
HAL Id: hal-00880520
https://hal.science/hal-00880520

Submitted on 6 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new method for the re-implementation of threshold
logic functions with cellular neural networks

Yohann Bénédic, Patrice Wira, Jean Merckle

To cite this version:
Yohann Bénédic, Patrice Wira, Jean Merckle. A new method for the re-implementation of threshold
logic functions with cellular neural networks. International Journal of Neural Systems, 2008, 18 (4),
pp.293-303. �10.1142/S0129065708001609�. �hal-00880520�

https://hal.science/hal-00880520
https://hal.archives-ouvertes.fr

International Journal of Neural Systems, Vol. 0, No. 0 (April, 2000) 00–00
c© World Scientific Publishing Company

A NEW METHOD FOR THE RE-IMPLEMENTATION OF THRESHOLD LOGIC

FUNCTIONS WITH CELLULAR NEURAL NETWORKS

Y. BÉNÉDIC, P. WIRA∗, J. MERCKLÉ
Laboratoire MIPS, Université de Haute Alsace, 4 rue des Frères Lumière

Mulhouse, 68093, France
{yohann.benedic, patrice.wira; jean.merckle}@uha.fr

Received (to be inserted
Revised by Publisher)

Abstract

A new strategy is presented for the implementation of threshold logic functions with binary-output Cellular
Neural Networks (CNNs). The objective is to optimize the CNNs weights to develop a robust implementation.
Hence, the concept of generative set is introduced as a convenient representation of any linearly separable
Boolean function. Our analysis of threshold logic functions leads to a complete algorithm that automatically
provides an optimized generative set. New weights are deduced and a more robust CNN template assuming
the same function can thus be implemented. The strategy is illustrated by a detailed example.

1. Introduction

Cellular Neural Networks (CNNs) represent an im-

portant paradigm of Artificial Neural Networks

(ANNs). Indeed, all cells of a CNN are identical

and operate simultaneously in addition to every

other friendly properties of ANNs. Through their

particular architecture, CNNs are well suited for

hardware implementation and their parallel com-

puting properties can thus be fully exploited. As a

consequence, the theoretical computational speed

of CNNs can be very fast compared to other types

of ANNs, specially in real-time applications.

Nevertheless, their correct operation is sensi-

tive to noise. This happens mainly because of the

electrical components that compose the cell and

which are not ideal ones. Indeed, electrical com-

ponents are affected by noise, imperfections in the

fabrication process, or post-manufacturing distur-

bance like temperature. A CNN implementation

is an analog processor, informations are therefore

represented by electrical signals and operations are

achieved by electrical circuits. Some quantification

errors can therefore appear and be easily propa-

gated resulting in erroneous behavior of cells for

some tasks. This is referenced to as the CNN in-

ternal noise.

Binary-output CNNs, which share this prop-

erty of being realizable in hardware, achieve final

activations of ±1 with certain restrictions over the

original CNN model. Furthermore, with inputs

and initial internal states restricted to Boolean val-

ues, their overall behavior is then the one of a

Threshold Logic Function (TLF).

Hence, this article addresses the problem of im-

plementing arbitrary threshold logic functions with

noise-robust CNN templates. Therefore, we intro-

duce a new method based on an original mathe-

matical framework for linearly separable Boolean

functions referred to as generative set. Synthesiz-

ing a CNN template with generative sets allows to

optimize its weights and to increase its robustness

to the internal noise. As an advantage, the pro-

∗Corresponding author.

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

posed method uses any correct template as an a

priori knowledge to decrease the time needed for

its optimization.

The paper is structured as follows. In section 2,

the CNN concept is presented and different ways

to compute weights are reviewed. The paradigm of

the generative set is then introduced in section 3 as

an alternative representation of TLFs. ¿From an

analysis of a CNN template, we deduce an algo-

rithm able to compute its generative set. Section 4

proposes an algorithm that optimizes any known

generative set. This section also shows how to use

it in order to resynthesize the original template into

a more robust one. Each step of this procedure is

illustrated with an example. Finally, concluding

remarks are offered in the last section.

2. Cellular Neural Networks

2.1. The CNN concept

CNNs where first introduced by Chua and Yang

in 1. They are large arrays of identical nonlin-

ear dynamic systems called cells which satisfy two

properties: interactions are local within a finite ra-

dius, and all state variables are continuous-valued

signals. CNNs thus consist of cells connected only

to the cells in their neighborhood. They are ar-

ranged in an internal layer and are connected to

both the input layer and the output layer through

neighboring cells, as shown by Fig. 1.

Fig. 1. Schematics of a two-dimensional CNN
with a 3 × 3-wide neighborhood.

The main feature of CNNs, which are consid-

ered as a special class of recurrent neural networks,

is therefore that information is directly exchanged

just between neighboring cells. As a result, the

connectivity of CNNs is greatly reduced and makes

them particularly suitable for on-chip implementa-

tions, so allowing high speed parallel processing for

real-time applications in many fields 2: image pro-

cessing, artificial vision, partial differential equa-

tion solution, nonlinear phenomena modeling, bio-

logical systems modeling, robot control, etc.

