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Abstract

3D reconstruction of transparent refractive objects like
a plastic bottle is challenging: they lack appearance re-
lated visual cues and merely reflect and refract light from
the surrounding environment. Amongst several approaches
to reconstruct such objects, the seminal work of Light-Path
triangulation [17] is highly popular because of its general
applicability and analysis of minimal scenarios. A light-
path is defined as the piece-wise linear path taken by a ray
of light as it passes from source, through the object and
into the camera. Transparent refractive objects not only
affect the geometric configuration of light-paths but also
their radiometric properties. In this paper, we describe a
method that combines both geometric and radiometric in-
formation to do reconstruction. We show two major conse-
quences of the addition of radiometric cues to the light-path
setup. Firstly, we extend the case of scenarios in which
reconstruction is plausible while reducing the minimal re-
quirements for a unique reconstruction. This happens as a
consequence of the fact that radiometric cues add an ad-
ditional known variable to the already existing system of
equations. Secondly, we present a simple algorithm for re-
construction, owing to the nature of the radiometric cue. We
present several synthetic experiments to validate our theo-
ries, and show high quality reconstructions in challenging
scenarios.

1. Introduction
Reconstruction of transparent objects has gathered inter-

est in the last few years [5, 8, 11, 12, 13, 14, 17]. Several

cues have been proposed to reconstruct such objects. Meth-

ods could be broadly classified into approaches that rely

on physical (material) properties of transparent objects, and

approaches that try to extend traditional shape acquisition

approaches to the case of transparent objects. Among the

approaches relying on material properties, geometric and

radiometric cues are the most prominent inputs to recon-

struction algorithms.

Transparent objects referred to in the recent computer vi-
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Figure 1: Given a transparent refractive object, a light

source and a camera, the pixel q receives light from sources

at positions Q1 and Q2. The method of light-path trian-

gulation [17] reconstructs point P by triangulating the line

passing through Q1 and Q2 with the line of sight of q. Thus

two measurements Q1 and Q2 are necessary. In contrast,

our method uses only one of the points Q1 or Q2 while

using the intensity ratio Ir/I as the additional radiometric

cue. Thus, in contrast to two observations required by [17]

to compute depth d, we need only one observation. Both

methods estimate the normal at P as well. In both works

Q1/Q2 is estimated by using a calibrated computer monitor

as light source (CRT monitor in our case).

sion literature could be categorized into two kinds: specular

and translucent. In this paper, we focus on specular trans-

parent objects, that is objects for which incoming light is

partly reflected off the surface and partly entering the ob-

ject, after undergoing a refraction at the surface. For such

objects, geometric cues are an important source of informa-

tion. Following the popular work of Kutulakos et al. [17],

several approaches have sought to analyze geometric cues

to obtain an accurate reconstruction from multiple images

[10, 20]. While these works consider specular surfaces

(both mirrors and transparent surfaces), they do not utilize

the fact that transparent objects leave a shape dependent ra-

diometric signature in images.

Since transparent surfaces also reflect light falling on

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.189

1436

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.189

1436

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.189

1438



them, photometric stereo and related algorithms have also

been proposed to reconstruct the exterior of transparent ob-

jects [20, 13]. A recent focus on specularities for recon-

struction is one such example [20]. While reconstruction

using such methods gives good results, we argue that mod-

eling transparent surfaces as pure mirrors discards impor-

tant information about their physical properties (refractive

index, internal structure, etc.).

In this paper, we present an approach that combines the

merits of utilizing both geometric and radiometric cues.

Our approach is along the same lines as [17], with one im-

portant difference. For every “light-path” that we capture,

we record both geometric information (position and direc-

tion of light rays captured by and originating from light

source, depending on requirement) and radiometric infor-

mation (radiance of light at the beginning and end of each

light-path). A first main result is that this allows to recon-

struct a transparent object from a single configuration of the

acquisition setup, i.e. without moving the object, the cam-

era, or the CRT monitor (Figure 1). More generally, we

extend the minimal case scenarios of reconstruction in sev-

eral ways beyond those proposed in Kutulakos et al [17],

reducing the number of measurements required for recon-

struction.

