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ON THE EXIT TIME FROM A CONE FOR BROWNIAN MOTION

WITH DRIFT

RODOLPHE GARBIT AND KILIAN RASCHEL

Abstract. We investigate the tail distribution of the first exit time of Brownian motion

with drift from a cone and find its exact asymptotics for a large class of cones. Our

results show in particular that its exponential decreasing rate is a function of the distance

between the drift and the cone, whereas the polynomial part in the asymptotics depends

on the position of the drift with respect to the cone and its polar cone, and reflects the

local geometry of the cone at the point where the drift is orthogonally projected.

1. Introduction and results

General context. Let Bt be a d-dimensional Brownian motion with drift a ∈ R
d. For

any cone C ⊂ R
d, define the first exit time

τC = inf{t > 0 : Bt /∈ C}.
In this article we study the probability for the Brownian motion started at x not to exit
C before time t, namely,

(1) Px[τC > t],

and its asymptotics

(2) κh(x)t−αe−γt(1 + o(1)), t → ∞.

Zero drift case. In the literature, these problems have first been considered for Brownian

motion with no drift (a = 0). In [25], Spitzer considered the case d = 2 and obtained an
explicit expression for the probability (1) for any two-dimensional cone. He also introduced
the winding number process θt = argBt (in dimension d = 2, the Brownian motion does

not exit a given cone before time t if and only if θt stays in some interval). He proved a weak
limit theorem for θt as t → ∞. Later on, this result has been extended by many authors
in several directions (e.g., strong limit theorems, winding numbers not only around points

but also around certain curves, winding numbers for other processes), see for instance [22].
In [12], motivated by studying the eigenvalues of matrices from the Gaussian Unitary

Ensemble, Dyson analyzed the Brownian motion in the cone formed by the Weyl chamber

of type A, namely,

(3) {x = (x1, . . . , xd) ∈ R
d : x1 < · · · < xd}.

Date: November 6, 2013.

2000 Mathematics Subject Classification. 60F17, 60G50, 60J05, 60J65.

Key words and phrases. Brownian motion with drift; Exit time; Cone; Heat kernel.

1



2 R. GARBIT AND K. RASCHEL

He also defined the Brownian motion conditioned never to exit the chamber. These
results have been extended by Biane [3] and Grabiner [17]. In [2], Biane studied some

further properties of the Brownian motion conditioned to stay in cones, and in particular
generalized the famous Pitman’s theorem to that context. In [21] König and Schmid
analyzed the non-exit probability (1) of Brownian motion from a growing truncated Weyl

chamber.
In [5], Burkholder considered open right circular cones in any dimension and computed

the values of p > 0 such that

Ex[τpC ] < ∞.

In [9, 10], for a fairly general class of cones, DeBlassie obtained an explicit expression for
the probability (1) in terms of the eigenfunctions of the Dirichlet problem for the Laplace-
Beltrami operator on

Θ = S
d−1 ∩ C,

see [9, Theorem 1.2]. DeBlassie also derived the asymptotics (2), see [9, Corollary 1.3]: he
found γ = 0 (indeed, the drift is zero), while α is related to the first eigenvalue and h(x)

to the first eigenfunction. The basic strategy in [9, 10] was to show that the probability
(1) is solution to the heat equation and to solve the latter. In [1], Bañuelos and Smits
refined the results of DeBlassie [9, 10]: they considered more general cones, and obtained

a quite tractable expression for the heat kernel (the transition densities for the Brownian
motion in C killed on the boundary), and thus for (1).

We conclude this part by mentioning the work [11], in which Doumerc and O’Connell
found a formula for the distribution of the first exit time of Brownian motion from a

fundamental region associated with a finite reflection group.

Non-zero drift case. For Brownian motion with non-zero drift, much less is known.
Only the case of Weyl chambers (of type A) has been investigated. In [4], Biane, Bougerol

and O’Connell obtained an expression for the probability Px[τC = ∞] = limt→∞ Px[τC > t]
in the case where the drift is inside of the Weyl chamber (and hence the latter probability
is positive). In [24], Pucha la and Rolski gave, for any drift a, the exact asymptotics (2) of

the tail distribution of the exit time, in the context of Weyl chambers too. The different
quantities in (2) were determined explicitly in terms of the drift a and of a vector obtained
by a procedure involving the construction of a stable partition of the drift vector.

Aim of this paper. In this article, we find the asymptotics (2) for a very general class
of cones C, and we identify κ, h(x), α and γ in terms of the cone C and the drift a. This
way, we extend the results of [4] and partially those of [24]. We shall consider six different

cases corresponding to a partition of the Euclidian space R
d with respect to (w.r.t.) the

cone. To do this, we introduce the polar cone (which is a closed set)

C♯ = {x ∈ R
d : 〈x, y〉 6 0,∀y ∈ C}.

See Figure 3 for an example of polar cone. Below and throughout, we shall denote by Do

(resp. D) the interior (resp. the adherence) of a set D ⊂ R
d. The six cases are, in order

of appearance,

A. polar interior drift: a ∈ (C♯)o;
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B. zero drift: a = 0;
C. interior drift: a ∈ C;

D. boundary drift: a ∈ ∂C \ {0};
E. non-polar exterior drift: a ∈ R

d \ (C ∪ C♯);
F. polar boundary drift: a ∈ ∂C♯ \ {0}.

These cases will be analyzed in Theorems A, B, C, D, E and F, respectively. Our results
show in particular that the exponential decreasing rate e−γ in (2) is related to the distance

between the drift and the cone by the formula

γ = min
y∈C

|a− y|2/2.

As for the polynomial part t−α in (2), it depends on the case under consideration and
reflects the local geometry of the cone at the point(s) where the drift projects orthogonally,

plus the local geometry at the contact points in case F.
Our results extend those of Pucha la and Rolski in [24] about Weyl chambers of type

A in cases A, B and C only. (Note that case A does not concern Weyl chambers since

the polar cone has then an empty interior, whereas case B has already been settled in
[1] but is presented here for the sake of completeness.) Indeed, we will treat cases D, E
and F under a smoothness assumption on the cone that excludes Weyl chambers from

our analysis. The reason is that we will need estimates for the heat kernel of the cone at
boundary points, and those are only available (to our knowledge) in the case of smooth
cones or, on the other hand, in the case of Weyl chambers.

However, it is worth pointing out the fact that the formula in [24] for γ is exactly the
same as ours. Indeed, though it is not mentioned, the vector f obtained in [24] via the
construction of a stable partition of the drift is exactly the orthogonal projection of the

drift on the Weyl chamber, and their formula (4.10) reads γ = |a − f |2/2, as the reader
can easily check.

2. Two-dimensional Brownian motion in cones

For the one-dimensional Brownian motion and the cone C = (0,∞), there are three

regimes for the asymptotics of the non-exit probability, according to the sign of the drift
a ∈ R. Precisely, for any x > 0, as t → ∞ one has, with obvious notations (see [19, section
2.8]),

(4) Px[τ(0,∞) > t] = (1 + o(1))



























xe−axe−ta2/2

√
2πa2t3/2

if a < 0,

√
2x√
πt

if a = 0,

1 − e−2ax if a > 0.

In dimension 2, any (connected and proper) open cone is a rotation of

{ρeiθ : ρ > 0, 0 < θ < β}
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for some β ∈ (0, 2π], see Figure 3. For some specific cones, the asymptotics of the non-
exit probability is easy to determine. This is for example the case of the upper half-

plane (β = π), since this is essentially a one-dimensional case. It is also an easy task to
deal with the quarter plane Q (β = π/2). Indeed, by independence of the coordinates

(B
(1)
t , B

(2)
t ) of the Brownian motion Bt and noting x = (x1, x2) the starting point, the

non-exit probability can be written as

Px[τQ > t] = Px1
[τ(0,∞)(B

(1)) > t] · Px2
[τ(0,∞)(B

(2)) > t].