A mathematical formal description of the in-

ternal dynamics of a cell is given by the following

equation with t the time variable:

dx(t)

dt
= −x(t)+A∗N(y(t))+B∗N(u(t))+z, (1)

where the scalars x(t), u(t) and y(t) represent re-

spectively the internal state, the input and the out-

put of the cell. The matrix A holds the weights

from the feedback connections (output) and like-

wise the matrix B holds the weights from the feed-

forward connections (input). z is a bias term.

Since all the neurons of a CNN are identical, the

values A, B, and z are the same for every cells

and are therefore called a template of the CNN.

N(.) is a neighborhood function and the symbol

“∗” stands for a linear convolution product.

The output y(t) is computed from x(t) thanks

to the following piecewise-linear activation func-

tion:

y(t) = 1
2
(|x(t) + 1| − |x(t) − 1|). (2)

Binary-output CNNs are derived from the lat-

ter model by giving the self-feedback weight a0 in

A a value greater than 1 1. Restricting the val-

ues of the inputs and the initial internal states to

Boolean values, then leads to the conclusion that a

binary-output CNN behaves like a threshold logic

gate 3:

y(t → ∞) = 1

⇔

{

A ∗ N(y(t)) + B ∗ N(u(t)) − x(t) > −z

∀ t ≥ 0

(3)

The implementation of a TLF is achieved by set-

ting A, B and z.

2.2. Weights computation

Using conventional learning algorithms to find a

template results in real-valued weights not neces-

sarily optimal. The problem then remains that of

finding appropriate weights. Appropriate weights

are weights that yield robust CNNs, i.e., more tol-

erant against internal noise. Once determined,

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

these weights are kept constant during the appli-

cation of the CNN template to a specific problem.

Since CNNs are able to implement any arbi-

trary linearly separable Boolean function 4, they

can thus be analyzed with similar mathematical

theories. This has led to many approaches, which

have been developed over these last years.

Of these approaches, the most widely used is

the look-up tables of Chow’s parameters 5. In-

deed, a set of parameters is shown to fully char-

acterize TLFs of up to eight variables. Thus,

it is possible to recover the TLF implementation

from a look-up table which would store the im-

plementation of every possible TLF, along with

their respective Chow’s parameters. In a practical

sense, such tables exist for TLF with less than six

variables 6, but methods have been developed to

break higher dimensional TLF into smaller ones 7.

Other techniques have been proposed, either in-

spired from Karnaugh map minimization proce-

dures 8, or based on a formal analysis 4, on an

analytical description 9 or on an algebraic repre-

sentation 3.

Despite the strength of these methods, none of

them is able to optimize the robustness of a given

template without starting from scratch, thus lead-

ing to time consuming procedures. As opposed

to them, the method developed thereafter is able

to alter an existing CNN design in order to en-

hance its robustness to noise. It is based on spe-

cific properties of TLFs from which it derives a

new arithmetic expression of a TLF: its generative

set 10. A simple algorithm is then used to tweak

the template into a more robust one, according to

the properties revealed by its generative set 11.

3. Generative Sets

3.1. Introduction

A generative set is an alternative representation

of a threshold logic function, making good use of

the latter’s algebraic properties such as symmetry

and monotony. It can be directly computed from

a cloning template thanks to an analatical process

detailed in 10, and which is briefly recalled in this

section.

A threshold logic function F is formally defined

by the following thresholded weighted sum:

F(s) ≡ (w ∗ s > Th)

≡

(

n
∑

i=1

wisi > Th

)

, (4)

where Th is the so-called threshold and the weights

wi and inputs si are the elements of w and s re-

spectively.

One can notice the similar look of Eq. (3) and

Eq. (4). In the latter, the n elements of A and B

were simply gathered into a single weighting vector

w, whereas the inputs and outputs from N(y(t))

and N(u(t)) were collected into s. The expression

of Th is known since 1:

Th = (1 − a0)x(0) − z, (5)

where a0 > 1 is the self-feedback weight value of A.

As a result, a binary-output cloning template ends

up being fully characterized by the threshold logic

function’s attributes: w, s and Th.

Without loss of generality, we will assume from

now on that the weights wi are positive, and that

they are sorted such that wi ≥ wj if i > j. Be-

fore dealing with the generative set extraction algo-

rithm, the following subsection introduces the defi-

nitions of symmetry and monotony in the Boolean

algebra.

3.2. Definitions

The previous general expression of a TLF im-

plies two important properties: symmetry and

monotony. The smart usage of these properties

makes the generative set representation to be more

efficient than the truth table by being less redun-

dant.

Definition 1 (The symmetry of a TLF)

A TLF is called symmetric if and only if it is

invariant under any permutation of its inputs. A

TLF is only partially symmetric in a set of inputs

if and only if the permutation of these inputs leaves

the function unchanged 12.