The paper is structured as follows. Section 2 places pre-

vious works in perspective. Sections 3 and 4 present basic

theory and the basic reconstruction approach proposed in

this paper. Possible extensions, e.g. towards using images

obtained after two reflections or refractions, are explained in

section 5. Sections 6 and 7 provide practical details as well

as experimental results. Finally, section 8 gives an overall

summary of our approach and points to future directions of

research.

Notation: In the rest of the paper, we use the following

convention. Bold symbols like E denote vectors with di-

rection and magnitude, while Ê respectively E denote the

corresponding (unit) direction and magnitude (or scalar).

2. Related Work
In the past, several approaches have used either geomet-

ric or radiometric cues to reconstruct transparent surfaces.

Geometric approaches typically measure the deviation from

perspective imaging produced by a refractive transparent

object, and recover the shape as a solution that explains the

observation [21]. In [17], the authors present a minimal case

study of the conditions in which refractive surfaces can be

reconstructed. They re-cast transparent object reconstruc-

tion as the task of reconstructing the path of each individ-
ual light-path that is captured by a camera after refraction

through a transparent surface. Earlier approaches have fo-

cussed on parameterizing the object to be reconstructed and

then obtaining its parameters by explaining the distortion it

produces in several cameras [4]. Other examples of shape

recovery from distortion analysis include the more recent

work by [13], which analyzes the specific case of a sin-

gle dynamic transparent surface that distorts a known back-

ground and is observed by multiple cameras. Finally, some

recent approaches have also looked at learning based solu-

tions that minimize a certain criterion of optimality [6, 19].

Apart from geometry, radiometric information also turns

out to be very important in the case of transparent objects

since they simultaneously reflect and refract light. Since

they reflect light like a specular surface, many recent photo-

metric approaches have tried to reconstruct transparent sur-

faces by studying their specularities. While [20] provides

a low cost approach to reconstruction by studying specular

highlights, [13] shows how to reconstruct transparent sur-

faces with inhomogeneous refractive interiors, by measur-

ing highlights multiple times to remove extraneous effects

like scattering, interreflections etc. One important aspect of

radiometry is polarization. When unpolarized light is re-

flected or transmitted across a dielectric refractive surface,

it gets partially polarized. This degree of polarization is

connected to the shape of the object, and several authors

have attempted to explore this connection. In [9] the au-

thors measure the polarization angle using multiple images

from a single view taken with different orientations of a po-

larizer. They then use Fresnel theory to derive a relationship

between measured polarization state and the angle of reflec-

tion. In [11] authors use a predict-observe-minimize loop to

estimate the shape of the object using a technique called po-

larization ray tracing.

Since refractive objects present a challenging reconstruc-

tion problem, many authors have resorted to using active

approaches for reconstructions. Methods like fluorescent

immersion range scanning [8] and tomographic reconstruc-

tions present alternate approaches that are of practical value

when objects are of manageable size.

3. Reflection and Refraction Caused by Trans-
parent Surfaces

In this section, we describe an image formation model

for transparent surfaces, that forms the basis of our recon-

struction approach. The model is based on well-known op-

tical phenomena.

Let X be a calibrated point light source emitting unpolar-

ized light. By calibrated, we mean here that we know the

“amount” of light emitted in every direction (see section 6

for practical approaches/considerations).

Consider light emitted by X in a particular direction. If

the light ray hits a transparent surface, part of its energy gets

reflected in a mirror direction and part enters the transparent

object, after undergoing a refraction at the surface. Both

the reflection and the refraction happen within a plane of
refraction π̂ that is spanned by the point of intersection of

the light ray and the surface, and the surface normal at that

point. The geometric aspects of reflection and refraction
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Figure 2: (left top) Description of the general theory behind our approach. While the acquisition is similar to that of Kutulakos

et al [17], we also include radiance in our measurements (depicted by the changing color of rays while they travel from the

illuminant to the camera pixel). (right top) Reflection coefficients computed using Fresnel equations. Courtesy [1] (left

bottom) Average of reflection coefficients w.r.t incident angle. Note that the curve suggests unique solution for single bounce

cases. (centre bottom) Sample objects used for reconstruction: A Fanta bottle and wine glasses. (right bottom) Simple

acquisition setup. A camera facing a monitor with transparent objects in between.

are given by Snell’s laws. Let θ1 be the angle between the

incoming light ray and the surface normal (cf. Figure 2).