Denoting by a = (a1, a2) the coordinates of the drift and making use of (4), one readily

deduces the asymptotics Px[τQ > t] = κh(x)t−αe−γt(1 + o(1)), as summarized in Figure 1,
where the value of α is given, according to the position of the drift (a1, a2) in the quarter
plane. We focus on α and not on γ, since the value of γ is always obtained in the same

way, as we shall see in section 3.

-

6

1

0

23

1/2

3/2

a1

a2

Figure 1. Value of α in terms of the position of the drift (a1, a2) in the
plane (case of the quarter plane)

More generally, we shall prove in this article that the value of α for any two-dimensional
cone is given as in Figure 2. This result can be understood as follows: when the drift is

negative (i.e., when it belongs to the polar cone C♯), one sees the influence of the vertex of
the cone (α is expressed with the opening angle β) since the trajectories that do not leave
the cone will typically stay close to the origin. In all other cases, the Brownian motion

will move away from the vertex, and see the cone as a half-space (boundary drift and
non-polar exterior drift) or as a whole-space (interior drift).

3. Heat kernel of the cone and non-exit probability

In this section we introduce all necessary tools for our study. We first give the expression

of the non-exit probability (1) in terms of the heat kernel of the cone C (see Lemmas 1
and 3). Then we guess the value of the exponential decreasing rate of this probability, by
simple considerations on its integral expression. Finally we present our general strategy

to calculate the asymptotics of the non-exit probability.
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-
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0

α1/2+1α1 + 1

1/2

3/2

?

Y

Figure 2. Value of α in terms of the position of the drift (a1, a2) in the

plane (case of a general cone of opening angle β, for which α1 = π/β, see
Figure 3)

Expression of the non-exit probability. Let (Ω,F , (Ft)t>0,Px) be a filtered proba-
bility space on which is defined a process (Bt)t>0 which is, under Px, a d-dimensional
Brownian motion started at x with drift a and identity covariance matrix. The filtration

(Ft)t>0 is the natural Brownian filtration.
The lemma hereafter gives an expression of the non-exit probability for Brownian motion

with drift a in terms of an integral involving the transition probabilities of the Brownian

motion with zero drift killed at the boundary of the cone. This is a quite standard result
(see [24, Proposition 2.2] for example) and an easy consequence of Girsanov theorem. We
sketch the proof for the reader’s convenience. Notice that this result is not at all specific

to cones and would be valid for any domain in R
d.

Lemma 1. Let pC(t, x, y) denote the transition probabilities of the Brownian motion with

zero drift killed at the boundary of the cone C. We have

(5) Px[τC > t] = e〈−a,x〉−t|a|2/2
∫

C
e〈a,y〉pC(t, x, y)dy, ∀t > 0.

Proof. The Laplace transform of the Brownian motion with drift a started at x is given

by

(6) Lx(t, λ) = Ex[e〈λ,Bt〉] = et|λ|
2/2+t〈λ,a〉+〈λ,x〉.

We define a martingale (Zt)t>0 by setting

Zt =
e〈−a,Bt〉

Lx(t,−a)
.

It follows then from Girsanov theorem [19, page 192] that there exists a unique probability
measure P

∗
x on (Ω,F) such that

(7) P
∗
x[A] = Ex[1AZt], ∀A ∈ Ft, ∀t > 0.
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-
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Y C
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β

Figure 3. Cones C with opening angle β and polar cones C♯ in dimension
2. The set Θ (in blue above) and its boundary (in black) are particularly

important in our analysis.

In addition, under P∗
x, the process (Bt)t>0 is a zero drift Brownian motion. By equation (7)

we have

Ex[h(Bt), τC > t] = Lx(t,−a)E∗
x[h(Bt)e

〈a,Bt〉, τC > t],

for all bounded and measurable h. Therefore, the transition probabilities of the Brownian
motion with drift a killed at the boundary of C are given by (see [18, section 4], in
particular equation (17) or [7, section 2.2])

Px[Bt ∈ dy, τC > t] = e〈−a,x〉−t|a|2/2e〈a,y〉pC(t, x, y)dy.

This completes the proof of Lemma 1. �

In this work we consider general cones as defined by Bañuelos and Smits in [1]. Namely,

given a proper open and connected subset Θ of the unit sphere S
d−1, we consider the

cone C generated by Θ, that is, the set of all rays emanating from the origin and passing
through Θ. We refer to Figure 3 for the two-dimensional case.

We now write down a series expansion for the transition probabilities of the Brownian
motion killed at the boundary of C (or equivalently, see [18, section 4], for the heat kernel
pC(t, x, y) of the cone C), as given in [1]. Denote by LSd−1 the Laplace-Beltrami operator

on S
d−1. Our first assumption on the cones studied here is the following:

(C1) The set Θ = S
d−1 ∩ C is regular w.r.t. the operator LSd−1 .

By regular we mean that there exists a complete set of eigenfunctions (mj)j>1 orthonormal
w.r.t. the surface measure on Θ with corresponding eigenvalues 0 < λ1 < λ2 6 λ3 6 · · · ,
satisfying for any j > 1

(8)

{

LSd−1mj = −λjmj on Θ,

mj = 0 on ∂Θ.
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It is proved in [6] (see in particular [6, page 169]) that if the domain Θ is normal, that
is, piecewise infinitely differentiable, then Θ is regular w.r.t. LSd−1 . For any j > 1, we set

αj =
√

λj + (d/2 − 1)2 and pj = αj − (d/2 − 1).

Example 1. In dimension 2, a direct computation starting from (8) yields λj = (jπ/β)2,

and thus pj = αj = jπ/β, for any j > 1. Further, the eigenfunctions (8) are given in polar
coordinates by

(9) mj(θ) =
2

β
sin

(

jπθ

β

)

, ∀j > 1,

where the term 2/β comes from the normalization
∫ β
0 mj(θ)2dθ = 1.

Going back to the general case (d > 2), we denote by Iν the modified Bessel function
of order ν:

(10) Iν(x) =
2(x/2)ν√

πΓ(ν + 1/2)

∫ π
2

0
(sin t)2ν cosh(x cos t)dt =

∞
∑

m=0

(x/2)ν+2m

m!Γ(ν + m + 1)
.

It satisfies the second order differential equation

I ′′ν (x) +
1

x
I ′ν(x) =

(

1 +
ν2

x2

)

Iν(x).

In the neighborhood of 0, it has the equivalent

(11) Iν(x) =
xν

2νΓ(ν + 1)
(1 + o(1)), x → 0.

We refer to [26] for proofs of the facts above and for any further result.

In what follows, for any x 6= 0, we denote by ~x = x/|x| its projection on the unit sphere
S
d−1.

Lemma 2 ([1]). The heat kernel of the cone C has the series expansion

(12) pC(t, x, y) =
e−

|x|2+|y|2

2t

t(|x||y|)d/2−1

∞
∑

j=1

Iαj

( |x||y|
t

)

mj(~x)mj(~y),

where the convergence is uniform for (t, x, y) ∈ [T,∞) × {x ∈ C : |x| 6 R} × C, for any

positive constants T and R.

Making the change of variables y 7→ ty in (5) and using (12), we easily obtain the
following lemma, where the expression of the non-exit probability now involves an integral
of Laplace’s type.

Lemma 3. Let C be a cone satisfying to (C1). For Brownian motion with drift a, the

non-exit probability is given by

(13) Px[τC > t] = e〈−a,x〉−|x|2/(2t)+|x|2/2td/2
∫

C
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy, ∀t > 0.
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Exponential decreasing rate of the non-exit probability. The aim now is to
understand the asymptotic behavior as t → ∞ of the integral in the right-hand side

of (13). To do this, we shall use Laplace’s method [8, Chapter 5]. The first question when
applying this method is to locate the points y ∈ C where the function

(14) |a− y|2/2

in the exponential reaches its minimum value, for it is expected that only a neighborhood
of these points will contribute to the asymptotics. And indeed, we shall prove that the

exponential decreasing rate e−γ of the non-exit probability in (2) is given, for the six cases
A–F, by

γ = min
y∈C

|a− y|2/2.

