Γq

′

0 (ω)
{
n(ω, TW)αqq

′

W (ω)∗

+ n(ω, TM)]αqq
′

M (ω)∗
}
,

(4)

where αqq
′

W (ω) =
∑
i,i′ [d̃

q
]∗i [d̃

q′

]i′ [α
qq′

W (ω)]ii′ , α
qq′

M (ω) =∑
i,i′ [d̃

q
]∗i [d̃

q′

]i′ [α
qq′

M (ω)]ii′ , being [d̃
q
]i = [dq]i/|dq|, and

Γq0(ω) = |dq|2ω3/3~πε0c3 is the vacuum spontaneous-

emission rate of qubit q. [αqq
′

M (ω)]ii′ and [αqq
′

W (ω)]ii′ are
temperature independent functions, which depend on all
the other system parameters and can be expressed as

[αqq
′

W (ω)]ii′ =
3πc

2ω

∑
p,p′

∫
d2k

(2π)2

∫
d2k′

(2π)2
ei(k·rq−k

′·rq′ )

× 〈p,k|
{
ei(kzzq−k

′∗
z zq′ )[ε̂+p (k, ω)]i[ε̂

+
p′(k

′, ω)]∗i′

×
(
T P(pw)
−1 T † +RP(pw)

−1 R†
)

+ ei(kzzq+k
′∗
z zq′ )

× [ε̂+p (k, ω)]i[ε̂
−
p′(k

′, ω)]∗i′RP
(pw)
−1 + e−i(kzzq+k

′∗
z zq′ )

× [ε̂−p (k, ω)]i[ε̂
+
p′(k

′, ω)]∗i′P
(pw)
−1 R† + e−i(kzzq−k

′∗
z zq′ )

× [ε̂−p (k, ω)]i[ε̂
−
p′(k

′, ω)]∗i′P
(pw)
−1

}
|p′,k′〉,

[αqq
′

M (ω)]ii′ =
3πc

2ω

∑
p,p′

∫
d2k

(2π)2

∫
d2k′

(2π)2
ei(k·rq−k

′·rq′ )〈p,k|

{
ei(kzzq−k

′∗
z zq′ )[ε̂+p (k, ω)]i[ε̂

+
p′(k

′, ω)]∗i′
[(
P(pw)
−1 +RP(ew)

−1

− P(ew)
−1 R† −RP

(pw)
−1 R† − T P

(pw)
−1 T †

)}
|p′,k′〉,

(5)

where the operators R and T are the standard reflection
and transmission scattering operators, explicitly defined
for example in [45], associated in this case to the right
side of the body. They connect any outgoing (reflected
or transmitted) mode of the field to the entire set of in-
coming modes. In the previous equations, each mode of
the field is identified by the frequency ω, the transverse

wave vector k = (kx, ky), the polarization index p (taking
the values p = 1, 2 corresponding to TE and TM polar-
izations respectively), and the direction or propagation
φ = ±1 (shorthand notation φ = ±) along the z axis.
In this approach, the total wavevector takes the form
Kφ = (k, φkz), where the z component of the wavevec-

tor kz is a dependent variable given by kz =
√

ω2

c2 − k2,

where k = |k|. For the polarization vectors appear-
ing in Eq. (5) we adopt the following standard defini-

tions ε̂φTE(k, ω) = ẑ × k̂ = (−kyx̂ + kxŷ)/k, ε̂φTM(k, ω) =

c ε̂φTE(k, ω)×Kφ/ω = c (−kẑ+φkzk̂)/ω, where x̂, ŷ and ẑ

are the unit vectors along the three axes and k̂ = k/k.
In Eq. (5) we have also used 〈p,k|P(pw/ew)

n |p′,k′〉 =
knz 〈p,k|Π(pw/ew)|p′,k′〉, Π(pw) and Π(ew) being the projec-
tors on the propagative (ck < ω, corresponding to a real
kz) and evanescent (ck > ω, corresponding to a purely
imaginary kz) sectors respectively.

