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[1] The boundary layer above a 4569 m deep slope in the near-equatorial N-Atlantic Ocean
Kane Gap, a throughflow for Antarctic Bottom Water (AABW)), is characterized by two
distinct turbulent regimes that differ by an order of magnitude in intensity depending on the
direction of throughflow. During southward and downward flow, vertical mixing is
vigorous. This is inferred from high-resolution temperature observations between 6 and

132 m above the bottom. For a representative case study of 2 days, average values are found
for dissizpation rate of e =2.1 + 1 x 107" W kg~ ' and eddy diffusivity of K, =7 + 4 x

10~* m? s '. The mixing is across relatively large vertical overturns. During northward and
upward flow, smaller overturns are more horizontal as in stratified shear flow (with

representative 2 day mean e =6+3 x 107" Wkg ', K,=4+2 x 10 > m?s ™).

Stratification is approximately the same during both flow directions. Although the different
turbulence regimes are partially associated with frictional boundary layers of large-scale
flows above sloping topography, but not with those over flat bottoms, and partially with
flow across a hill-promontory, internal waves are a dominant process in promoting
turbulence. In addition, internal waves are observed to push stratification toward the bottom
thereby importantly contributing to the mixing of AABW.
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1. Introduction

[2] The flow through passages in large underwater to-
pography like the Mid-Atlantic Ridge are of importance for
the transport of water masses, in particular Antarctic Bot-
tom Water (AABW), see Figure 1 (inset). During its north-
ward transport, AABW passes through the Mid-Atlantic
Ridge’s Romanche, Chain and Vema Fracture Zones to
reach the East-Atlantic Basins [Morozov et al., 2010]. The
passage from the near-equatorial East-Atlantic Guinea
Basin to the more northerly Gambia Abyssal Plain and Ca-
nary Basin is Kane Gap. Peculiarly, AABW is found to
Kane Gap’s south, coming from the Romanche and Chain
Fracture Zones, and to its north, coming from the Vema
Fracture Zone. The temperature (density) difference
between the basins at either side of the Kane Gap are quite
small (~0.01°C) near the bottom [Morozov et al., 2010].

'Royal Netherlands Institute for Sea Research (NIOZ), Den Burg,
Texel, the Netherlands.

2Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia.

3Laboratoire de Mécanique des Fluides et d’ Acoustique, Ecole Centrale
de Lyon, Université de Lyon, Ecully cedex, France.

Corresponding author: H. van Haren, Royal Netherlands Institute for
Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel, the
Netherlands. (hans.van.haren@nioz.nl)

©2013. American Geophysical Union. All Rights Reserved.
2169-9275/13/10.1002/2013JC009282

Although the mean flow through the Kane Gap is almost
negligible, as shown in the data to be presented here,
little is known about variations in currents and the cause
thereof.

[3] In this paper, we study vertical mixing processes
using yearlong moored high-resolution temperature obser-
vations in the range between 6 and 132 m above the bottom
(mab) of the Kane Gap’s AABW. As will be demonstrated,
these mixing processes vary strongly depending on the flow
direction through the Kane Gap.

[4] The mooring is located on the western slope of
Kane Gap and just south of a small hill (Figure 1).
From previous observational studies and supporting
theory in other, mainly shallower, areas, we expected
for such a mooring location above sloping topography:
(a) southward flow to cause downwelling and enhanced
turbulence due to static instability with reduced stratifi-
cation [Weatherly and Martin, 1978; Lentz and
Trowbridge, 1991; Garrett et al., 1993; Hosegood and
van Haren, 2003], (b) northward flow to cause upwell-
ing and suppressed turbulence with increased stratifica-
tion [Weatherly and Martin, 1978; Garrett et al.,
1993], (c) solibores to form and contribute to mixing
as modeled and observed in ~100 m shallow waters
[Vlasenko and Hutter, 2002 ; Klymak and Moum, 2003] and
~3000 m deep waters [Bonnin et al., 2006], (d) bed-
generated turbulence to affect mixing close to the seabed, and
(e) evidence of hydraulic jumps and solitary waves in the
flow near the hill and constriction to be found [Hibiya, 1988].
None of these effects were observed as a single dominant pro-
cess in the present data.
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Figure 1.

Mooring location (red diamond) in the near-equatorial Kane Gap, NE Atlantic Ocean.

Depths from a 1’ database [Smith and Sandwell, 1997] and corrected with echo-sounder data. The bottom
consists of muddy sediment. In the inset, the inferred flow of AABW is indicated, with main conduits
the Romanche, Chain and Vema Fracture Zones crossing the Mid-Atlantic Ridge [Morozov et al., 2010].
This leads to an AABW approach of the Kane Gap from both the south and the north.