For a convex cone (or any convex set), the minimum of the function (14) on C is reached at

a unique point, namely the orthogonal projection p⊥C(a) of a on C. Though the orthogonal
projection might not be well defined everywhere in general (that is, when the cone is not
convex), it is still true in cases A, B and F (resp. C and D), that the minimum of the

function (14) on C is attained at a unique point, namely p = 0 (resp. p = a) and that
this point satisfies the usual property 〈a − p, y − p〉 6 0 for all y ∈ C. Therefore, we
still call this point the orthogonal projection and write p⊥C(a) for it. The case E presents

more complexity: according to the cone, the minimum can be reached at different points
(possibly infinitely many), and for that reason, we shall only treat this case for convex
cones (though the arguments would adapt to treat the case where there is a finite number

of minimum points). With this convention, the exponential decreasing rate of the non-exit
probability is given by

(15) γ = |a− p⊥C(a)|2/2.

Surprisingly, the case F is the most difficult. It is a mixture between cases A and B, and
its analysis involves a second application of Laplace’s method. This explains why it will
be treated at the end.

To conclude this part, let us compare the exponential decreasing rates of the non-exit
probability Px[τC > t] from convex cones for Brownian motion and random walks. For
random walks, Theorem 1 in [15] asserts that the exponential rate is the minimum on

−C♯ of the Laplace transform of the law of the random walk increments.1 The analogy
with the Brownian motion exponential rate given in (15) can be seen as follows: it is
the minimum value on −C♯ of the Laplace transform of the one-unit-of-time increment

Bt+1 −Bt. Indeed, the latter transform is given by (see equation (6))

L0(1, λ) = e|λ|
2/2+〈λ,a〉,

and the minimum on −C♯ of |λ|2/2 + 〈λ, a〉 is obviously the minimum on C♯ of

|λ|2/2 − 〈λ, a〉 = |λ− a|2/2 − |a|2/2.

1This is proved in [15] for cones which are intersections of half-spaces only, but the result is very likely

quite more general, and should be valid for convex cones.
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It is reached at λ = p⊥
C♯(a), and an easy computation shows that

|p⊥C♯(a) − a|2/2 − |a|2/2 = −|a− p⊥C(a)|2/2,

using the fact that, for any convex cone C, a is the orthogonal sum of p⊥C(a) and p⊥
C♯(a).

General strategy. According to formula (13), we only need to analyze the asymptotic

behavior of

I(t) = td/2
∫

C
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.

We recall that the function (14) in the exponential reaches its minimum at a unique point,
namely p⊥C(a).

The lemma below shows that if the domain of integration is restricted to the complement

of any neighborhood of p⊥C(a), then the integral above becomes negligible with respect to
the (expected) exponential rate e−tγ .

Lemma 4. For any δ > 0, there exists η > 0 such that
∫

{y∈C:|y−p⊥C(a)|>δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy = O(e−t(γ+η)), t → ∞,

where γ is the quantity defined in (15).

Proof. Let δ > 0 be given and define

J(t) =

∫

{y∈C:|y−p⊥C(a)|>δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.

From the inequality |y|2 6 (|y − a| + |a|)2 6 2|y − a|2 + 2|a|2, we obtain the upper bound

e|y|
2/2 6 ce2|y−a|2 , from which we deduce that

0 6 J(t) 6 c

∫

{y∈C:|y−p⊥C(a)|>δ}
pC(1, x, y)e−s|a−y|2/2dy,

where s = t− 2. Since y 7→ |a− y|2/2 is coercive, continuous and reaches its minimum γ
on C at the unique point y = p⊥C(a), there exists η > 0 such that |a − y|2/2 > γ + η on

{y ∈ C : |y − p⊥C(a)| > δ}. Hence, for all s > 0, we have

0 6 J(t) 6 ce−s(γ+η)

∫

{y∈C:|y−p⊥C(a)|>δ}
pC(1, x, y)dy 6 ce−s(γ+η).

This concludes the proof of the lemma. �

It is now clear that the strategy for analyzing the non-exit probability is to determine

the asymptotic behavior of the integral Iδ(t), which is defined by

(16) Iδ(t) = td/2
∫

{y∈C:|y−p⊥C(a)|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy,

and to check in particular that it has the right exponential decreasing rate e−γ , as expected.
Indeed, in this case, the asymptotic behavior of I(t), and consequently that of the non-exit
probability, can be derived from the asymptotics of Iδ(t), as explained in the next lemma,

which will constitute our general proof strategy.
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Lemma 5. Suppose that g(t) is a function satisfying to conditions (i) and (ii) below:

(i) g(t) = κt−αe−tγ for some κ > 0 and α ∈ R;

(ii) For all ǫ > 0, there exists δ > 0 such that

1 − ǫ 6 lim inf
t→∞

Iδ(t)

g(t)
6 lim sup

t→∞

Iδ(t)

g(t)
6 1 + ǫ.

Then I(t) = g(t)(1 + o(1)) as t → ∞.

Proof. It follows from Lemma 4 as an easy exercise. �

4. Case A (polar interior drift)

In this section, we study the case where the drift a belongs to the interior of the polar
cone C♯. It might be thought of as the natural generalization of the one-dimensional

negative drift case. We shall note

(17) u(x) = |x|p1m1(~x).

The function u is the unique (up to multiplicative constants) positive harmonic function
of Brownian motion killed at the boundary of C. We also define

κA =
1

2α1Γ(α1 + 1)

∫

C
e〈a,y〉u(y)dy,

as well as

hA(x) = e〈−a,x〉u(x).

Note that κA is finite since a ∈ (C♯)o (see Lemma 8). Our main result in this section is
the following:

Theorem A (Case A). Let C be a cone satisfying to (C1). If the drift a belongs to the

interior of the polar cone C♯, then

Px[τC > t] = κAhA(x)t−(α1+1)e−t|a|2/2(1 + o(1)), t → ∞.

Proof. Since a ∈ (C♯)o, the projection p⊥C(a) is 0 and γ = |a|2/2. According to our general

strategy, we focus our attention on

Iδ(t) = td/2
∫

{y∈C:|y|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.

Let ǫ > 0 be given. It follows from Lemma 6 below that there exists δ > 0 such that
pC(1, x, y) is bounded from above and below on {y ∈ C : |y| 6 δ} by

(1 ± ǫ)bu(x)u(y)e−(|x|2+|y|2)/2,

where b = (2α1Γ(α1 + 1))−1. Therefore, Iδ(t) is bounded from above and below by

(18) (1 ± ǫ)bu(x)e−|x|2/2td/2
∫

{y∈C:|y|6δ}
u(y)e−t|a−y|2/2dy.

By making the change of variables v = ty and using the homogeneity of u, this expression
becomes

(1 ± ǫ)bu(x)e−|x|2/2t−(α1+1)e−t|a|2/2
∫

{v∈C:|v|6tδ}
u(v)e〈a,v〉−|v|2/(2t)dv.
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Now, since a ∈ (C♯)o implies that 〈a, v〉 6 −c|v| for all v ∈ C, for some c > 0 (see Lemma 8

below), the function u(v)e〈a,v〉 is integrable on C. Therefore, we can apply the dominated
convergence theorem to obtain

∫

{v∈C:|v|6tδ}
u(v)e〈a,v〉−|v|2/(2t)dv = (1 + oδ(1))

∫

C
u(v)e〈a,v〉dv, t → ∞.

Hence, the bound for Iδ(t) can finally be written as

(1 ± ǫ)κAu(x)e−|x|2/2t−(α1+1)e−t|a|2/2(1 + oδ(1)), t → ∞,

and a direct application of Lemma 5 gives

I(t) = κAu(x)e−|x|2/2t−(α1+1)e−t|a|2/2(1 + o(1)), t → ∞.

The theorem then follows thanks to the expression (13) of the non-exit probability. �

We now state and prove a lemma, that was used (in a crucial way) in the proof of
Theorem A. Similar estimates can be found in [14, section 5].

Lemma 6. We have

lim
|y|→0

pC(1, x, y)e(|x|
2+|y|2)/2

u(x)u(y)
= (2α1Γ(α1 + 1))−1

uniformly on {x ∈ C : |x| 6 R}, for any positive constant R.

