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Abstract  

We propose in this article an extension of the piecewise linear car-following model to multi-

anticipative driving. As in the one-car-anticipative model, the stability and the stationary 

regimes are characterized thanks to a variational formulation of the car-dynamics. We study the 

homogeneous driving case. We show that in term of the stationary regime, the multi-

anticipative model guarantees the same macroscopic behavior as for the one-car-anticipative 

one. Nevertheless, in the transient traffic, the variance in car-velocities and accelerations is 

mitigated by the multi-anticipative driving, and the car-trajectories are smoothed. A parameter 

identification of the model is made basing on NGSIM data and using a piecewise linear 

regression approach.  

Keywords: Multi-anticipative traffic, car-following.  
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INTRODUCTION 

We present a multi-anticipative car-following traffic model, where drivers control their velocities 

by taking into account the positions and the velocities of many cars ahead. In basic car-following 

models [3, 6, 7, 10], the car dynamics are described by stimulus- response equations that express 

the control process of drivers. Each driver accelerates or decelerates depending on his speed, and 

on the relative speed and the inter-vehicular distance with respect to the driver of the car ahead.  

Multi-anticipative car-following models are often extensions of existing one car anticipative 

models. Since 1968, Bexelius [2] extended the model of Chandler et al. [3] to the multi-

anticipative case. Lenz et al. [12] extended the model of Bando et al. [1]. More recently, 

Hoogendoorn et al. [11] have extended the model of Helly [8, 9].  

The model we present here is an extension of the piecewise linear car following model [4, 5]. 

It is a first-order discrete-time model where the car-velocities are given in function of the inter-

vehicular distances. We show here that the variational formulation made in [4, 5] holds also for 

the multi-anticipative extension we propose in this article. That is to say that the car-dynamics are 

again interpreted as dynamic programming equations associated to stochastic optimal control 

problems of Markov chains, as in [4, 5]. Thanks to that formulation, we are able to characterize 

the stability of the car-dynamics and to calculate the stationary regimes.  

In the transient traffic, some qualitative results are obtained from our model. First, we 

simulated the car dynamics on a one lane-road of about 10,000 meters, where we imposed the 

trajectories of a given number of leaders, and simulated the trajectories of all the followers, basing 

on our model, and varying the number of leaders taken into account in anticipation. The effect of 

our anticipation modeling on the transient traffic is thus shown. As expected, we observed that, as 

the number of leaders taken into account in anticipation, increases, the car trajectories are 

smoothed, the distant followers are slowed down in unstable traffic phases, but they retrieve their 

non-anticipative trajectories once the traffic is stabilized.  

Second, we proposed a parameter identification approach for our multi-anticipative model, 

and showed, in a basic example, how this method is applied. We rely on NGSIM data of vehicle 

trajectories on a segment of U.S. highway 101. The purpose of this part is rather to present the 

process of parameter identification, since the data used here are not exhaustive to draw 

conclusions, and the model is likely to be improved. However, some interesting observations are 

made on the data sample considered. For example, we observed that the scatter plot for space 

headway and average velocities seems to be easy to approximate by a piecewise linear curve in 

the case where the space headway is computed with respect to two leaders, compared to the case 

where the space headway is computed with respect to only one leader.  

In the remainder of this introduction, we give a short review on the car-following modeling, 

we fix notations, and we introduce the next sections. We use the notations 𝑡 for time (discrete or 

continuous), 𝑥 for distance (car positions), and 𝑛 for the number of cars. The cars are numbered 

such that the first car (car number 1) is the leader. We consider the variables  

 𝑥(𝑛, 𝑡): the cumulative traveled distance of car 𝑛, from time zero to time 𝑡.  

 𝑦(𝑛, 𝑡): the inter-vehicular distance 𝑥 𝑛 − 1, 𝑡 − 𝑥 𝑛, 𝑡 .  

 𝑣(𝑛, 𝑡): the velocity of car 𝑛 at time 𝑡.  
 