With regards to the Λqq
′
(ω) function of Eq. (1), it can

be also expressed in terms of α functions as

Λqq
′
(ω) =

√
Γq0(ω)Γq

′

0 (ω)

ω3

× P
∫ +∞

−∞

ω′3dω′

2π

αqq
′

W (ω′) + αqq
′

M (ω′)

ω − ω′
.

(6)

Previous expression can be calculated by exploiting the
connection between α functions and the imaginary part of
the Green function of the system, ImGii′(Rq,Rq′ , ω) =

ω3

3πε0c3
[αqq′

W (ω)]ii′+[αqq′
M (ω)]ii′

2 , where i and i′ refer to the
cartesian components of the field and Gii′(Rq,Rq′ , ω) is
the ii′ component of the Green function of the system.
Eq. (6) thus becomes

Λqq
′
(ω) = −1

~
∑
i,i′

[dq]∗i [d
q′ ]i′ReGii′(Rq,Rq′ , ω), (7)

where Kramers-Kronig relations connecting real and
imaginary parts of the green function have been
used to compute the principal value of the integral.
ReGii′(Rq,Rq′ , ω) can then obtained after having derived
the Green function of the system Gii′(Rq,Rq′ , ω) [55].

Analytical investigation.—To illustrate the new qual-
itative and quantitative behaviour of the entanglement
out of thermal equilibrium, we first consider an instruc-
tive case allowing a direct interpretation. Let us con-
sider Γ11(±ω) = Γ22(±ω) ≡ Γ(±ω) and Γ12(21)(±ω) ∈ R.
These conditions are verified for identical qubits (d1 =
d2 ≡ d) in equivalent positions with respect to the body
(in the case the body is a slab, z1 = z2) and with d real
and directed or along the z axis or along the x−y plane. In
this case, master equation (1) implies in the coupled basis
a set of rate equations for the populations, decoupled from
the other density matrix elements:
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Fig. 2: (color online). Scheme of the rate equations of Eq. (8):
Γp
S(A)

= ΓS(A)(1 + nS(A)), Γm
S(A)

= ΓS(A) nS(A).

ρ̇G =ΓA(1 + nA)ρA + ΓS(1 + nS)ρS

− (ΓA nA + ΓS nS)ρG+,

ρ̇A =ΓA nAρG + ΓA(1 + nA)ρE − ΓA(1 + 2nA)ρA,

ρ̇S =ΓS nSρG + ΓS(1 + nS)ρE − ΓS(1 + 2nS)ρS,

ρ̇E =ΓA nAρA + ΓS nSρS

− [ΓA(1 + nA) + ΓS(1 + nS)]ρE.

(8)

Here the derivates are with respect to Γ0(ω)t [Γ0(ω) ≡
Γ
(1)
0 (ω) = Γ

(2)
0 (ω)], and we introduced the symmetric and

anti-symmetric rates and the effective number of photons

ΓA =αW(ω)− α12
W(ω) + αM(ω)− α12

M (ω)

ΓS =αW(ω) + α12
W(ω) + αM(ω) + α12

M (ω)

nA =
1

ΓA

{[
αW(ω)− α12

W(ω)
]
n(ω, TW)

+
[
αM(ω)− α12

M (ω)
]
n(ω, TM)

}
nS =

1

ΓS

{[
αW(ω) + α12

W(ω)
]
n(ω, TW)

+
[
αM(ω) + α12

M (ω)
]
n(ω, TM)

}
,

(9)

being αW(M)(ω) ≡ α11
W(M)(ω) = α22

W(M)(ω). Function Λ

does not enter in the rate equations (8), which are depicted
in Fig. 2. To each decay channel from |E〉 to |G〉, passing
respectively trough |S〉 and |A〉, one can associate an effec-
tive number of photons nS(A) confined between n(ω, TW)
and n(ω, TM), which is equivalent to associate an effective
temperature TS(A) confined between TW and TM [46, 47].
While the coherences along the second diagonal decay ex-
ponentially to zero, the stationary solution of Eq. (8) is

see eq. (10)

where Zneq is the sum of the elements of the vector on
the right side of the above equation. Equation (10), which
reduces to the thermal state (3) for TW = TM, shows that
out of equilibrium it is possible that ρS(∞) 6= ρA(∞),
and implies |ρ23(∞)| = |nS − nA|(ΓS + ΓA)/2Zneq. This
leads to the possibility to have K1(∞) > 0 in Eq. (2),
corresponding to stationary entanglement. Using Eq. (10)