Definition 2 (The monotony of a TLF)

A TLF is 12:

• constant in one input si if and only if its out-

put does not depend on si;

• increasing/decreasing in si if and only if its

output increases/decreases with the increase

of si.

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

Thanks to the commutativity property of the

addition in Eq. (4), the output of any arbitrary

threshold logic function F is invariant under any

permutation of equally weighted inputs and ther-

fore symmetric in these inputs. As a result the

value of F can only be affected by the number of

true inputs among a set of symmetrical ones rather

than by the way these true values are mapped.

Now let c be the number of sets of equally

weighted variables and ni the number of vari-

ables gathered in the set labeled i. Notice that

a set might contain just one variable and that
∑c

i=1 ni = n. Any input vector s can then be

replaced by a vector k, called reduced input vector

and built as follows.

Definition 3 (Reduced input vector) A re-

duced input vector is a vector k = (kc, . . . , k1)

made of reduced variables ki which are the number

of true inputs within the ith set of symmetrical

inputs of s. Opposed to the values of the inputs

si which are restricted to ±1, the values of ki are

defined by ki = 0, 1, . . . ni.

As a consequence to the Def. 3, two input vec-

tors s and s′, derived from each others by one or

more permutations of equally weighted inputs, can

both be replaced by the same reduced input vec-

tor k. This leads to a loss of redundancy in the

description of a TLF made by the reduced input

vectors compared to the one made with the usual

input vectors. As a result, F(s) can be re-written

as a function of k: F(s) ≡ F(k) and the Eq. (4)

becomes:

F(k) ≡

(

c
∑

i=1

wi(2ki − ni) > Th

)

, (6)

where the equal weight values have been factor-

ized and the respective set of symmetrical inputs

have been replaced by their reduced input counter-

part 10.

The symmetries are thus used to define a re-

duced input space in which the description of any

TLF is much less redundant than in the usual input

space. The following uses the monotony property

to bring another improvement to the description of

TLF.

Let k+ be a reduced vector such that F(k+) ≡

true. Such a vector is called a minterm of F . Since

all the weights are considered positive, increasing

any element k+
i of k+ clearly increases the value

of the weighted sum of the Eq. (6). As a result, F

is increasing in each one of its c reduced variables.

Therefore, increasing either element of a given re-

duced vector k will only affect F(k) in one out of

the following three ways:

• the weighted sum is not risen enough and

F(k) remains false;

• the weighted sum reaches the threshold and

F(k) switches from false to true;

• the weighted sum remains over the threshold

and F(k) remains true.

This shows that once a minterm k+ of F is known,

many more can be derived from it, simply by in-

creasing the value of at least one of its elements.

These derived minterms are thus useless to the rep-

resentation of a TLF. Hence, there must be a quite

small set of minterms that can generate every sin-

gle minterm of F . This set is called the generative

set of the function.

Definition 4 (The generative set of a TLF)

The set of minterms that generate every single

minterm of F is referred to as the generative set

of F and is written {F}. It gathers generative

vectors, i.e., any minterm k of F that cannot be

derived from another minterm. As a convention,

the generative vectors are indexed so as to be sorted

in an anti-lexical ordering.

According to the previous definition, the gen-

erative set {F} of a TLF obviously describes F

completely. Furthermore, the number of genera-

tive vectors included in {F} can be considered as

a way to measure the complexity of the function F .

The following subsection describes a way to extract

the generative set of the TLF performed by a CNN

template.

3.3. Analyzing algorithm

The analyzing algorithm discussed in this subsec-

tion aims at extracting the generative set of a TLF

implemented by a template w and Th. It is as-

sumed that k = (kc, . . . , k1) and w = (wc, . . . , w1),

with wi > wj if and only if i > j.

For a given value κc of kc, Eq. (6) writes:

c−1
∑

i=1

wi(2ki − ni) > Th − wc(2κc − nc), (7)

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

which is the definition of a TLF of c − 1 reduced

variables. As a result, the generative set of a TLF

of c variables is the concatenation of admissible

values of kc with the generative sets obtained from

their respective TLF of c − 1 variables. This re-

mark leads to the idea that the analyzing algorithm

should be recursive. Such a recursion would stop

when a TLF of one variable and a threshold value

Th′ are reached:

w1(2k1 − n1) > Th′. (8)

In this case, the generative set consists in a single

mono-dimensional reduced vector, which compo-

nent is the lowest integer value of k1 that satisfies

the latter inequality. It formally writes:

k1 = 1 +

⌊

1

2 · w1

(

Th′ + w1 · n1

)

⌋

. (9)

An adequate threshold value has to be for-

warded from one recursive level to another in order

to be evaluated and eventually stop the algorithm.