Proof. For brevity, let us write x = ρθ and y = rη, with ρ, r > 0 and θ, η ∈ Θ, and set
M = ρr. It follows from the expression of the heat kernel (12) that

pC(1, ρθ, rη)e(ρ
2+r2)/2

u(ρθ)u(rη)
=

∞
∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
.

Using then equation (21) from Lemma 7 below, we find the upper bound (below and
throughout, c will denote a positive constant, possibly depending on the dimension d,
which can take different values from line to line)

(19)

∣

∣

∣

∣

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

∣

∣

∣

∣

6
c

Mα1

Iαj
(M)

Iαj
(1)

.

Now, using the integral expression (10) for Iαj
, we obtain

Iαj
(M) 6

2
(

M
2

)αj

√
πΓ(αj + 1/2)

cosh(M)

∫ π
2

0
(sin t)2αj dt,

Iαj
(1) >

2
(

1
2

)αj

√
πΓ(αj + 1/2)

∫ π
2

0
(sin t)2αj dt.

We conclude that
Iαj

(M)

Iαj
(1)

6 Mαj cosh(M).

Using the latter estimation in (19), we deduce that
∣

∣

∣

∣

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

∣

∣

∣

∣

6 cMαj−α1 cosh(M).
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It is easily seen from equation (20) in Lemma 7 below that
∑∞

j=1M
αj−α1 cosh(M) is a

uniformly convergent series for M ∈ [0, 1− ǫ], for any ǫ ∈ (0, 1]. This immediately implies

that the series ∞
∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

is uniformly convergent for (M,θ, η) ∈ [0, 1 − ǫ] × Θ × Θ, for any ǫ ∈ (0, 1]. Therefore we

can take the limit term by term. Since

lim
M→0

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
=







1

2α1Γ(α1 + 1)
if j = 1,

0 if j > 2,

uniformly in (θ, η) ∈ Θ × Θ (see (11) and Lemma 7 below), we reach the conclusion that

lim
M→0

∞
∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
=

1

2α1Γ(α1 + 1)
,

where the convergence is uniform for (θ, η) ∈ Θ×Θ. The proof of Lemma 6 is complete. �

The following facts in the lemma below, concerning the eigenfunctions (8), are proved

in [1].

Lemma 7 ([1]). There exist two constants 0 < c1 < c2 such that

(20) c1j
1/(d−1)

6 αj 6 c2j
1/(d−1), ∀j > 1.

If C is a Lipschitz cone,2 then there exists a constant c such that

(21) m2
j(η) 6

cm2
1(η)

Iαj
(1)

, ∀j > 1, ∀η ∈ Θ.

We conclude this section with a useful characterization of the interior of the polar cone,
which was used in the proof of Theorem A:

Lemma 8. The drift vector a belongs to (C♯)o if and only if there exists δ > 0 such that

〈a, y〉 6 −δ|y| for all y ∈ C.

Proof. Assume first that a satisfies the above condition. For all x such that |a − x| < δ

and all y ∈ C, we have by Cauchy-Schwarz inequality

〈x, y〉 = 〈a, y〉 + 〈x− a, y〉 < −δ|y| + δ|y| = 0,

hence C♯ contains the open ball B(a, δ), and a is an interior point. Conversely, suppose

that there exists r > 0 such that the closed ball B(a, r) is included in C♯. It is easily seen
that

C♯ = {x ∈ R
d : 〈x, u〉 6 0,∀x ∈ C ∩ S

d−1}.
Since C ∩ S

d−1 is a compact set, there exists a vector u0 in this set such that

γ = 〈a, u0〉 = max
u∈C∩Sd−1

〈a, u〉.

2See the footnote 3 for the definition of a real-analytic cone (the definition of a Lipschitz cone is the

same, replacing the real-analyticity by a Lipschitz condition).
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Hence it remains to prove that γ < 0. To that aim, we select a family {x1, . . . , xd} of vectors
of ∂B(a, r) which forms a basis of R

d. One of them, say x1, must satisfy 〈x1, u0〉 < 0,

since else we would have 〈xi, u0〉 = 0 for all i ∈ {1, . . . , d}, and therefore u0 = 0. Let
x1 = 2a − x1 be the opposite of x1 on ∂B(a, r). Since 〈x1, u0〉 < 0 and 〈x1, u0〉 6 0, it
follows that γ = 〈a, u0〉 = (〈x1, u0〉 + 〈x1, u0〉)/2 < 0. �

5. Case B (zero drift)

The case of a driftless Brownian motion, that we consider in the present section, has
already been investigated by many authors, see [25, 9, 10, 1]. Define

κB =
1

2α1Γ(α1 + 1)

∫

C
u(y)e−|y|2/2dy.

Theorem B (Case B). Let C be a cone satisfying to (C1). If the drift a is zero, then

Px[τC > t] = κBu(x)t−p1/2(1 + o(1)), t → ∞.

Although a proof of Theorem B can be found in [9, 1], for the sake of completeness we

wish to write down some of the details below. As we shall see, the arguments are very
similar to those used for proving Theorem A.

Proof of Theorem B. We have a = 0 and γ = 0. Thus, the lower and upper bounds (18)
for Iδ(t) write

(1 ± ǫ)bu(x)e−|x|2/2td/2
∫

{y∈C:|y|6δ}
u(y)e−t|y|2/2dy.

This time, we make the change of variables v =
√
ty and use the homogeneity of u in order

to transform this expression into

(1 ± ǫ)bu(x)e−|x|2/2e−t|a|2/2t−p1/2

∫

{v∈C:|v|6
√
tδ}

u(v)e−|v|2/2dv.

Since the function u(v)e−|v|2/2 is integrable on C, it comes from the dominated convergence

theorem that
∫

{v∈C:|v|6
√
tδ}

u(v)e−|v|2/2dv = (1 + oδ(1))

∫

C
u(v)e−|v|2/2dv, t → ∞.

Hence, the bounds for Iδ(t) can finally be written as

(1 ± ǫ)κBu(x)e−|x|2/2t−p1/2(1 + oδ(1)), t → ∞.

The theorem then follows by an application of Lemma 5 and formula (13). �

6. Case C (interior drift)

Now we turn to the case when the drift a is inside the cone C.

Theorem C (Case C). Let C be a cone satisfying to (C1). If a belongs to C, then

Px[τC = ∞] = lim
t→∞

P[τC > t] = (2π)d/2e|x−a|2pC(1, x, a).
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Proof. Since a ∈ C, one has p⊥C(a) = a and γ = 0. As in the previous cases, we focus our
attention on

Iδ(t) = td/2
∫

{y∈C:|y−a|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.

For any given ǫ > 0, we choose δ > 0 so small that B(a, δ) ⊂ C and

f(y) = e|y|
2/2pC(1, x, y)

is bounded from above and below by f(a) ± ǫ for all y ∈ B(a, δ). With this choice, Iδ(t)

is then bounded from above and below by

(f(a) ± ǫ)td/2
∫

{y∈Rd:|y−a|6δ}
e−t|y−a|2/2dy.

By the change of variables v =
√
t(y − a), this expression becomes

(f(a) ± ǫ)

∫

{v∈Rd:|v|6
√
tδ}

e−|v|2/2dv = (f(a) ± ǫ)(2π)d/2(1 + oδ(1)), t → ∞.

Hence, the theorem follows from Lemma 5 and formula (13). �

Example 2. In the case where C is the Weyl chamber of type A, see (3), the heat kernel
is given by the Karlin-McGregor formula (see [20, Theorem 1]):

pC(t, x, y) = det(p(t, xi, yj))16i,j6d,

with p(t, xi, yj) = (2πt)−1/2e−(xi−yj)2/2t. An easy computation then shows that pC(1, x, a)
is equal to

pC(1, x, a) = (2π)−d/2e−(|x|2+|a|2)/2 det(exiaj )16i,j6d.

Hence

lim
t→∞

Px[τC > t] = e〈−a,x〉 det(exiaj )16i,j6d.

This result was derived earlier by Biane, Bougerol and O’Connell in [4, section 5].