2. Materials and Methods

[s] A total of 63 “NIOZ3” self-contained temperature
(T) sensors sampling at 1 Hz, with precision better than
0.001°C [van Haren et al., 2009], were mounted at 2.0 m
vertical intervals on a 0.009 m diameter nylon coated steel
cable. The sensors were synchronized every 6 h through
induction, so that the 125 m high profile is measured quasi-
instantaneously, with a delay of <0.04 s. The lowest sensor
was 6 mab. The 205 m long cable was between two Nortek
AquaDopp current meters sampling once every 600 s. A
third current meter was attached in the middle of the cable.
Approximately 300 kg net buoyancy on top ensured moor-
ing deflection to be <0.4 m at the upper current meter
under maximum 0.25 m s~ current speeds. The line was
moored at 09° 20.178'N, —19° 52.454'W, 4569 m water
depth, in the near-equatorial NE Atlantic Ocean (Figure 1)
between October 2010 and October 2011. The nearby
actual passage of the Kane Gap is oriented (north-)north-
west (NNW)—(south-)southeast (SSE), but locally near the
mooring the bottom topography is directed practically N-S,
and even slightly NNNE-SSSW. The mooring anchor was
at the same depth as the shallowest point of the passage and
about 70 m deeper than a hill-promontory along the slope
to its northwest.

[6] After applying predeployment calibration informa-
tion, the T-data are corrected for small drift over 4 day win-
dows by fitting to linear profiles that are restricted to within

the values of the CTD profiles which were obtained imme-
diately before and after the mooring period. The corrected
T-data are transferred to conservative (~potential) temper-
ature ©. Lacking salinity data, the © are used as a conserv-
ative estimate for potential density variations (0o4¢0) that
are referenced to 4000 m, using the relation 604999 = 6O,
with o= —0.12 + 0.005 kg m > °C~" (Figure 2). For this
relationship, the value of « is computed by linear best fit
from the average of three CTD profiles near the mooring
site for the 200 m range of moored observations.

[7]1 Vertical eddy diffusivity K, and kinetic energy dissi-
pation rate € are estimated by calculating “overturning”
scales using moored ©. These scales are obtained after
reordering for every 1 Hz time step the potential density
(©) profile, which may contain inversions, into a stable
monotonic profile without inversions [Thorpe, 1977, 1987].
After comparing raw and reordered profiles, displacements
(d) are calculated that generate the stable profile beyond a
certain threshold [Galbraith and Kelley, 1996]. As © are
obtained from a set of 63 independent sensors of which
instrumental noise is very low (4 x 107°°C), the threshold
depends on the remaining temperature shifts after calibra-
tion, ~3 x 107%°C in this case [van Haren et al., 2009].
Then, £ =0.64d’N?, where N denotes the buoyancy fre-
quency computed from the reordered profile over Az=2 m
vertical intervals and the constant follows from empirically
relating the (rms) displacement scale with the Ozmidov
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Figure 2. CTD observations just prior to deployment of
the mooring, over the lower 220 m above the bottom: (a)
conservative temperature, (b) salinity, (c) density anomaly
(referenced to 4000 m)—Conservative temperature rela-
tionship, and (d) goodness of fit (dotted observations in plot
Figure 2c—red line fit).

scale Lo =0.8d [Dillon, 1982]. The resolvable threshold
averaged over the entire vertical range is ~10~'2 W kg~ '
Using K, =T'eN "2 and a mixing efficiency for conversion
of kinetic into potential energy of I'=0.2 [Osborn, 1980;
Oakey, 1982], we find K, = 0.128d°N.

[8] In the following, averaging over time is denoted by
[...], averaging over depth by <...>.

3. Observations

[¢9] The yearlong time series of currents and temperature
show a distinct variation between “northward (N-)” and
“southward (S-)” flow, as defined from the average over
the three current meters. Initially, flow varies direction
about every 90 days and in the second half of the observa-
tional period about every 45 days (Figures 3a—3c and 4).
Current amplitudes reach up to 0.25 m s ', but the yearlong
mean flow is rather weak: [<u, v>]=—-0.015, —0.002
m s~ hence slightly downslope and southward. Although
the Kane Gap’s main topography suggests a throughflow
direction of NNW-SSE, the observed current’s standard
deviation suggests a slightly different local direction:
—12°, —4°, and +29° for currents at 7, 111, and 210 mab,
respectively. Thus, in the following the “average” N-S
(and E-W) axes of local coordinate system are used for hor-
izontal current components v (and u).