This new threshold is defined at each recursive level

by:

Thc = Th +

c
∑

i=1

wini. (10)

Thanks to this, Eq. (7) becomes:

F(k) ≡

(

c−1
∑

i=1

2 · wi · ki > Thc + 2wcκc

)

. (11)

Finally, the threshold value which must be for-

warded to a recursive launch for a given value κc

of kc is:

Thc,κc
= Thc − 2 · κc · wc. (12)

One can see that this algorithm requires exactly

Πc
i=1(1 + ni) recursive launches, which is usually

lower than 2n, assuming that there exists i such

that ni 6= 1. This number can be significantly re-

duced. It is the case when the value of a reduced

variable is high enough to ensure that the under-

lying TLF is always true, which means that the

resulting generative set is the null vector and does

not need to be computed. Speaking of kc, this limit

value is:

κc,max = 1 +

⌊

Thc

2 · wc

⌋

. (13)

Likewise, a reduced input value might be too small

to allow the underlying TLF to be true, thus lead-

ing to an empty generative set. The smallest value

of kc for which this does not happen is given by:

κc,min = 1 +

⌊

1

2 · wc

(

Thc − 2

c−1
∑

i=1

wi · ni

)⌋

.

(14)

The way the expressions of both Eq. (13) and (14)

are obtained is detailed in 10.

These two limits define a set of allowed integer

values of kc: [min(nc, κc,max − 1); max(0, κc,min)]

for which recursive launches must be made. The

analyzing algorithm finally writes:

1 function extractGenerativeSet(c,wc...w1,Thc)

3 GenerativeSet = empty;
if (c == 1)

5 compute(k1max); % cf. Eq. (13)
if (k1max <= n1)

7 GenerativeSet.add(k1max);
end;

9 else

compute(kcmax); % cf. Eq. (13)
11 compute(kcmin); % cf. Eq. (14)

13 if (kcmax <= nc)
GenerativeSet.add(kcmax,0,0,...,0); % c−1 zeros

15 end;

17 for kc = min(kcmax−1,nc):max(kcmin,0)
% recursive launch, Thc updated with Eq. (12)

19 SubGSet = \
extractGenerativeSet(c−1,wc−1...w1,Thc−2∗kc∗wc);

21

% adds kc in front of every vector of SubGSet
23 GenerativeSet.add(kc,SubGSet);

end;
25 end;

return GenerativeSet;
27

end function;

3.4. Illustrative example

This example considers an arbitrary CNN template

to illustrate, through real values, how the analyz-

ing method works. The weights can result from

any of the synthesis methods previously discussed

in section 2.2. For example:

A =





0 0 0
0 a0 0
0 0 0



 =





0 0 0
0 3 0
0 0 0



 ,

B =





w1 w2 w3

w4 0 0
0 0 0



 =





1 2.5 5
5.5 0 0
0 0 0





and z = 2.5.

The inputs values are ±1 and the initial state is

x(0) = 0. Notice that the weights of B are sorted

and are all positive. In this example, no weights

are equal, thus ni = 1 for every i and c = 4.

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

The algorithm is initialized with Th given

by (5) and with Th4 given by (10). In the present

case Th = −z = −2.5 and Th4 = 11.5.

For the sake of clarity, the operations involved

by the analyzing algorithm are detailed line by line:

l. 1 since c = 4, the algorithm jumps to line 10.

l. 10 κ4,max = 2 according to (13).

l. 11 κ4,min = 0 from (14).

l. 13 since κ4,max > n4, the vector (2, 0, 0, 0) is not added
to the generative set.

l. 17 the iteration will start at k4 = 1 down to k4 = 0.

l. 19 recursive launch for k4 = 1:

l. 1 since c = 3, the algorithm jumps to line 10.

l. 10 κ3,max = 1 according to (13).

l. 11 κ3,min = 0 from (14).

l. 13 since κ3,max ≤ n3, the vector (1, 0, 0) is
added to the generative set.

l. 17 the iteration will start at k3 = 0 down to
k3 = 0.

l. 19 recursive launch for k3 = 0:

l. 1 since c = 2, the algorithm jumps to line
10.

l. 10 κ2,max = 1 according to (13).

l. 11 κ2,min = 0 from (14).

l. 13 since κ2,max ≤ n2, the vector (1, 0) is
added to the generative set.

l. 17 the iteration will start at k2 = 0 down
to k2 = 0.

l. 19 recursive launch for k2 = 0:

l. 1 since c = 1, the algorithm jumps to
line 5.

l. 5 κ1,max = 1 according to (13).

l. 6,7 since κ1,max ≤ n1, the vector (1)
is added to the generative set.

l. 25 the generative set is returned.

l. 22 the vector (0, 1) is added to the genera-
tive set.

l. 23 no more iterations.

l. 25 the generative set is returned.

l. 22 the vectors (0, 1, 0) and (0, 0, 1) are added to
the generative set.

l. 23 no more iterations.

l. 25 the generative set is returned.

l. 22 the vectors (1, 1, 0, 0), (1, 0, 1, 0) and (1, 0, 0, 1) are
added to the generative set.