7. Case D (boundary drift)

In this section we make the following hypothesis on the cone:

(C2) The set Θ = S
d−1 ∩ C is real-analytic.3

This assumption ensures that the heat kernel can be extended to a bigger cone, and
thus admits a Taylor expansion at any boundary point. To our knowledge, for more
general cones like those which are intersections of smooth deformations of half-spaces,

the boundary behavior of the heat kernel at a corner point (i.e., at a point located at
the intersection of two, or more, half-spaces) is not known, except in the particular case
of Weyl chambers [20, 4]. This behavior will determine the polynomial part t−α in the

3A bounded domain Ω ⊂ R
d and its boundary ∂Ω are real-analytic if at each point x ∈ ∂Ω there is a

ball B(x, r) with r > 0 and a one-to-one mapping ψ of B(x, r) onto a certain domain D ⊂ R
d such that

(i) φ(B(x, r) ∩ Ω) ⊂ [0,∞)d, (ii) φ(B(x, r) ∩ ∂Ω) ⊂ ∂([0,∞)d), (iii) ψ and ψ−1 are real-analytic functions

on B(x, r) and D, respectively. This is equivalent to the fact that each point of ∂Ω has a neighborhood

in which ∂Ω is the graph of a real-analytic function of n− 1 coordinates. We refer to [16, section 6.2] for

more details.
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asymptotics of the non-exit probability. The case of Weyl chambers is treated in [24].
Here, we deal with the opposite (i.e., smooth) setting.

Define the function

hD(x) = e|x−a|2/2∂np
C(1, x, a),

where n stands for the (inner-pointing) unit vector normal to C at a, and ∂np
C(1, x, a)

denotes the normal derivative of the function y 7→ pC(1, x, y) at y = a. Function hD(x) is
non-zero thanks to Lemma 10 below. Define also the constant

κD = (2π)(d−1)/2.

Theorem D (Case D). Let C be a cone satisfying to (C1) and (C2).4 If a 6= 0 belongs to

∂C, then

Px[τC > t] = κDhD(x)t−1/2(1 + o(1)), t → ∞.

Proof. As in case C, we have p⊥C(a) = a and γ = 0, and the formula (16) for Iδ(t) writes

Iδ(t) = td/2
∫

{y∈C:|y−a|6δ}
f(y)e−t|a−y|2/2dy,

where f(y) = e|y|
2/2pC(1, x, y). In the present case, f(y) vanishes at y = a, contrary

to case C. Since the function y 7→ pC(1, x, y) is assumed to be infinitely differentiable
in a neighborhood of a (see Lemma 9), it follows from Taylor’s formula that, for any

(sufficiently small) δ > 0, there exists M > 0 such that

|f(y) − 〈y − a,∇f(a)〉| 6 M |y − a|2, ∀|y − a| 6 δ.

Therefore, for any fixed δ > 0, one has

Iδ(t) = td/2
∫

{y∈C:|y−a|6δ}
(〈y − a,∇f(a)〉 + O(|y − a|2))e−t|y−a|2/2dy.

Making the change of variables v =
√
t(y− a) implies that the above equation is the same

as

t−1/2

∫

(C−
√
ta)∩{v∈Rd :|v|6

√
tδ}

〈v,∇f(a)〉e−|v|2/2dv + O(t−1).

Now, due to the regularity of ∂C at a (see hypothesis (C2)—in fact it would be enough

for ∂C to be continuously differentiable at a), the set

(C −
√
ta) ∩ {v ∈ R

d : |v| 6
√
tδ}

goes to {v ∈ R
d : 〈v, n〉 > 0} as t → ∞. Furthermore, an easy computation shows that

∫

{v∈Rd:〈v,n〉>0}
ve−|v|2/2dv = (2π)(d−1)/2n.

Hence, we deduce that

Iδ(t) = t−1/2(2π)(d−1)/2∂nf(a) + oδ(t
−1/2), t → ∞.

Since ∂nf(a) = e|a|
2/2∂np

C(1, x, a) 6= 0 by Lemma 10, Theorem D follows from Lemma 5
and formula (13). �

4Note that the hypothesis (C2) implies (C1).
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The two following lemmas have been used in the proof of Theorem D. The first of the
two lemmas is quite standard. As for the second one, it is an immediate consequence of

[13, Theorem 2].

Lemma 9. Under (C2), the heat kernel y 7→ pC(1, x, y) is infinitely differentiable and is
extendable in a neighborhood of y = a (with the same regularity, and as a solution of the

heat equation).

Lemma 10. Under (C2), the normal derivative of the function y 7→ pC(1, x, y) at y = a
exists and is non-zero (for any a ∈ ∂C \ {0}).

Example 1 (continued). In the particular case of the dimension 2, with a cone of opening
angle β (see Figure 3), one has the following expression for the normal derivative at a:

∂nf(a) =
2π

|a|β2
e−|x|2/2

∞
∑

j=1

Iαj
(|x||a|)mj(x)j,

which gives a simplified expression for function hD(x). The above identity is elementary:
it follows from the expression (9) of the eigenfunctions together with the definition of

function f and some uniform estimates (to be able to exchange the summation and the
derivation in the series defining the heat kernel).

8. Case E (non-polar exterior drift)

In that section in addition to (C1) and (C2) we shall assume that:

(C3) The cone C is convex.

A consequence of this assumption is that the orthogonal projection p⊥C(a) of a on C is well
and uniquely defined. Theorem E below can be extended without difficulty to the case
of cones with finitely many points where the maximum of the function (14) is reached.

However, we leave the case of infinitely many maximum points as an open problem.
Define the function

hE(x) = e|x−a|2/2∂np
C(1, x, p⊥C (a)).

We shall prove the following:

Theorem E (Case E). Let C be a cone satisfying to (C1), (C2) and (C3). If a belongs
to R

d \ (C ∪ C♯), then

Px[τC > t] = κEhE(x)t−3/2e−t|a−p⊥C (a)|2/2(1 + o(1)), t → ∞,

where the constant κE > 0 will be made explicit in the proof.

Proof. The beginning of the proof is similar to that of Theorem D, except that we have
to make a Taylor expansion with three (and not two) terms, for reasons that will be clear

later. In case E, the projection p (for brevity, we set here p = p⊥C(a)) belongs to ∂C and
is different from 0 and a, and γ = |p − a|2/2.

For the same reasons as in case D, for any δ > 0 small enough, we have

(22)

Iδ(t) = td/2
∫
(

〈y − p,∇f(p)〉 +
1

2
(y − p)⊤∇2f(p)(y − p) + O(|y − p|3)

)

e−t|y−a|2/2dy,
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where f(y) = e|y|
2/2pC(1, x, y), (y−p)⊤ is the transpose of the vector y−p, ∇2f(p) denotes

the Hessian matrix of f at p, and the domain of integration is {y ∈ C : |y − p| 6 δ}. To
compute the asymptotics of the integral Iδ(t) as t → ∞, we shall make a series of two

changes of variables. First, the change of variables u = y − p and the use of the identity

e−t|y−a|2/2 = e−tγe−t|y−p|2/2−t〈y−p,p−a〉

give the following alternative expression

(23) Iδ(t) = td/2e−tγ

∫

D

(

〈u,∇f(p)〉 +
1

2
u⊤∇2f(p)u + O(|u|3)

)

e−t|u|2/2e−t〈u,p−a〉du,

where the domain of integration D equals (C − p) ∩ {u ∈ R
d : |u| 6 δ}.

In the sequel, we will assume (without loss of generality) that the inner-pointing unit
normal to ∂C at p is equal to e1, the first vector of the canonical basis. With this convention
p−a = |p−a|e1, and the only non-zero component of ∇f(p) is in the e1-direction. Indeed,

since f(y) = 0 for y ∈ ∂C, the boundary of the cone is a level curve for the function f ,
and it is well known that the gradient is orthogonal to the level curves. Therefore, the
quantity 〈u,∇f(p)〉 is equal to u1∂1f(p).