[10] During “N-flow,” e.g. between days 475 and 520,
waters are about 0.01°C cooler than average at a given
depth (Figure 3c). On average, the flow is equal to or
smaller than a crudely estimated mode-1 (within the range
of observations) internal wave phase speed ¢ = (gaAOA/
0)">=0.075 m s~' (Figures 3a and 3b), for A© =0.05°C

across a “boundary thickness” 2 =100 m roughly esti-
mated from the thermistor string data (Figure 3¢) and accel-
eration of gravity g. At 7 and 111 mab, the flow is
Northwesterly, whereas at 215 mab the flow is northeast.
Hence, the flow is upwelling favorable and up the promon-
tory. The shear magnitude is larger between 111 and 216
mab than between 7 and 111 mab (Figure 3d). It is mainly
in the u-component in the upper layer (Figures 3a, 3b, and
3d), and smaller than for the period of S-flow.

[11] During “S-flow,” e.g. between days 390 and
470, waters are 0.01°C warmer than average. This flow
is downwelling favorable and down the promontory
with |U|>c¢, a hydraulic supercritical flow. However,
the 125 m scale near-bottom stratification is equivalent
to or larger than during N-flow. In the yearlong time
mean and average over the vertical range of obser-
vations, these large scale [<N>]=6.5 X 1074 s,
upper layer [<|S,/>]=8.6 x 10~* s™', and lower layer
[<|S|>]1=4.0 x 10°* s'. The gradient Richardson
number Ri=N?/|S|?, the ratio of stability over destabili-
zation, roughly varies around Ri=1 (Figure 3e) even
though yearlong mean [<Ri>] ~ 2.5 and 10 for upper
and lower layers, respectively. This implies marginal
stability and turbulence is expected to occur occasion-
ally, following the condition for stability for nonlinear
(three dimensional) flows [4barbanel et al., 1984].

[12] Over the yearlong period, the vertically averaged
<e> varies over five orders of magnitude, between 10~ '2
and 1077 W kg~ ! (Figure 3f), around its yearlong and verti-
cal mean value of [<e>]=6=*3 x 107 ' W kg (the
associated [<K,>]=2.7+ 1.4 x 10~* m? s™"). The varia-
tion of € with time reflects the burst character of turbulence.
The range of this variation is larger than that of [S| and
much larger than that of N (e.g., Figure 3d shows barely
varying N, compared to [S|). Only a very high power of N
(N® is chosen somewhat arbitrarily) more or less visually
compares with large-scale variations of <e>, but not for
all periods and not at small scales. This demonstrated that
the burst character of turbulence (dissipation rate) is mainly
attributable to overturning scale variations and not to varia-
tions in stable density stratification. As a result, correlation
between stratification and dissipation rate is insignificant at
the 95% level.

[13] The shear magnitude (Figure 3d), especially that of
the upper layer, represents the time variation of <e> better
than (high powers of) N. During periods of S-flow, [S| >N
for the upper layer (Figure 3d), or 1/Ri > 1 (Figure 3e) and
ten times larger <e> (Figure 3f) than during N-flow, on av-
erage. During periods of N-flow, 1/Ri <1, implying rela-
tively large stability.

[14] Although the yearlong mean large-scale stratifica-
tion is relatively low, still [<N>] >> f=0.2 x 107 % s7!
the local inertial frequency (Figure 4). This implies that the
(traditional) internal wave band is more than a decade wide
in frequency (o). Despite relatively large noise levels, the
above internal wave bounds are confirmed in current spec-
tra and the spectrum of log<e> drops off steadily at a rate
of o' until it deviates to a lower fall-off rate at o =3N ~
Nmax, the maximum thin-layer buoyancy frequency. The
differing turbulence depending on throughflow direction is
demonstrated in detailed case studies for two typical peri-
ods (Figures 5 and 6).
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Figure 3. Overview of yearlong moored near-bottom observations: (a) Time series of East-West,
~cross-channel current component at 216, 111, 7 m above the bottom (mab). Purple lines indicate esti-
mates of mode-1 internal wave phase speeds for a layer of 100 m. (b) Corresponding North-South,
~along-channel component. (¢) Depth-time series of conservative temperature from 63 1 Hz sampling
sensors between [6, 132] mab. (d) Shear magnitude (black) over (top) 111-216 mab and (bottom) 7—111
mab. Buoyancy frequency from © over 6—132 mab (purple). (e) Inverse gradient Richardson number for
N over 6-132 mab with |S| over 111-216 mab (black) and 7111 mab (red). Dashed lines indicate stabil-
ity thresholds for nonlinear (green) and linear (purple) flows above which instability occurs. (f) Time se-