l. 23 recursive launch for k4 = 0:

l. 1 since c = 3, the algorithm jumps to line 10.

l. 10 κ3,max = 2 according to (13).

l. 11 κ3,min = 1 from (14).

l. 13 since κ3,max > n3, the vector (1, 0, 0) is not
added to the generative set.

l. 17 the iteration will start at k3 = 1 down to
k3 = 1.

l. 19 recursive launch for k3 = 1:

l. 1 since c = 2, the algorithm jumps to line
10.

l. 10 κ2,max = 1 according to (13).

l. 11 κ2,min = 0 from (14).

l. 13 since κ2,max ≤ n2, the vector (1, 0) is
added to the generative set.

l. 17 the iteration will start at k2 = 0 down
to k2 = 0.

l. 19 recursive launch for k2 = 0:

l. 1 since c = 1, the algorithm jumps to
line 5.

l. 5 κ1,max = 1 according to (13).

l. 6,7 since κ1,max ≤ n1, the vector (1)
is added to the generative set.

l. 25 the generative set is returned.

l. 22 the vector (0, 1) is added to the genera-
tive set.

l. 23 no more iterations.

l. 25 the generative set is returned.

l. 22 the vectors (1, 1, 0) and (1, 0, 1) are added to
the generative set.

l. 23 no more iterations.

l. 25 the generative set is returned.

l. 22 the vectors (0, 1, 1, 0) and (0, 1, 0, 1) are added to
the generative set.

l. 23 no more iterations.

l. 25 the generative set is returned.

Finally, putting together the five generative

vectors which were returned by the first recursive

level of the algorithm gives the following generative

set:

{F} =























(1, 1, 0, 0)
(1, 0, 1, 0)
(1, 0, 0, 1)
(0, 1, 1, 0)
(0, 1, 0, 1)























. (15)

The generative set (15) completely describes

the operator studied in this example. The low re-

dundancy of this representation is visible. Indeed,

five vectors are only necessary to describe the oper-

ator compared to the sixteen rows usually involved

in a truth table of four inputs. It is also noticable

that the algorithm took care of the anti-lexical or-

dering mentioned in Def. 4.

Like this example, any binary-output cloning

template can be analyzed into a generative set with

the proposed algorithm.

4. Optimization of CNN templates

The behavior of a binary-output cloning template,

i.e. of a TLF, is described as the linear separation

of the 2n vertices of a n-dimensional hypercube

into the two classes labeled −1 and 1. As previ-

ously stated by Eq. (4), the separation is achieved

by an hyperplane H defined by w and Th. The

task implemented by a given CNN is considered

non-optimal, or non-robust to internal noise, if the

hyperplane is poorly positioned in the hypercube,

i.e., being unnecessarily close to one of its vertices.

This property is crucial since CNNs generally deal

with analog signals, meaning that even binary val-

ues (namely, the inputs and the initial internal

states) will slightly vary about their mean value.

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

We now propose an algorithm which partially

solves this optimization problem. It is based on an

analysis of the generative set of the TLF achieved

by a CNN. By looking for non-implemented sym-

metries, this algorithm tweaks the original hyper-

plane to make it fit them. It results in an improved

implementation of the TLF.

4.1. Generative sets reduction

The previously described algorithm is an efficient

tool to know which TLF a given binary-output

CNN performs. As seen in section 3, the returned

Boolean expression is given in a reduced input

space of c dimensions, as opposed to the input

space which is the usual n-dimensional hypercube

that was discussed so far. This reduction relies on

the values n = (nc, . . . , n1) introduced in the pre-

vious section, and which are representative of the

way symmetries were implemented in the original

hyperplane H.

If it turned out from the analysis of the genera-

tive set implemented by H that a symmetry is not

implemented, say between the reduced inputs ki

and ki+1, then it would mean that n can be even

more reduced into n′ = (nc, . . . , ni +ni+1, . . . , n1).

This extra reduction can then be applied to the

generative vectors:

∀k ∈ {F},k → k′ = (kc, . . . ,ki + ki+1, . . . ,k1).

(16)

This extra reduction affects the weights in the fol-

lowing manner:

w → w′ =

(

wc, . . . ,
niwi + ni+1wi+1

ni + ni+1
, . . . , w1

)

,

(17)

whereas the threshold value is maintained: Th′ =

Th.

The resulting hyperplane H′ = {w′,Th′} was

proven to implement the same TLF as H in 11.

The following subsection explains why H′ is more

robust to internal noise than H.