The reflected light ray forms the opposite angle θ1 with the

normal whereas the angle θ2, formed by the refracted ray

and the normal, is given by:

sin θ2 = sin θ1
n1

n2
(1)

where n1 and n2 are the refractive indices of the media on

both sides of the surface (n2 for the inside, n1 for the out-

side, where the light source is located).

The radiometric aspects are as follows. Let I be the

irradiance of the light source in the considered direction.

The irradiance of the reflected ray (respectively refracted

ray), is given by [1]:

Ir =
sin2(θ1 − θ2)

2 sin2(θ1 + θ2)

(
1 +

cos2(θ1 + θ2)

cos2(θ1 − θ2)

)
I (2)

It = I − Ir (3)

where subscript r is used for “reflected” and t for “transmit-

ted” (refracted).

Note that even for unpolarized light sources, the reflected

and refracted light will in general be polarized. This is im-

portant when studying what happens in case of a second

“bounce”, i.e. if light gets reflected or refracted a second

time (see section 5.2).

4. Surface Reconstruction Approach
In this section, we combine the geometric and radiomet-

ric properties of a light-path, given by equations (1), (2) and

(3), in order to reconstruct the surface point P (Figure 1),

and thus the object. We use a fully calibrated setup, con-

sisting of a camera and a CRT monitor. The main result

of this section is to show that images acquired without any

displacement of the object, camera, or monitor, allow to re-

construct the object’s shape, and to provide a method for

doing so. This was not possible in [17].

4.1. Surface Depth Reconstruction: Reflection
Surface reconstruction is done for individual camera pix-

els, by estimating the depth of the surface along the lines of

sight of pixels. Regularization, such as surface smoothness,

may then be added in a subsequent optimization stage. In

the following, we first deal with the case of reflections, i.e.

the camera acquires images of the monitor, reflected in the

object to be reconstructed. Below, we handle the analogous

case of refraction.

Let us now consider a single pixel and the acquired in-

tensity Ir. The pixel’s line of sight is known by calibration.

Let d be the depth of the object along this line of sight, P
be the intersection point of the object surface and the line of

sight, and n̂ the surface normal at that point. Further, given

the matching (cf. Section 4.3), we know the point Q on the

monitor whose reflection is seen in the pixel.

Our goal is to compute the depth d. We do so by first

computing the incident angle θ1 between the surface normal
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and the incident light ray, after which d is trivial.

Since our setup is radiometrically calibrated, we equate

the radiance ratio r = Ir
I to the reflected and refracted an-

gles using equation 2

r =
sin2(θ1 − θ2)

2 sin2(θ1 + θ2)

(
1 +

cos2(θ1 + θ2)

cos2(θ1 − θ2)

)

Note that although we are considering the case of reflec-

tion here, the refracted angle θ2 nevertheless appears in the

equation, due to the object’s refractive property.

From the above equation, using (1) and elementary

trigonometric identities, one obtains the following con-

straint in θ1 (details omitted due to lack of space, ref [1]):

s
8
1

{
4n

4
12

(
2r(n

2
12 + 1)

2 − (n
2
12 − 1)

2
)}

+

s
6
1

{
4n

2
12

(
(n

6
12 − 3n

4
12 − n

2
12 + 1)− 2r(n

2
12 + 1)(n

4
12 + 4n

2
12 + 1)

)}

+s
4
1(2r(n

8
12 + 12n

6
12 + 30n

4
12 + 12n

2
12 + 1)

−r
2
(n

4
12 − 1)

2 − (n
8
12 − 4n

6
12 + 18n

4
12 − 4n

2
12 − 1))

+s
2
1(2r

2
(n

2
12 − 1)

2
(n

2
12 + 1)− 2r(n

6
12 + 14n

4
12 + 13n

2
12 + 2)

−2(5n
4
12 + 2n

2
12 − 1))

+
{
2r(5n

2
12 + 1)− r

2
(n

2
12 − 1)

2
+ 4n

2
12 − 1

}
= 0 (4)

Here, n12 = n1

n2
and s1 = sin θ1.