ries of vertically averaged <e> (black) and arbitrary high-power N®

[15] During S-flow, the turbulence character is of the
shear-(vertical) convection type, with relatively rapidly
varying, short-lived motions and large vertically extending
overturns (Figure 5). Over this two-day period, mean val-
ues are [<e>]=21%x1 x 10 W kg ' and
[<K,>]=7%4x 10" m?s™!, while [<N>]*=4 x 107
s, [<[Sul>1P=1.1 x 107 %s7% and [<|S)|>]* =2 x 107
s~2. The 2 m sensor-separation is adequate to estimate tur-
bulence parameters given the 10's-of-meters-high overturns
(Figure 5d). The thin plumes extend very close to the bot-
tom, which is not reached however (Figures 5b—5f). The
duration of the motions, <600 s, is much smaller than the
smallest internal wave period of approximately Tymax ~
3000 s observed in layers <10 m in thickness. Thus, these
plumes provide evidence of convective overturning, ini-
tially shear-induced by larger-scale (inertial and subiner-
tial) flow.

[16] During N-flow, the turbulence character is of the in-
ternal wave stratified shear flow type, with relatively slowly

(purple).

varying high-frequency internal wave motions and over-
turns spread-out “horizontally” along isopycnals (Figure
6). Over this two-day period, mean values are
[<e>]=6+3 x 107" W kg ! and [<K,>]=4+2 x
10> m? s, which is more than an order of magnitude
smaller than in Figure 5 (compare Figures 6a and 6e with
Figures 5a and 5e). The associated [<N>]*=5 x 107’
572 [<ISo>TP=5 x 1077 572, and [<|S)|>]*=1 x 1077
s2. The <10 m overturns are barely resolved by the sensor
separation (Figure 6d). They remain relatively far from the
bottom and are bound above and below by thin stratified
layers. The periodicity of the naturally, by any flow disturb-
ance, generated short-scale internal wave motions is ~3000
s, commensurate the thin layer stratification (Figures 6b
and 6¢). Different stages of Kelvin Helmholtz billows that
have a duration of typically 1000 s are superposed on these
waves (Figures 6¢ and 6f). Such periods are smaller than
those of the high-frequency internal waves, but consider-
ably larger than those of the convection during S-flow. For
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over the range 44384563 m.

(yearday 2010/2011)

the N-flow, the billows clearly evidence (high-frequency)
internal wave shear-induced overturning.

4. Discussion

[17] Although the currents at 7 mab reach values of
0.25 ms ', the observed turbulence is not primarily associ-
ated with bottom friction (above a flat seafloor). This may
be partially due to the lowest temperature sensor being 6
mab, although it is noted that there may be frictional influ-
ence as boundary layers can grow tens of meters high
above sloping topography [e.g., Lentz and Trowbridge,
1991; Garrett et al., 1993]. Indeed, the observed distinctly
different turbulence regimes are related to the direction of
throughflow, the largest occurring during downwelling,
down a hill-promontory (S-flow; average over ensemble of
these periods: [<e>]=13*0.5 X 107° W kg "), the
smallest during up-hill, upwelling favorable (N-flow; aver-
age over ensemble of these periods: [<e>]=1.1 £0.5 x
107" W kg™ !). These turbulence parameter estimates are
not very high compared with estimates near the bottom in
the Romanche Fracture Zone [Polzin et al., 1996] and near
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Figure 5. Two days of south(east)ward, downgoing flow, with relatively large 100 m scale shear, low
Ri, and strong convective turbulence: (a) time series of <e>, (b) depth-time series of ©, (c¢) 7.2 h of rec-
tangle in Figure 5b, and (d) depth-time series of displacements from data in Figure 5c. The arrows indi-
cate examples of large (>10 m) overturn displacement in the form of vertical plumes. (e) Dissipation
rate from data in Figure 5¢ and (f) One hour of rectangle in Figure 5c, with black contours every

0.004°C.
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Figure 6. As Figure 5 with the same color ranges and (f) the same contour intervals, but for a period of
north(west)ward, upgoing flow, with relatively low 100 m scale shear, high Ri, and weak convective tur-
bulence, but more important small-scale shear-induced overturning. (d) The arrows indicate examples of
small moderate (<10 m) overturn displacements, which have considerable duration in time of 1000—

2000 s. (f) Two initiating, small Kelvin-Helmholtz billows are indicated by arrows.

the summit of Great Meteor Seamount [van Haren and
Gostiaux, 2012], but they are an order of magnitude larger
than estimates for the ocean interior, e.g., Polzin et al.
[1996]. They are thus important for mixing of AABW in
the Kane Gap. The strong time variability of € is better rep-
resented by (100 m scale) |S| than by N, confirming previ-
ous suggestions for the importance of internal wave shear
[Pinkel and Anderson, 1997].