4.2. Toward an optimal hyperplane

Given an implementation of a given TLF, the aim

of any analytical optimization process is to find a

better (if not the best) location Th and orientation

w of the separating hyperplane H. An adequate

representation of the TLF which implementation is

supposed to be optimized must therefore be cho-

sen. The most straightforward one probably is the

truth-table. The flaw behind this approach is that

it is not threshold-logic-specific: every piece of in-

formations about the equation of the sought hy-

perplane remain spread out, and yet, difficult to

collect. On the contrary, the generative set repre-

sentation is very close to the hyperplane’s coordi-

nates (see Fig. 2).

true

false

(0, 0)

(2, 4)

{F} =

{

(0, 3)
(2, 2)

}

Fig. 2. A TLF represented in its two-dimensional
reduced space. The vertices from its generative
set are pointed by the arrows.

Amongst the many hyperplanes which imple-

ment a given TLF, the optimal ones are defined

as those which distances to their respective closest

vertices of the hypercube, are the furthest. More

formally:

Definition 5 (Optimal hyperplanes)

Consider a hyperplane H defined by {w, Th}. Let

s(1) be the regular input vector assigned to the clos-

est vertice of the n-dimensional hypercube, s(2) the

second closest one, and so on. H is said optimal,

for the TLF it implements, if and only if 11:

1. the distance D(1) =
∣

∣

∣
Th −

∑n

i=1 s
(1)
i wi

∣

∣

∣
, be-

tween H and s(1), is greater than or equal

to the distance between any other hyperplane

implementing the same TLF, and its respec-

tive closest vertice;

2. amongst the hyperplanes satisfying item 1,

H is the hyperplane which distance D(2) to

its second closest vertice s(2) is again greater

than or equal to the other corresponding dis-

tances;

3. and so on with every remaining vertice.

The following theorem establishes the fact that

an optimal hyperplane necessarily fits the symme-

tries of the TLF it implements. This means that

it gives the same value to the respective weights.

Theorem 1 Let H(o) be an optimal hyperplane

defined by {w(o), Th(o)} for a given TLF. If this

TLF is partially symmetrical in two distinct inputs

si and sj (with i 6= j), then w
(o)
i = w

(o)
j .

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

The proof of this theorem is given in 11. It

relies on the fact that if an optimal hyperplane,

which does not satisfy Th. 1, is found, then it can

systematically be turned into a more robust hyper-

plane under the meaning of Def. 5 thanks to the

weight alteration of the Eq. (17).

The consequence of Th. 1 thus is that the clos-

est an hyperplane H is from being optimal, the

closest its descriptor n is to the real symmetries

of the implemented TLF, and reciprocally. The

optimization process hence consists in the two fol-

lowing stages:

1. identify any non-implemented symmetry be-

tween two or more reduced inputs;

2. reduce them using Eq. (17).

This procedure is called: generative set reduction.

4.3. Optimization algorithm

The first stage of the generative set reduction is to

check the symmetry of every pair of reduced inputs

ki, kj , i 6= j, using the generative set of the TLF

which implementation is to be optimized. Test-

ing every combination leads to c(c − 1)/2 tests.

The real number of tests is actually much lower

than this. Indeed, having the weights sorted im-

plies that if ki and ki+j were symmetrical, then so

would ki, ki+1, ki+2, . . . and ki+j be. As a result,

one only needs to check kc with kc−1, kc−1 with

kc−2 and so on until k2 is finally checked with k1.

In this manner, the number of symmetry tests is

reduced to c − 1 which is linear in the number of

reduced inputs.

The reduction of a generative set is achieved

through the Th. 2, using the following notations

and terms:

{F} =



















(k1,c, . . . , k1,2, k1,1)
(k2,c, . . . , k2,2, k2,1)

...
(kq,c, . . . , kq,2, kq,1)



















=



















k1

k2

...
kq



















,

(18)

where q is number of generative vectors included

in the set, and c is the dimension of the reduced

input space.

In Eq. (18), we call the jth i-order root of {F}

the head (kj,c . . . kj,c−i+1) obtained from the gen-

erative vectors kj with 1 ≤ i ≤ c and 1 ≤ j ≤ q.

To each i-order root value is associated a i-

order sub-generative set extracted from {F}. It is

made of the generative vectors which have a same i-

order root value, and with their root part removed.

For example, the 2-order roots and subgenera-

tive sets of the generative set (15) are highlighted

by Fig. 3.

Fig. 3. 2-order roots and sub-generative sets of
the TLF of Eq. (15).

Theorem 2 (Generative set reduction)

Let {F} denote a generative set with the notations

of the Eq. (18). The two reduced inputs ki and

ki−1 are symmetrical if and only if for all j, the

(c− i)-order sub-generative sets {Fj} each satisfy:

test 1 every possible integer value of the sum

(kj,i + kj,i−1), from the smallest which ap-

pears in {Fj} to the greatest one, indeed ap-

pear in {Fj};

test 2 for each one of these sum values, every pos-

sible combination of values kj,i and kj,i−1,

giving the right sum appear in {Fj};

test 3 the (c − i + 2)-order sub-generative sets

of {Fj} attached to a same value of (kj,i +

kj,i−1) are identical.

A formal proof of this theorem is provided in 11.

It is the translation into the reduced input space

of Def. 1.