We observe that this is a quartic polynomial in sin2 θ1,

i.e. the computation of θ1 can be considered as being (close

to) a closed-form solution.

As mentioned above, given an estimate for θ1, the depth

d can be computed easily. Among the up to 8 possible real

solutions for θ1, at most 4 will correspond to a positive

depth, i.e. a surface point in front of the camera. Finding a

unique θ1 and thus depth, is made possible in most prac-

tical circumstances, as follows. First, the absolute value

of θ1 must be below 90◦. Second, θ1 is typically (much)

larger than 30◦, due to the practical setup which requires

that the camera have both a reflected and a direct view of

the monitor. Consider the graph of r as a function of θ1
for the refractive index of water (n2 = 1.33), in Figure

2 (here, both the camera and the monitor, are in air, i.e.

n1 = 1). One observes that for the values of r associated

with θ1 ∈ (30◦, 90◦), there is a unique θ1 producing these

values. To be precise, θ1 is unique up to sign, but only the

positive solution corresponds to a point in front of camera.

Let us summarize the above findings. From images ac-

quired with a completely static setup, we are able to com-

pute the depth of the transparent object, for each pixel in

which a reflection is visible. To do so, we need to know the

refractive index of the object’s material. A unique solution

for depth is possible in a large range of practical conditions.

In case these are not fulfilled, one may still use bounds on

the object depth to get a unique solution.

4.2. Surface Depth Reconstruction: Refraction

The case of refraction can be solved completely analo-

gously to that of reflection. We also obtain a quartic poly-

Figure 3: Comparison of simulations between our approach

and [17]. In LP-1, corresponding 3D points are normally

close to the object, which results in increased error in tri-

angulation and normal estimation. Note that in the same

scenario, we have much better normal information because

of radiometric information. While LP-2 is robust because

correspondences are far away, its highly impractical since

use of LCD’s for correspondence is problematic (because

of light fall-off, scattering etc.). Details in text.

nomial in sin2 θ1 and the rest of the discussion is as above.

The main difference is however that in order to observe the

refraction, the camera must be inside the same medium as

the object or, be located in a medium with the same refrac-

tive index as that of the object. For example, a camera look-

ing at a monitor immersed in water (or, more realistically,

put next to an aquarium’s bottom plate), might allow to re-

construct the water’s surface.
4.3. Acquisition

In principle, surface reconstruction is thus possible from

a single image. In practice however, we require dense

matches between the camera image and the CRT monitor,

which is why we acquire multiple images of a sequence of

Gray-coded patterns displayed on the monitor [2]. From

this, we determine dense matches, i.e. for each individual

camera pixel we determine the point on the monitor whose

reflection or refraction in the object, is seen by that pixel.

The camera-monitor setup is supposed to be fully cal-

ibrated, both geometrically and radiometrically: the cam-

era’s intrinsic parameters are known, as well as its position

and orientation relative to the monitor. Further, the moni-

tor screen is supposed to be a planar surface. Radiometric

calibration of both, camera and monitor, is known too.
5. Possible Extensions
5.1. Unknown Refractive Index

The above approach requires knowledge of the object’s

refractive index. If this is unknown, one needs additional

input to estimate it, for example an additional acquisition,

for a different position of the monitor. Then, for each pixel,
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we get two constraints of the form (4). The two constraints

correspond to two different angles θ1, for the two different

positions of the monitor. Knowing one of them, one can

compute the other. We thus have a total of three unknowns,

the refractive index (or, the ratio n12 of refractive indices of

object and air) and the two angles θ1, and three constraints:

the two constraints of form (4) and one that links rhe two

angles θ1 (ref Figure 2 [1]).