Fig. 3: (color online). Part (a): steady concurrence [C = C(∞)] vs
nS and nA for a fixed value ΓA/ΓS ≈ 2.8 × 10−4. The red point
corresponds to the maximum of concurrence along the white line in
part (a) of Fig. 4. Part (b): maximum of concurrence, Cmax as
function of ΓA/ΓS.

in Eq. (2), we obtain for the steady concurrence C(∞) =
2 max{0,K1(∞)}, with

K1(∞) =
1

Zneq

[
|nS − nA|(ΓS + ΓA)/2

−
√

(1 + nA)2(1 + 2nS)ΓA + (1 + 2nA)(1 + nS)2ΓS

×
√
n2A(1 + 2nS)ΓA + (1 + 2nA)n2SΓS

]
,

(12)

which tends to zero at thermal equilibrium when nS = nA.
Simplifying ΓS, C(∞) becomes function of only ΓA/ΓS,
nS and nA. We discuss this dependence in Fig. 3 (a),
where C(∞) is depicted as a function of nS and nA for
ΓA/ΓS ≈ 2.8 × 10−4. Large values of steady concurrence
are obtained when the number of photons associated to the
two decay channels (see Fig.2) are enough distant between
them. This physically corresponds to largely populate the
antisymmetric state with respect to the symmetric one
[see Eq. (10)]. By increasing too much nA at fixed nS,
the steady entanglement starts to decrease (not shown in
the figure). Part (b) shows that the maximum value of
C(∞) reachable by varying nS and nA at a fixed value of
ΓA/ΓS is 1/3, obtainable in the two cases ΓA/ΓS → 0 or
ΓS/ΓA → 0. The maximally entangled steady states are
obtained in the first case in the limit of nS → 0 and of
nA → ∞ while in the second case in the limit of nA → 0
and nS → ∞. These states are a statistical mixture of
the ground and of the antisymmetric (symmetric) state
with weights respectively equal to 2/3 and 1/3 and are
also found in [31]. We remark that up to now our findings
do not rely on the specific choice of body’s geometry or
dielectric properties.

Numerical investigation. – In order to discuss the
properties of C(∞) besides the case studied above, we
solve Eq. (1) for the case where the body close to the
two qubits is a slab of thickness δ, as depicted in Fig. 1.
In this case, we have at disposition simple expressions for
R and T . As a result of the translational invariance of
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
ρG(∞)

ρA(∞)

ρS(∞)

ρE(∞)


neq

=
1

Zneq


(1 + nA)2(1 + 2nS)ΓA + (1 + 2nA)(1 + nS)2ΓS

nA(1 + nA)(1 + 2nS)ΓA + [nA(1 + 2nS) + n2S(1 + 2nA)]ΓS

nS(1 + nS)(1 + 2nA)ΓS + [nS(1 + 2nA) + n2A(1 + 2nS)]ΓA

n2A(1 + 2nS)ΓA + (1 + 2nA)n2SΓS

, (10)

a planar slab with respect to the xy plane, its reflection
and transmission operators, R and T , are diagonal and
given by 〈p,k|R|p′,k′〉 = (2π)2δ(k − k′)δpp′ρp(k, ω) and
〈p,k|T |p′,k′〉 = (2π)2δ(k−k′)δpp′τp(k, ω), where ρp(k, ω)
and τp(k, ω) are the Fresnel reflection and transmission
coefficients of a slab of finite thickness δ [47]. It follows

that αqq
′

M and αqq
′

W of Eq. (5) reduce to simple integrals
over propagative and evanescent sectors [55]. We also
choose a SiC slab, describing its dielectric permittivity
ε(ω) with a Drude-Lorentz model, with a resonance at
ωr = 1.495× 1014 rad s−1 and a surface phonon-polariton
resonance at ωp = 1.787 × 1014 rad s−1. Hence, rele-
vant length and temperature scales are c/ωr ' 2µm and
~ωr/kB ' 1140 K. In Fig. 4 (a) we plot concurrence of Eq.
(2) as a function of z2 and TM in the case of two identi-
cal qubits having electric dipole perpendicular to the slab,
for fixed values of z1 = 1µm and TW = 30 K. The plot