Our last change is v = φt(u); it sends (u1, u2, . . . , ud) onto (tu1,
√
tu2, . . . ,

√
tud). Note

that the scalings in the normal and tangential directions are not the same; this entails that
in (22) the second term in the integrand is not negligible w.r.t. the first one, and this is

the reason why we have to make a Taylor expansion with three terms and not two. Note
also that the Jacobian of this transformation is t(d+1)/2. From this and (23) we deduce
that as t → ∞,

(24) t3/2etγIδ(t) =

∫

φt(D)

(

v1∂1f(p) +
1

2
(0, v2, . . . , vd)⊤∇2f(p)(0, v2, . . . , vd)

)

× e−v1|p−a|e−(v2
2
+···+v2

d
)/2e−v2

1
/(2t)dv + O(t−1/2).

Our aim now is to understand the behavior of the domain φt(D) as t → ∞. Since
the cone C is tangent to the hyperplane {u ∈ R

d : u1 = 0} at p and its boundary is
real-analytic, there exists a real-analytic function g with g(0) = 0 and ∇g(0) = 0, such

that, for δ small enough, the domain D coincides with

{u ∈ R
d : u1 > g(u2, . . . , ud), |u| 6 δ}.

An application of Taylor formula then gives that (up to a set of Lebesgue measure zero),

lim
t→∞

φt(D) = φ∞(D) = {v ∈ R
d : v1 >

1

2
(v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd)}.

Let us now compare the limit domain φ∞(D) and the integrand in equation (24). Since
f vanishes on the boundary of the cone, we have for u in a neighborhood of 0 that

f(p1 + g(u2, . . . , ud), p2 + u2, . . . , pd + ud) = 0.

Differentiating twice this identity, we obtain that

(0, v2, . . . , vd)⊤∇2f(p)(0, v2, . . . , vd) = −∂1f(p)(v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd).
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Therefore, equation (24) can be rewritten as

t3/2etγIδ(t) = ∂1f(p)

∫

φt(D)

(

v1 −
1

2
(v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd)

)

× e−v1|p−a|e−(v2
2
+···+v2d)/2e−v2

1
/(2t)dv + O(t−1/2)

as t → ∞. Note that the limit domain φ∞(D) is exactly equal to the subset of Rd where
the integrand is positive. Thus, the constant

κE = e(|p|
2−|a|2)/2

×
∫

φ∞(D)

(

v1 − (v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd)
)

e−v1|p−a|e−(v2
2
+···+v2d)/2dv

is positive. Noting that ∂1f(p) = e|p|
2/2∂1p

C(1, x, p) 6= 0 by Lemma 10, we obtain that

Iδ(t) = κEe
|a|2/2∂1p

C(1, x, p)t−3/2e−tγ(1 + o(1)), t → ∞,

and we conclude the proof of Theorem E by using Lemma 5 and equation (13). �

Example 1 (continued). In the particular case of two-dimensional cones, ∇2g(0) = 0 and

the limit domain of integration φ∞(D) is the half-space {v ∈ R
2 : v1 > 0}. The constant

κE can then be computed:

κE =
e(|p|

2−|a|2)/2

|p− a|2
√

2π.

9. Case F (polar boundary drift)

We finally consider the case where the drift a 6= 0 belongs to ∂C♯. Let us first notice
that the existence of such a vector a implies that the cone C is entirely included in some

half-space. More precisely, by definition of the polar cone, the inner product of a with
any y ∈ C is non-positive, so that C is included in the half-space {y ∈ R

d : 〈a, y〉 6 0}.
Moreover, there must exist some θc ∈ ∂Θ = ∂(C ∩ S

d−1) such that 〈a, θc〉 = 0, for else a

would belong to the interior of C♯, as seen in Lemma 8. We call Θc the set of all these
contact points θc between ∂Θ and the hyperplane a⊥ = {y ∈ R

d : 〈a, y〉 = 0}. As we shall
see, the asymptotics of Px[τC > t] is determined by the local geometry of the cone C near

these points.
We first present some general aspects of our approach, and then we will treat the case

d = 2 for cones with opening angle β ∈ (0, π), and the case d = 3 for cones with a real-

analytic boundary and a finite number of contact points. Other cases are left as open
problems. In the sequel, we will assume (without loss of generality) that a = −|a|ed,
where ed stands for the last vector of the canonical basis.

As in case A, we have p⊥C(a) = 0 and γ = |a|2/2, so that the formula (16) for Iδ(t) can
be written as

Iδ(t) = td/2
∫

{y∈C:|y|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.
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Let ǫ > 0 be given. Arguing as in case A, we can pick δ > 0 small enough so that Iδ(t) is
bounded from above and below by

(25) (1 ± ǫ)bu(x)e−|x|2/2td/2
∫

{y∈C:|y|6δ}
u(y)e−t|a−y|2/2dy,

where b = (2α1Γ(α1 + 1))−1. Thus, we are led to study the asymptotic behavior of

Jδ(t) = td/2
∫

{y∈C:|y|6δ}
u(y)e−t|a−y|2/2dy,

= e−tγtd/2
∫

{y∈C:|y|6δ}
u(y)e−t|y|2/2e−t|a|yddy.

Making the change of variables z =
√
ty and using the homogeneity property of u (see

(17)), we obtain

(26) Jδ(t) = e−tγt−p1/2

∫

{z∈C:|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|zddz.

Laplace’s method suggests that only some neighborhood of the hyperplane {z ∈ R
d : zd =

0} will contribute to the asymptotics. More precisely, we have the following result:

Lemma 11. For any η > 0, we have
∫

{z∈C:zd>η|z|}
u(z)e−|z|2/2e−

√
t|a|zddz = o(t−d/2), t → ∞.

Proof. Since |u(z)| 6 M |z|p1 , the integral above is bounded from above by

M

∫

Rd

|z|p1e−η
√
t|a||z|dz = Mt−(p1+d)/2

∫

Rd

|w|p1e−η|a||w|dw,

which is equal to O(t−(p1+d)/2). Lemma 11 follows since p1 > 0. �

From now on, we shall assume that:

(C4) The set of contact points Θc is finite.

Let η > 0 be so small that the d-dimensional balls {B(θc, η), θc ∈ Θc} are disjoints.
Since the set of all θ ∈ Θ that do not belong to any of these open balls is compact and
does not contain any contact point, there exists some η′ > 0 such that θd > η′ for all such

θ. For θc ∈ Θc, we define the cones

(27) C(θc, η) = {z ∈ C : z/|z| ∈ B(θc, η)}.
Then C can be written as the disjoint union of these (thin) cones and of a (big) remaining
cone whose points z all satisfy the inequality zd/|z| > η′. Thus, according to formula (26)
and Lemma 11, we have

(28) Jδ(t) = e−tγt−p1/2





∑

θc∈Θc

Kδ,η,θc(t) + o(t−d/2)



 ,

where

(29) Kδ,η,θc(t) =

∫

{z∈C(θc,η):|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|zddz
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represents the contribution of each contact point.

Two-dimensional cones. Here the cone is C = {ρeiθ : ρ > 0, θ ∈ (0, β)} with β ∈ (0, π).
Define

hF (x) = e〈−a,x〉u(x)

and the constant

κF =
π2p1/2Γ(p1/2)

2α1Γ(α1 + 1)β2|a|2 .

Theorem F (Case of the dimension 2). Let C be any two-dimensional cone with β ∈ (0, π).

If a 6= 0 belongs to ∂C♯, then

Px[τC > t] = κFhF (x)e−t|a|2/2t−(p1/2+1)(1 + o(1)), t → ∞.