Two such acquisitions were used in the geometric ap-

proach of [17] for example. However, even when light is

only reflected off a transparent object surface, equations (4)

can be used to solve for relative refractive index n12 = n1

n2
,

even from a single pixel. Thus, we have extended the sce-

narios where reconstruction is possible to the case of re-
flection off the object surface, when refractive index is un-

known. Accurate estimation may be possible due to the re-

fractice index being “shared” by all pixels.

5.2. Double Bounce
Like in pure geometric approaches such as [17], we also

study the case of double bounces, e.g. if the camera ac-

quires an image of the monitor through a transparent object,

with refractions happening both at its front and back sides.

Unlike the “single bounce” case in section 4, the analysis

is considerably harder, because of the involvement of po-

larization. We derive a simple case in [1] to illustrate this

fact. While practical considerations make it hard to produce

decent results, we nevertheless argue about the theoretical

viability of a solution in this scenario.

Let us reconsider equations (2) and (3): they indicate

how much energy of the incoming light is reflected respec-

tively refracted. In addition however, for dielectric materi-

als, the reflected and refracted light is polarized, even if the

incoming light is not. It can be shown that polarization adds

a factor to the radiance ratio that is dependent on the angle
between the two planes of reflection/refraction encountered

along a single light-path. If this is properly taken into ac-

count, one may reconstruct the surface even after double

bounces and the following conditions arise.

Consider two cameras looking at a transparent object,

which refracts light from a known illuminant twice. Further

assume that for each camera, two 3D measurements were

made per light ray. This corresponds to the case < 2, 2, 2 >
as per the convention of [17]. In this case, radiance ratio

observations are made by each camera for each light-path.

It is possible to show that for every light-path, there exists

a 1D curve of incident angle pairs such that one angle oc-

curs at each “bounce” of a light-path and the radiance ratio

is satisfied [1]. Two cameras give us two such curves. In

addition to the geometric constraints expressed in [17] we

have one extra constraint per light ray, so it is now possible

to solve for the 3D structure of the transparent object given

known refractive index.

One reference point (M = 1)
K = 1 K = 2 K ≥ 3

N = 1
√

N = 2
√ ×∗

Two or more reference points (M ≥ 2)
K = 1 K = 2 K ≥ 3

N = 1
√ ×∗

N = 2
√ ×∗ √+

N = 3
√ ×∗ √ ×

N ≥ 4
√ ×∗ √ ×∗

Table 1: Tractable triangulation problems. Updated

from [17]. M is the number of known 3D points, N is the

number of cameras (views) and K is the number of bounces.

An ∗ symbol represents the fact that even in the case of only

reflection, the relative refractive index can be computed. +

indicates theoretical possibility.
5.3. Summary of Minimal Scenarios

Minimal scenarios for the reconstruction of transparent

objects that can be solved with the help of radiance mea-

surements, are summarized in Table 1. It is interesting to

note that transparent objects have lesser minimal require-

ments for reconstruction than mirror like objects.

In the next section, we present some practical aspects of

data acquisition.

6. Practical considerations
The above theory shows that the radiance of a final light

ray in a light-path contains information that could be used to

reconstruct the entire light-path. In this section we describe

important elements of our experiments to collect radiance

measurements for reconstruction. Our experiments consist

of three parts. 1) We use an illuminant with known geome-

try to emit unpolarized light in a desired set of directions. 2)

Light from the illuminant interacts with the transparent ob-

ject, and reflects / refracts off its surface towards the camera

after one bounce. 3) The camera then captures both the di-

rection and radiance of some of reflected / refracted light

rays, which is used for reconstruction.

We use Canon and Nikon DSLRs for our experiments.

Since we need to capture the position and radiance of an in-

dividual light ray, we adopt the pin-hole model for the cam-

era (smallest aperture and large focal length). This allows

each ray to be modeled as a thin cylinder. We arrived on an

acceptable range of focal lengths that have desired depth of

field and capture both the monitor and object in focus, by

trial and error. Finally, for each captured ray, we compute

the corresponding pixel on the monitor from which the ray

originated using standard methods [3].