[18] Although single (125 m, 1 Hz) profiles of ¢ vary
over several decades with time, their tendency toward equi-
librium values is rather quick when averaged over a time
scale O(100-1000)s that resolves the largest overturn
scales. As an example, the average [<e>]-values for the
plots Figures 4a (2 days), 4e (7.2 h) and the equivalent for
Figure 4f (1 h) differ by <30%. For comparison, a free-
falling microstructure profiler shows similar variability
over several decades with time (and in the vertical; e.g.,
Polzin et al. [1996]). As such an instrument takes 200 s to
cover 125 m, compared to the present quasi-instantaneous
sampling, a natural averaging over the larger overturn
scales is performed automatically by the profiler. Given the
profiler’s fast sampling rate of O(100 Hz), the average of a
few of its profiles is sufficient to provide the same level of

error as given above over bulk ranges like a “boundary
layer height.”

[19] The present observations contrast with the model of
inverse relationship between N and turbulence, especially
K, [Denman and Gargett, 1983]. This relationship is gener-
ally not found here, except during brief moments of time.
The observations also contrast with large-scale flow rota-
tional controlled (“Ekman”) frictional boundary layers,
which are conjectured to be ten times, O(10)m versus
O(1)m, larger for downwelling favorable flow compared to
upwelling favorable flow [e.g., Garrett et al., 1993]. Here,
we do observe strongest turbulence during downwelling
favorable flow, but the stratification is as large as and
reaches as close to the bottom as during upwelling favor-
able flow. This disagreement with the theory on large-scale
flows is attributable to effects of smaller-scale topography,
creating more turbulence during downgoing flow, and to
internal waves that cause overturning and also restratifica-
tion in thin layers by their movements up and down the
slope. Compared with the tidally dominated Great Meteor
Seamount, strongest turbulence is also found during the
downslope phase but strong turbulence by an upslope bore
is missing here, presumably by a lack of generation of
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solitary waves away from the topography [Vlasenko and
Hutter, 2002].

[20] The near-bottom turbulence is thus found to vary at
several unusual time scales. First, the large-scale variation
having peak periods of 90+, 45, and 15 days, which sug-
gests a near-bottom internal seiche or effects of mesoscale
eddies. It is unclear however, which (stratified) basin is
driven to near-resonance and why the resonance is forced
to a higher mode. The smallest period of 15 days has also
been observed in the Romanche Fracture Zone [Mercier
and Speer, 1998]. A simple calculation of an internal seiche
period gives T, = 2L/n(g’h)*, in which L denotes the char-
acteristic horizontal scale of the basins North and South of
the throughflow, n is the mode number, g’ = gAp/p. For the
Kane Gap &= 100 m and mean N (Ap=0.004 kg m>), we
find L ~ 120 km for a mode n =1 seiche of 7, =45 days.
Likewise, although local mode-2 internal waves are
observed at small scales, e.g. around day 404.65 in Figure
5, no such mode is observed in large-scale variations
(Figure 3). This requires further study, which should
include mesoscale eddies.

[21] Second, near-inertial period variations of about 3
days are discernible in the present data, especially in iso-
pycnal variations (Figure 3c). Near-inertial internal waves
are known to generate large shear, because their vertical
length scale is small [e.g., LeBlond and Mysak, 1978].
Their shear is near-circular in well-developed stratification,
resulting in a near-constant shear amplitude that varies
slowly with time [van Haren, 2000]. The present (100 m
scale!) shear-spectra indeed show a hump at o ~ 1.1f, simi-
lar to temperature variance, in addition to subinertial
“peaks” (Figure 4). The latter are different for shear in the
upper and lower layers. Although tidal flows are relatively
strong, they are vertically coherent suggesting they are
dominated by barotropic motions, which is confirmed from
their narrow-peaked kinetic energy spectra and from their
shear spectra that are reduced compared to the values near
f. The local topography is subcritical for internal tides,
which thus radiate upward and outward. An (internal) tidal
peak is not well visible in © and ¢ spectra.

[22] Thus, a combination of high-frequency internal
waves with low-frequency near-inertial and subinertial
motions creates unusual differences in near-bottom turbu-
lence in the Kane Gap. The mixing during S-flow extends
130 mab, thereby affecting the throughflow of AABW
most. Due to continuous restratification mainly by internal
wave motions this mixing is relatively efficient.
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