Once the symmetrical reduced inputs have been

detected, the optimized weights can be computed

using Eq. (17). The reduction algorithm thus is:

function reduction(w(c...1),n(c...1),GSet)
2

% symmetry between k i and k j
4 for i=c:2

j = i−1; % index of the next reduced input
6 pass = true;

8 % extract every sub−generative sets
% and check them with Th. 2

10 for subGSet = each(subGenerativeSet(c−i,GSet))
pass = pass && test1(subGSet);

12 pass = pass && test2(subGSet);
pass = pass && test3(subGSet);

14 end;

16 % reduction of the two weights if needed (Eq (17))
if (pass)

18 (w(i),w(j)) −> (n(i)∗w(i)+n(j)∗w(j))/(n(i)+n(j));
(n(i),n(j)) −> n(i)+n(j);

20 end;
end;

22 return(w);

24 end function;

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

4.4. Illustrative example

In order to illustrate the optimization process, we

propose to synthesize a more robust cloning tem-

plate from the template used in the previous ex-

ample (see section 3.4). Its analysis resulted in the

generative set given in (15) and recalled hereafter:

{F} =























(1, 1, 0, 0)
(1, 0, 1, 0)
(1, 0, 0, 1)
(0, 1, 1, 0)
(0, 1, 0, 1)























. (copy of Eq. (15))

with c = 4 reduced variables, c − 1 = 3 symmetry

tests are thus needed. Applying the optimization

algorithm to this generative set is detailed there-

after.

Symmetry k4 with k3

Sub-generative sets extraction There is only
one 0-order sub-generative set to deal with: the
generative set itself.

Only sub-generative set Merging k4 with k3 ac-
cording to Eq. (16) yields the potential reduced
input k4,3 = k4+k3. Its value respectively is 2,
1, 1, 1 and 1 for each one of the five generative
vectors of Eq. (15):

test 1 There is no missing integer between
the two values max(k4,3) = 2 and
min(k4,3) = 1.

test 2 The only way to obtain 2 is k4 =
1/k3 = 1 which achieved by the first gen-
erative vector of Eq. (15); whereas the two
ways to obtain 1 are k4 = 1/k3 = 0 and
k4 = 0/k3 = 1 which are achieved by at
least one generative vector each.

test 3 There is only one 2-order sub-
generative set associated with k4 =
1/k3 = 1 and it is therefore equal to itself;
the 2-order sub-generative set associated
with k4 = 1/k3 = 0 and k4 = 0/k3 = 1
are the same.

Reduction of k4 and k3 The two reduced inputs
are symmetrical and their weights are reduced
to the value w3,4 = 1

2
(w4 + w3) = 5.25. The

generative set obtained after the reduction and
with the duplicate generative vectors removed
is:

{F}
′

=







(2, 0, 0)
(1, 1, 0)
(1, 0, 1)







. (19)

Symmetry k3 with k2

Sub-generative sets extraction There is only
one 0-order sub-generative set to deal with: the
generative set itself.

Only sub-generative set Merging k3 with k2 ac-
cording to Eq. (16) yields the potential reduced
input k3,2 = k3 + k2. Its value respectively is
2, 2 and 1 for each one of the three generative
vectors of the generative set (19).

test 1 There is no missing integer between
the two values max(k3,2) = 2 and
min(k3,2) = 1.

test 2 The two ways to obtain 2 are k3 =
2/k2 = 0 and k3 = 1/k2 = 1 and they
are achieved by the first two generative
vectors; whereas the two ways to obtain
1 are k3 = 1/k2 = 0 and k3 = 0/k2 = 1
but the second possibility is missing. The
symmetry test thus fails.

test 3 Not necessary.

Reduction of k3 and k2 The two reduced inputs
are not symmetrical and their weights cannot
be reduced.

Symmetry k2 with k1

Sub-generative sets extraction The two 1-order
sub-generative sets are:

{F1}
′

=
{

(0, 0)
}

(20)

and {F2}
′

=

{

(1, 0)
(0, 1)

}

. (21)

First sub-generative set Merging k2 with k1 ac-
cording to Eq. (16) yields the potential reduced
input k2,1 = k2 + k1. Its only value is 0.

test 1 There is no missing integer between
the two values max(k2,1) = 0 and
min(k2,1) = 0.

test 2 The only way to obtain 0 is k2 =
0/k1 = 0 and it is achieved by the only
generative vector.

test 3 There is no 2-order sub-generative sets,
they are thus equal.

Second sub-generative set Merging k2 with k1

according to Eq. (16) yields the potential re-
duced input k2,1 = k2 + k1. Its only value is
1.

test 1 There is no missing integer between
the two values max(k2,1) = 1 and
min(k2,1) = 1.

test 2 The only two ways to obtain 1 are
k2 = 1/k1 = 0 and k2 = 0/k1 = 1; they
are both achieved by at least one genera-
tive vector.

test 3 There is no 2-order sub-generative sets,
they are thus equal.