Unpolarized illuminant In our experiments, we use

a flat CRT monitor (LCD montiors emit polarized light),

whose pose is computed with respect to an internally cali-

brated camera [18]. This is motivated by our need to mea-

sure by the illumination and the geometry of our illuminant.

We capture the light emitted by each pixel of the monitor in
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Figure 4: (Left top) Normal map of “Fanta bottle” sequence. (insets) Note the fine details captured as a result of radiance

ratios. (Centre top) Depth map. Blacker colors are closer to camera. (Right top) Two views of the 3D reconstruction, with

lighting to highlight shape variations. Phenomenon like scratches on the bottle, inhomegenous refractive index, violation

of single bounce through occlusion are some bad effects, but still reliable reconstructions are achieved. Note that since

camera is placed far from the object and monitor, large changes in depth cause small changes in angle. This explains some

of the “rough”-ness of the reconstruction. Note also that no smoothing or optimization is applied for this reconstruction.

(Left bottom) Normal map of “Wine glass” sequence. (Left-centre bottom) Depth map. (Right-centre bottom) Depth map

produced if no interreflection removal is performed. Notice the lack of depth variation in one of the glasses (compared using

insets with blue borders). Some frequency artifacts can be seen (red inset) due to interreflection removal. (Right bottom)

Depth difference between the two cases. Best viewed in color.

several directions in 3D, and fit a smooth model to this data

in order to accurately measure the variation in illumination

associated with a monitor pixel.

Interreflections A common problem with measuring il-

lumination reflected / refracted off specular transparent ob-

jects is interreflections. They not only corrupt the radiance

measurement, but also pose a problem to correspondence

estimation. In order to remove the effect of interreflections,

we use the algorithm of Nayar et al [15]. Instead of using

a projector to light the scene, we use the CRT monitor in-

stead. We project low frequency checkerboard patterns that

are shifted cyclically, and use it to compute the direct and

global components of the scene. Figure 5 shows a result for

one typical scenario.

Calibration We internally calibrate the camera in order

to compute the direction of the captured rays. We also ex-

ternally calibrate the monitor w.r.t the camera. We use the

monitor as the reference frame of the coordinate system,

which is beneficial in the case of multiple cameras. For

radiance measurement, we first extract an unprocessed im-

age from the RAW files using dcraw 1. We then remove

the global component of this image, and then extract direct

measurements. Note that only the direct and global compo-

nents shown in Figure 5 actually come from RAW files.

Correspondence Acquiring correspondence between

pixels on the monitor and pixels on the camera that corre-

spond to the same light-path becomes slightly cumbersome

when transparent objects are involved [2]. In order to over-

1Command : dcraw -r 1 1 1 1 -D 0 -H 1 -q 3 -4
-v for Canon cameras. We drop the -D option for Nikon cameras.
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come this, we first remove global components from images

used for correspondence by applying the theory of [15] to

these binary images, and then use a graph based approach

to enforce spatial smoothness in the image while extracting

correspondences.

7. Experiments and Results
In the previous sections, we showed that radiance ra-

tios could be used to reconstruct transparent surfaces, which

can help in reducing the number of measurements required

for reconstruction. We also listed some practical aspects

that are relevant to acquiring image data. In this section,

we show results of four experiments. The first experiment

demonstrates the robustness that radiometry brings to our

reconstruction approach. The second experiment demon-

strates the accuracy of 3D reconstruction using our method.

The third experiment shows our result on an extremely com-

plex scenario, and the four experiment shows a very detailed

reconstruction.

Experiment 1: Synthetic dataset Figure 3 shows vari-

ous results for single bounce reconstruction of a sample si-

nusoidal object when the 3D correspondence is noisy. We

compare with two light-path triangulation approaches, one

in which the 3D correspondences along a light-path are

close to each other and the object (LP-1), and one in which

they are far (LP-2). In both cases, noise is added to the

farthest 3D correspondence. While one case (LP-1) is sen-

sitive to noise, the second case (LP-2) is robust but imprac-

tical. Our approach however, gives a reliable normal map

even if the depth is slightly perturbed (compared to LP-2).