Proof. Since β < π, there is only one contact point, namely θc = (1, 0). Let us analyze its
contribution. According to (29), we have

Kδ,η,θc(t) =

∫

{z∈R2:0<z2<ηz1,|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|z2dz,

as soon as η is small enough. (In fact, the condition is arcsin η < β, and η in the integral

should be tan(arcsin η).)
We now proceed to the change of variables v = φt(z) = (z1,

√
tz2), which leads to

Kδ,η,θc(t) = t−1/2

∫

Dt

u

(

v1,
v2√
t

)

e−|v1|2/2e−|v2|/2te−|a|v2dv,

where Dt = φt({z ∈ R
2 : 0 < z2 < ηz1, |z| 6

√
tδ}). Notice that (v1, v2) ∈ Dt implies that

|v2/(v1
√
t)| < η. It follows from the Taylor-Lagrange inequality that (if η is small enough)

there exists M such that

u(1, h) = ∂2u(1, 0)h + h2R(h),

with |R(h)| 6 M for all |h| 6 η. Therefore, using the homogeneity of u, we obtain

√
tu

(

v1,
v2√
t

)

=
√
tvp11 u

(

1,
v2

v1
√
t

)

= vp1−1
1 v2(∂2u(1, 0) + hR(h)),

with h = v2/(v1
√
t) and |hR(h)| 6 ηM for all (v1, v2) ∈ Dt. As t → ∞, the domain Dt

converges to the quarter plane R
2
+, and it follows from the dominated convergence theorem

that as t → ∞,

Kδ,η,θc(t) = t−1∂2u(1, 0)

∫

R2
+

vp1−1
1 v2e

−v2
1
/2e−|a|v2dv + o(t−1)(30)

= t−1π2p1/2Γ(p1/2)

β2|a|2 (1 + o(1)),

where we have used the fact that ∂2u(1, 0) = 2π/β2 (see (9) for j = 1). For β < π, there is
no other contribution and, therefore, combining equations (30), (28) and (25) shows that
bounds for Iδ(t) are given by

(1 ± ǫ)κFu(x)e−|x|2/2e−tγt−(p1/2+1)(1 + o(1)), t → ∞.

Hence, as in the other cases, the result follows from Lemma 5 and formula (13). �
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When β = π, the point (−1, 0) is a second contact point. By symmetry, its contribution
is exactly the same as that of (1, 0). Hence the result of Theorem F is still valid if κF is

replaced with 2κF .

Three-dimensional cones with real-analytic boundary. Recall that (by convention)

a = −|a|e3 and the cone C is contained in the half space {z3 > 0}, see Figure 4. Thanks to
(28), the asymptotic behavior of Px[τC > t] will follow from the study of the contributions

Kδ,η,θc(t) =

∫

{z∈C(θc,η):|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|z3dz

of the contact points θc ∈ Θc between ∂Θ and the hyperplane a⊥ = {z ∈ R
3 : z3 = 0}. As

we shall see, the behavior of the integral above will depend on the geometry of Θ at the
point θc.

6

?
	

*

- e1

e3

e2
a

Figure 4. Three-dimensional cones in the proof of Theorem F

Contribution of each particular contact point. Without loss of generality, let us assume
that θc = e1. Since the cone is tangent to the plane {z ∈ R

3 : z3 = 0} at the point θc
and since its boundary is assumed to be real-analytic, there exists a real-analytic function
g(z2) with g(0) = 0 and g′(0) = 0, such that the intersection of C with {z ∈ R

3 : z1 = 1}
coincides (in a neighborhood of θc) with the set

g+ = {z ∈ R
3 : z1 = 1, z3 > g(z2)}.

Define

q = q(θc) = inf{n > 2 : g(n)(0) 6= 0},
and

c = c(θc) =
g(q)(0)

q!
.

Since θc is isolated from the other contact points (recall that Θc is assumed to be finite),

the function g(z2) must be positive for all z2 6= 0 in a neighborhood of 0. Thus, by
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real-analyticity, q must be finite, even, and such that g(q)(0) > 0. Finally, set

κ(q) =
2(p1+1−1/q)/2(1 − 1

q+1)

|a|2+1/q
Γ

(

p1 + 1 − 1/q

2

)

Γ

(

2 +
1

q

)

.

Then we have:

Lemma 12. For any δ > 0 and η > 0 small enough, the contribution of each contact
point θc to the asymptotics of the non-exit probability is given by

Kδ,η,θc(t) =
κ(q)∂nu(θc)

c(θc)1+1/q
t−(1+1/(2q))(1 + o(1)), t → ∞,

where ∂nu(θc) stands for the (inner-pointing) normal derivative of the function u at θc.

We postpone the proof of Lemma 12 after the statement and the proof of Theorem F.

Statement of Theorem F. Let q1 be the maximum value of q(θc) for θc ∈ Θc. We define

hF (x) = u(x)e−〈a,x〉

as well as

κF = bκ(q1)
∑

q(θc)=q1

∂nu(θc)

c(θc)1+1/q
,

where b = (2α1Γ(α1 + 1))−1. Then we have:

Theorem F (Case of the dimension 3). Let C be a three-dimensional cone satisfying to
(C1), (C2) and (C4). If a 6= 0 belongs to ∂C♯, then

Px[τC > t] = κFhF (x)t−(p1/2+1+1/(2q1))e−t|a|2/2(1 + o(1)), t → ∞.

Proof. Since Kδ,η,θc(t) is of order t−(1+1/(2q)) by Lemma 12, only those θc with q(θc) = q1
will contribute in (28) to the asymptotics of Jδ(t). Thus, we get that

Jδ(t) = e−tγt−(p1/2+1+1/(2q1))κ(q1)
∑

q(θc)=q1

∂nu(θc)

c(θc)1+1/q1
(1 + o(1)), t → ∞.

Now, equation (25) shows that bounds for Iδ(t) are given by

(1 ± ǫ)κFu(x)e−|x|2/2e−tγt−(p1/2+1+1/(2q1))(1 + o(1)), t → ∞.

Hence, the result follows from Lemma 5 and formula (13). �

Proof of Lemma 12. With the conventions made just above, we analyze the contribution

of θc = (1, 0, 0), namely,

Kδ,η,θc(t) =

∫

{z∈C(θc,η):|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|z3dz.

By making the linear change of variables v = φt(z), with

φt(z1, z2, z3) = (z1, t
1/(2q)z2,

√
tz3),

we obtain

(31) Kδ,η,θc(t) = t−1/2−1/(2q)

∫

Dt

u

(

v1,
v2

t1/(2q)
,
v3√
t

)

e−v21/2e−|a|v3(1 + o(1))dv,
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where Dt = φt({z ∈ C(θc, η) : |z| 6
√
tδ}), and 1 + o(1) goes increasingly to 1 as t → ∞.

In order to understand the behavior of Dt as t → ∞, we first notice that

lim
t→∞

Dt = lim
t→∞

φt(C(θc, η)).

Then, since the first coordinate is left invariant by φt, we shall look at what happens in
the plane {z1 = 1}. It follows from the definition of q that

g+ = {z ∈ R
3 : z1 = 1, z3 > czq2 + o(zq2)},

with c = g(q)(0)/q! > 0. From this and the definition of φt, it is easily seen that

lim
t→∞

φt(C(θc, η) ∩ {z ∈ R
3 : z1 = 1}) = {v ∈ R

3 : v1 = 1, v3 > cvq2}.

Further, the homogeneity of the cone and the linearity of φt immediately imply that

lim
t→∞

φt(C(θc, η) ∩ {z ∈ R
3 : z1 = λ}) = {v ∈ R

3 : v1 = λ, λq−1v3 > cvq2},

for all λ > 0. Now, if η > 0 is small enough, the cone C(θc, η) does not contain any z with

z1 6 0. Therefore,

(32) lim
t→∞

φt(C(θc, η)) = {v ∈ R
3 : v1 > 0, v3 > 0, vq−1

1 v3 > cvq2}.

We call D the limit domain in (32).
It remains to analyze the behavior of the integrand in (31), i.e., to find the asymptotics

of

u

(

v1,
v2

t1/(2q)
,
v3√
t

)

= vp11 u

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

for v1 > 0, as t → ∞. To this end, we shall use a Taylor expansion of u(1, x, y) in a
neighborhood of (0, 0). This can be done since it is known that the real-analyticity of
Θ ensures that u can be extended to a strictly bigger cone, inside of which u is (still)

harmonic, see [23, Theorem A]. Since u is equal to zero on the boundary of C, the relation

u(1, z2, g(z2)) = 0

holds for all z2 in a neighborhood of 0, and a direct application of Lemma 15 below for
n = 1 and k ∈ {0, . . . , q − 1} shows that

(33) ∂
(j)
2,2,...,2u(1, 0, 0) =

{

0 if 1 6 j 6 q − 1,

−∂3u(1, 0, 0)g(q)(0) if j = q.