Fig. 4: (color online). Part (a): steady concurrence [C = C(∞)] vs
z2 and TM. Here z1 = 1µm, r12 = 0.25µm (the qubits are distant
[r212 +(z1−z2)2]1/2), TW = 30 K, δ = 0.01µm, and ω = 0.3ωr. Part
(b): concurrence as a function of Γ0(ω)t for three different initial
conditions, the antisymmetric (green dashed line), the symmetric
(blue dotdashed line) and the thermal state at 30 K (red solid line).

evidences a large zone in the space of the parameters cor-
responding to the generation of steady entangled states.
The maximum value of C(∞), obtained for z1 6= z2 = 1.28
and TM ≈ 1300 K, is ≈ 0.224. The characteristic time to
reach this entangled steady state is ' 103[Γ0(ω)]−1 [see
part (b)]. The white line corresponds to the case z2 = z1
and hence can be described by Eq. (12). The maximum
along this curve, obtained for TM ≈ 1200 K, corresponds

to the red point in Fig. 3 (a), being nA ≈ 1.53 (TA ≈ 680
K) and nS ≈ 0.02 (TS ≈ 90 K). The relevant difference
between TS and TA is responsible of the high value of con-
currence, ≈ 0.217 (see also Fig. 3). However, by further
increasing TM the concurrence decreases. Values of steady
concurrence higher than 0.14 are already obtained at TM ≈
500 K. High unphysical temperatures are here considered
as an indication of what would occur at lower tempera-
tures in the case of a slab made by a different material
characterized by similar values of ε(ω) at lower frequen-
cies.

In Fig. 4 (b), by using the parameters corresponding
to the maximum of Fig. 4(a), we show the time evolution
of concurrence for three different initial states: the maxi-
mally entangled antisymmetric and symmetric states, and
the not entangled thermal state at T = 30 K. We note
how the protection of entanglement and its steady pro-
duction, respectively, are independent on the initial two-
qubit state. A systematic study shows also that by in-
creasing the slab thickness δ, or the value of r12, or mov-
ing the atomic frequency ω towards the slab resonances, or
changing the two qubits electric dipole orientations steady
entanglement typically reduces. We observe that even a
small amount of mixed state entanglement, here produced,
could be then distilled into a pure entangled state [56]. We
remark that results similar to the ones discussed above
could be found in a different range of frequencies by con-
sidering a different material for the slab such that close
values for the dielectric permittivity are found at different
values of ω.

A first direct realization of our two-qubit system is made
by two-level atoms. Our study also applies to other kind
of physical systems like quantum dots or superconducting
qubits. In this case other possible additional sources of
environmental noise should be taken into account, if they
are strong enough to overcome the effects driven by the
electromagnetic field.

Conclusions. – We investigated the dynamics of two
qubits interacting with a common stationary field out
of thermal equilibrium. We predicted the occurrence of
steady entangled states not depending on the initial two-
qubit state, consisting then in a creation and/or protection
of entanglement according to the nature of the initial con-
figuration. For a relevant class of parameters we derived
an analytical expression for concurrence, and explained
the entanglement production in terms of rate equations
driven by two different effective temperatures associated
to the two decay channels governing the passage from the

p-5



B. Bellomo et al.

two-qubit excited state to the ground state. We numeri-
cally studied the case where the body close to the qubits is
a slab, finding concurrence up to ≈ 1/4. While at thermal
equilibrium the entanglement decays to zero faster if the
temperature is increased, the present strategy to create
and/or protect entanglement can be realized, quite coun-
terintuitively, starting from a thermal equilibrium configu-
ration and increasing only one of the two temperatures of
the system. To further increase the amount of steady en-
tanglement, systematic studies exploiting different body’s
geometries are envisaged.
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