Note that noise percentage is calculated as ratio of distance

between noisy and ground truth data and distance of ground

truth and object. Other results w.r.t camera noise and re-

fractive index mismatch are present in the supplementary

materials.

Experiment 2: “Water Sequence” Figure 5 (Left col-

umn) shows some images acquired in order to reconstruct

the surface of water in a plastic bowl. The bowl is around

10 cms in diameter, and is placed about 2.5 meters from the

camera. This is a scene with a very simple 3D structure (a

plane) and given the smooth surface of the bowl, it also has

minimal (but not negligible) interreflections and caustics.

Because of the planar nature of the scene, we compute cor-

respondence by simply computing a homography between

the reflected image and the direct image of a photograph

displayed on the monitor. This homography, adjusted for

the internal calibration of the camera and the aspect ratio of

the pixels on the monitor, can now be used to compute the

normal of the plane [18].

After computing the direct image, we use the homogra-

phy to compute the ratio of directly observed and reflected

radiances. Finally, we hypothesize and test individual pix-

els for various values of depth, and record the value that

best fits the radiance ratio. Figure 5 shows our result (the

ripples in the reconstruction are just quantized depth val-

ues). An alternate result was one obtained by using the al-

gorithm of [18]. Comparison of the results gives us a mean

squared error of around 0.1 cms (we omit correspondence

errors while computing this measure), which shows the ac-

curacy of our reconstruction.

Experiment 3: “Wine Glass Sequence” This sequence

is very challenging for approaches that use projected texture

for reconstruction because of the large interreflections and

caustics present in the scene. Note how global compoments

of the image are present even in places where there is no

direct light (Figure 5, red square). For approaches that typ-

ically only use geometric methods [17, 13], the subsurface

scattering might throw off correspondence measurements.

This can heavily influence reconstruction accuracy. On the

other hand, robust measurement of the position and direc-

tion of light incident on the glasses from the monitor re-

quires a large set of images to be captured while moving the

monitor over, say, an optical bench. In our approach, how-

ever, both these errors are avoided because we use a single
measurement per pixel for reconstruction, and use on direct

components of the images we capture. Again, like in the

case of the “Water Sequence” we hypothesize various depth

values along each back-projected pixel, and test its validity

using computed radiance ratios. Figure 4 shows depth and

normal maps computed using our approach. Notice again

how we obtain smooth maps even though no smoothness

constraints are imposed on the results.

Experiment 4: “Fanta Bottle Sequence” This sequence

highlights the ability of our approach to capture details of a

surface. The scene captured consists of a Fanta bottle filled

with water. The absence of any large interreflections in this

scene results in a very detailed reconstruction as shown in

Figure 4. Note that optimizing depth and normal simultane-

ously would serve to remove the artefacts seen in the figure,

especially enforcing the depth-normal consistency (differ-

entiation of depth gives normal).

8. Discussion and Conclusion
Reconstruction of transparent objects remains a chal-

lenging problem because of the lack of cues that are nor-

mally available for other objects. In this paper, we showed

the existence of an approach that combines two of the more

widely available cues, namely geometric and radiometric

cues. We showed how this leads to simplified acquisition,

decently robust algorithm, new minimal solutions, and pre-

sented challenging scenarios where our approach yielded

accurate reconstructions. Other applications of our ap-

proach are in verifying validity of light transport matrices,

radiometric calibration etc. We hope to investigate other po-

tential applications that might be useful to the community.
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Figure 5: (Left column) Two of 25 images used to compute the direct and global images [15] to remove the effect of

interreflections and caustics on radiance measurement. (Left-centre clumn) Difference between the “direct” component and

an image taken (top image) with a white pattern shown on the monitor. Bottom image is the difference. (Right-centre column)

Direct (top) and global (bottom) components (RAW images) of Water sequence. Interreflections are simple. (Right column)

Correspondence (Y-coordinates) using Gray-codes (top), depthmap (middle) and reconstruction with shading (bottom).
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Sharma, Amaël Delaunoy, Antoine Letouzey, Simone Gas-

parini and Avinash Kumar for several discussions and com-

ments.