Hence, the Taylor expansion of u(1, z2, z3) leads to

lim
t→∞

√
tu

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

= ∂3u(1, 0, 0)

(

v3
v1

− g(q)(0)

q!

vq2
vq1

)

.

The proof that this convergence is dominated is deferred to Lemma 13 below, where the
role—crucial—of C(θc, η) will appear clearly. Therefore, as t → ∞,

(34) Kδ,η,θc(t) = t−1−1/(2q)∂3u(1, 0, 0)

×
∫

D
vp1−q
1 (vq−1

1 v3 − cvq2)e−v21/2e−|a|v3dv + o(t−1−1/(2q)).
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Notice that the last integral is positive since D has positive (infinite) Lebesgue measure
and is exactly the domain where the integrand is positive. We now compute its value.

Since q is even, for any fixed v1 > 0 and v3 > 0, we have
∫

{v2∈R:vq−1

1
v3>cvq

2
}
(vq−1

1 v3 − cvq2)dv2 = 2

(

1 − 1

q + 1

)

(c−1vq−1
1 v3)1+1/q.

Thus, by an application of Fubini’s theorem, the integral in (34) becomes

2

(

1 − 1

q + 1

)

c−1−1/q

∫ ∞

0
v
p1−1/q
1 e−v21/2dv1

∫ ∞

0
v
1+1/q
3 e−|a|v3dv3,

and can be expressed in terms of the Gamma function as

2(p1+1−1/q)/2(1 − 1
q+1 )

|a|2+1/qc1+1/q
Γ

(

p1 + 1 − 1/q

2

)

Γ

(

2 +
1

q

)

= κ(q)c−(1+1/q).

This concludes the proof of Lemma 12. �

Lemma 13. Let ai,j denote the coefficient of zi2z
j
3 in the Taylor expansion of u(1, z2, z3)

at (0, 0). If η > 0 in the definition (27) of C(θc, η) is small enough, then
∫

Dt

vp11

∣

∣

∣

∣

√
tu

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

−
(

a0,1
v3
v1

+ aq,0
vq2
vq1

)∣

∣

∣

∣

e−v2
1
/2e−|a|v3dv = o(1), t → ∞.

Proof. Since the function u(1, z2, z3) can be extended to a function infinitely differentiable
in a neighborhood of (0, 0), see [23, Theorem A], there exists M > 0 such that, for η0 > 0
small enough,

u(1, z2, z3) =
∑

i+j6q

ai,jz
i
2z

j
3 + |(z2, z3)|q+1R(z2, z3),

where |R(z2, z3)| 6 M for all (z2, z3) ∈ B(0, η0). We already know (see (33) in the proof
of Theorem F) that ai,0 = 0 for all i ∈ {0, . . . , q − 1}, hence

|u(1, z2, z3) − (a0,1z3 + aq,0z
q
2)| 6

∑

26j6q

|a0,jzj3| +
∑

i,j>1
i+j6q

|ai,jzi2zj3| + |(z2, z3)|q+1M.

Let 0 < ǫ < 1 be fixed. For (z2, z3) ∈ B(0, η0), we use the upper bound

|a0,j ||z3|1+ǫη
j−(1+ǫ)
0 , ∀j > 2,

for the terms inside of the first sum, and the upper bound

|ai,j||z2||z3|ηi+j−2
0 , ∀i + j > 2,

for the terms inside of the second sum. For the last term, we write

|(z2, z3)|q+1
6 C(|z2|q+1 + |z3|q+1) 6 C(|z2|q+1 + |z3|1+ǫηq−ǫ

0 ),

and we finally obtain the upper bound

(35) |u(1, z2, z3) − (a0,1z3 + aq,0z
q
2)| 6 C1|z3|1+ǫ + C2|z2||z3| + C3|z2|q+1,

where C1, C2, C3 > 0 are positive constants (depending on η0 and ǫ only).
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On the other hand, the definition of C(θc, η) ensures that
∣

∣

∣

∣

(

v2

v1t1/(2q)
,

v3

v1
√
t

)∣

∣

∣

∣

6 η + o(η), η → 0,

for all (v1, v2, v3) ∈ Dt. Therefore, if η > 0 is small enough so that η + o(η) 6 η0, then
according to (35) we have
∣

∣

∣

∣

√
tu

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

−
(

a0,1
v3
v1

+ aq,0
vq2
vq1

)∣

∣

∣

∣

6 o(1)

(

C1

∣

∣

∣

∣

v3
v1

∣

∣

∣

∣

1+ǫ

+ C2

∣

∣

∣

∣

v2
v1

∣

∣

∣

∣

∣

∣

∣

∣

v3
v1

∣

∣

∣

∣

+ C3

∣

∣

∣

∣

v2
v1

∣

∣

∣

∣

q+1
)

,

(where o(1) is a function of t alone) for all (v1, v2, v3) ∈ Dt, and the result follows from

Lemma 14 below, provided that ǫ has been chosen so small that 1 + ǫ + 1/q 6 2. �

Lemma 14. The integral
∫

D
vp11

∣

∣

∣

∣

v2
v1

∣

∣

∣

∣

α ∣
∣

∣

∣

v3
v1

∣

∣

∣

∣

β

e−v2
1
/2e−|a|v3dv

is finite for all α, β > 0 such that β + (α + 1)/q 6 2.

Proof. Using Fubini’s theorem, this integral can be shown to be equal to
∫ ∞

0
v
p1+1−β−(α+1)/q
1 e−v21/2dv1

∫ ∞

0
v
β+(α+1)/q
3 e−|a|v3dv3,

up to some positive multiplicative constant. The result follows since p1 > 0. �

Lemma 15. Let n > 1 and k > 0, and assume that f : Rn+1 → R and g : R → R, with
g(0) = 0, are two functions infinitely differentiable such that for some constant c,

(36) f(x, g(x), g′(x), . . . , g(n−1)(x)) = c,

for all x in some neighborhood of x = 0, and

(37) g′(0) = g(2)(0) = · · · = g(n−1+k)(0) = 0.

Then

∂
(k+1)
1,1,...,1f(0) = −∂n+1f(0)g(n+k)(0).

Proof. Let H(n, k) denote the statement that the conclusion of the lemma is true for the

pair (n, k). We shall prove that

• H(n, 0) holds for all n > 1;
• For all n > 1 and k > 1, H(n + 1, k − 1) implies H(n, k).

The lemma will clearly follow by induction.
Let f and g be two functions satisfying the hypotheses of Lemma 15 for some n > 1

and k > 0, and set γ(x) = (x, g(x), g′(x), . . . , g(n−1)(x)). First, differentiating relation (36)

with respect to x shows that

(38) ∂1f(γ(x)) +

n
∑

j=2

∂jf(γ(x))gj−1(x) + ∂n+1f(γ(x))g(n)(x) = 0,
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for all x in some neighborhood of x = 0. Hence, according to (37), we get that

∂1f(0) + ∂n+1f(0)g(n)(0) = 0,

thereby proving H(n, 0). Furthermore, equation (38) can be rewritten as

h(x, g(x), g′(x), . . . , g(n)(x)) = 0,

in some neighborhood of x = 0, where h : Rn+2 → R is defined by

(39) h(x1, x2, x3, . . . , xn+2) = ∂1f(γ(x)) +

n
∑

j=2

∂jf(γ(x))xj+1 + ∂n+1f(γ(x))xn+2.

Since equation (37) is left invariant when replacing n by n + 1 and k by k − 1, functions

h and g fulfill the hypotheses of the lemma for the pair (n + 1, k − 1). Therefore, if
H(n + 1, k − 1) holds, then

∂
(k)
1,1,...,1h(0) = −∂n+2h(0)g(n+k)(0).

But it is clear from the definition (39) of h that

∂
(k)
1,1,...,1h(0) = ∂

(k+1)
1,1,...,1f(0),

and

∂n+2h(0) = ∂n+1f(0).

Hence H(n, k) holds. �
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