Reduction of k2 and k1 The two reduced inputs
are symmetrical in both {F1}

′ and {F2}
′ and

therefore, so are they in {F}′. Their weights
are thus reduced to the value w2,1 = 1

2
(w2 +

w1) = 1.75 and the obtained generative set is:

{F}
′′

=

{

(2, 0)
(1, 1)

}

. (22)

Finally, the cloning template from the sub-

section 3.4 finally gives the following optimized

template:

Brobust =





1.75 1.75 5.25
5.25 3 0
0 0 0



 , (23)

A and z remaining unchanged.

4.5. Discussion

All these operations have been implemented in a

C++ application which can be used to evaluate the

computational costs of the processing chain anal-

ysis/reduction described in this paper. For exam-

ple, templates with four inputs (like the one used

in the previous example) approximately take 13ms

to be optimized whereas templates with 16 inputs

need 693 ms. These durations are mean values over

a great number of templates and were executed

on a Pentium Centrino Duo 1.8 GHz. The exact

A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks

processing time depends on the complexity of the

threshold logic function, i.e., on its number of gen-

erative vectors as well as on the number of sym-

metries.

We also applied the proposed technique to the

templates listed in the CNN bank presented in 6.

A wide range of templates were improved. Indeed,

over the 20,097 templates which were published,

17,799 were successfully optimized in an overall

time of 2 minutes and 22 seconds.

5. Conclusion

This paper introduces a method for the re-

implementation of threshold logic functions ap-

plied to CNNs. Based on a set of mathematical

theories, the paradigm of generative sets is devel-

oped as a new representation of linearly separable

Boolean functions. Thanks to it, the symmetries of

any TLF can be detected more efficiently than with

a truth table approach and their CNN implemen-

tation can thus be optimized against internal noise

through symmetry reduction. To this effect, this

paper provides the two core algorithms involved

in the overall optimization process: the first one

extracts the generative set from a correctly oper-

ating CNN template while the second detects sym-

metries in the generative set structure and reduces

them to lead to a more robust CNN template.

Computer simulations have shown that most

of the existing CNN templates can be efficiently

rewritten with the proposed method. As a result,

any template designed for a specific task can be

optimized with our approach. The result is a tem-

plate more robustness to internal noise.

References

1. L.O. Chua and L. Yang, “Cellular neural net-
works: Theory,” IEEE Trans. on Circuits and
Systems, 35(10), 1257–1272 (1988).

2. L.O. Chua and L. Yang, “Cellular neural net-
works: Applications,” IEEE Trans. on Circuits

and Systems, 35(10), 1273–1290 (1988).
3. D. Monnin, A. Köneke, and J. Hérault,

“Boolean design of binary initialized and cou-
pled CNN image processing operators,” Proc.
IEEE Intl. Work. on Cellular Neural Networks
and their Appl., Frankfurt, Germany, 124–131
(2002).

4. F. Chen, G. He, and G. Chen, “Realization of
Boolean functions via CNN: Mathematical the-
ory, LSBF and template design,” IEEE Trans.
on Circuits and Systems I, 53(10), 2203–2213
(2006).

5. C. Chow, “On the characterization of thresh-
old functions,” Proc. Symposium on Switching
Circuit Theory and Logical Design, New York,
USA, 34–38 (1961).

6. F. Chen and G. Chen, “Realization and bifur-
cation of Boolean functions via cellular neural
networks,” Intl. J. of Bifurcation and Chaos,
15(7), 2109–2129 (2005).

7. P.D. Picton, “Deriving weights for single
threshold logic gates using decomposition,”
Proc. IEEE Intl. Conf. on Neural Information
Processing, Shanghai, China, (2007).

8. P. Celinski, G.D. Sherman, J.F. Lopez, and D.
Abbott, “A mapping technique for the syn-
thesis of linear threshold gate networks used
to implement Boolean functions,” Proc. WSES
Intl. Conf., Neural Networks and applications,
Puerto de la Cruz, Tenerife, Spain, 4251–4255
(2001).

9. M. Hänggi and G.S.Moschytz, Cellular neu-
ral networks: Analysis, design and optimization
(Kluwer Academic Publishers, Norwell, MA,
USA, 2000).

10. Y. Bénédic, D. Monnin and J. Mercklé, “Fast
analysis method for both coupled and uncou-
pled binary-output cloning templates,” Proc.
IEEE Intl. Biannual Workshop on Cellular
Neural Networks and their Applications, Bu-
dapest, Hungary, 184–189 (2004).

11. Y. Bénédic and J. Mercklé, “Optimisation of
binary-output CNNs: First step of an analytical
design process,” Proc. IEEE Intl. Joint Conf.
on Neural Networks, Vancouver, Canada, 5107–
5113 (2006).

12. Z. Kohavi, Switching and finite automata theory
(Mc Graw Hill, New Delhi, India, 2nd edition,
1978).