References
[1] Photo-Light-Path Triangulation: Supplementary Material.

http://www.di.ens.fr/ chari/webpage/Research/phototechreport.
3, 4, 5

[2] D.G. Aliaga and Y. Xu. An adaptive correspondence al-

gorithm for modeling scenes with strong interreflections.

IEEE Transactions on Visualization and Computer Graph-
ics, 15:465–480, 2009. 4, 6

[3] D.G. Aliaga and Y. Xu. A self-calibrating method for photo-

geometric acquisition of 3D objects. IEEE–PAMI, 32:747–

754, 2009. 5

[4] M. Ben-Ezra and S. Nayar. What Does Motion Reveal about

Transparency? ICCV, 2:1025–1032, 2003. 2

[5] T. Chen, M. Goesele, and H.-P. Seidel. Mesostructure from

specularity. CVPR, 2:1825–1832, 2006. 1

[6] A. Efros, V. Isler, J. Shi, and M. Visontai. Seeing through

water. NIPS, 2004. 2

[7] E. Hecht. Optics - 4th edition. Addison Wesley, 2002.

[8] M.B. Hullin, M. Fuchs, I. Ihrke, H.-P. Seidel, and H.P.A.

Lensch. Fluorescent immersion range scanning. SIG-
GRAPH, 2008. 1, 2

[9] C.P. Huynh, A. Robles-Kelly, and E.R. Hancock. Shape and

refractive index recovery from single-view polarisation im-

ages. CVPR, 1229–1236, 2010. 2

[10] I. Ihrke, K. N. Kutulakos, Hendrik P. A. Lensch, Mar-

cus. A. Magnor, Wolfgang Heidrich. Transparent and Specu-

lar Object Reconsruction. Computer Graphics Forum, 2400–

2426, 2010. 1

[11] D. Miyazaki and K. Ikeuchi. Shape estimation of transpar-

ent objects by using inverse polarization ray tracing. IEEE–
PAMI, 29(11):2018–2030, 2007. 1, 2

[12] D. Miyazaki, M. Kagesawa, and K. Ikeuchi. Transparent sur-

face modeling by using a pair of polarization images. IEEE–
PAMI, 26(1):73–82, 2004. 1

[13] N. Morris and K. Kutulakos. Reconstructing the surface of

inhomogeneous transparent scenes by scatter-trace photog-

raphy. ICCV, 2007. 1, 2, 7

[14] N. Morris and K. Kutulakos. Dynamic refraction stereo.

IEEE–PAMI, 33(8):1518–1531, 2011. 1

[15] S.K. Nayar, G. Krishnan, M.D. Grossberg, and R. Raskar.

Fast separation of direct and global components of a scene

using high frequency illumination. SIGGRAPH, 2006. 6, 7,

8

[16] M. Oren and S.K. Nayar. A theory of specular surface ge-

ometry. IJCV, 24(2):105–124, 1997.

[17] E. Steger and K. Kutulakos. A theory of refractive and specu-

lar 3D shape by light-path triangulation. IJCV, 76(1):13–29,

2008. 1, 2, 3, 4, 5, 7

[18] P. Sturm. Algorithms for plane based pose estimation.

CVPR, 706–711, 2000. 5, 7

[19] Y. Tian and S. Narasimhan. Seeing through water: Image

restoration using model-based tracking. ICCV, 2303–2310,

2009. 2

[20] S.-K. Yeung, T.-P. Wu, C.-K. Tang, T.F. Chan, and S. Os-

her. Adequate reconstruction of transparent objects on a

shoestring budget. CVPR, 2011. 1, 2

[21] G. Wetzstein, G. Roodnick, W. Heidrich and R. Raskar. Re-

fractive Shape from Light Field Distortion. ICCV, 2011. 2

144314431445