Car-following models are often based on a behavioral law 𝑉𝑒  (equilibrium speed spacing 

function), that gives, at the equilibrium traffic, the velocity 𝑣 of a car 𝑛 as a function of the inter-

vehicular distance 𝑦 between cars 𝑛 and 𝑛 − 1. It is then assumed that the law 𝑉𝑒  also holds on the 

transient traffic. A kind of general form of first-order car-following models can then be derived as 

done for the macroscopic first-order modeling (LWR models [13,14]).  
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 𝑣  𝑛, 𝑡 = 𝑉𝑒
′ 𝑦 𝑛, 𝑡  ∆𝑣 𝑛, 𝑡 , (1)  

where ∆𝑣 𝑛, 𝑡 = 𝑣 𝑛 − 1, 𝑡 − 𝑣 𝑛, 𝑡 .  

The simplest form for the equilibrium speed-spacing function 𝑉𝑒 𝑦  is the linear one 𝑉𝑒 𝑦 =

𝛼𝑦 + 𝛽, where 𝛼 and 𝛽 are parameters. In this is case, the linear car-following model [3, 10] is 

obtained:  

 𝑣 𝑛, 𝑡 = 𝛼𝑦 𝑛, 𝑡 + 𝛽, (2)  

The model (2) is, of course, not satisfactory. Another well known car-following model is due to 

Gazis, Herman, and Rothery [6].  

 𝑣  𝑛, 𝑡 + 𝑇 =  𝑎 𝑣(𝑛, 𝑡 + 𝑇)𝑝  
𝑣 𝑛 − 1, 𝑡 − 𝑣 𝑛, 𝑡 

 𝑥 𝑛 − 1, 𝑡  − 𝑥 𝑛, 𝑡  
𝑙  (3)  

where a reaction time 𝑇 is considered, and where 𝑝 and 𝑙 are parameters. For example, if 𝑝 = 1 

and 𝑙 = 2, the model can simply be obtained by taking 𝑉𝑒 𝑦 = 𝑏 exp−𝑎/𝑦 in (1), satisfying 

𝑉𝑒
′ 𝑦 =  𝑎 𝑉𝑒(𝑦)/𝑦2.  

Other car-following models that do not necessarily match the form (1) exist, such as the 

models of Bando et al. [1] (optimal velocity model), Helly [8, 9], Treiber et al. [15] (intelligent 

driver model), etc. Bando et al. [1] proposed the optimal velocity model  

 𝑣  𝑛, 𝑡 + 𝑇 =  𝜆(𝑉𝑒 𝑦 𝑛, 𝑡  −  𝑣 𝑛, 𝑡 + 𝑇 ) (4)  

This model has been much studied recently for being easily analyzed with mathematical tools.  

Helly [8, 9] considered the linear model  

 𝑣  𝑛, 𝑡 + 𝑇 =  𝛼 𝛥𝑣 𝑛, 𝑡 + 𝛽 𝑦 𝑛, 𝑡  −  𝑆𝑛  (5)  

where 𝛼 and 𝛽 are parameters, and where 𝑆𝑛  is the desired distance which can be linear  𝑆𝑛 =

𝑆0 + 𝑇𝑣𝑛 , with 𝑆0 the minimum gross distance between two cars. 

We base here on the piecewise linear car-following model proposed in [5], where the 

behavioral law 𝑉𝑒  is approximated with a (min-max)-piecewise linear curve  

 𝑉𝑒 𝑦 =  min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼𝑢𝑤 𝑦 + 𝛽𝑢𝑤   (6)  

and where a one-car-anticipative discrete-time car-dynamics has been obtained  

 𝑥 𝑛, 𝑡 + 1 = 𝑥 𝑛, 𝑡 + min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 {𝛼𝑢𝑤  𝑥 𝑛 − 1, 𝑡 − 𝑥 𝑛, 𝑡  + 𝛽𝑢𝑤 } (7)  

where 𝛼𝑢𝑤  and 𝛽𝑢𝑤 , for (𝑢, 𝑤) ∈ 𝑈 × 𝑊, are parameters, and 𝑈 and 𝑊 are two finite sets of 

indices. The system (7) is also written, for the traffic of 𝜈 cars 1,2,… , 𝜈 as follows. 

 𝑥𝑛 𝑡 + 1 = min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 { 𝑀𝑢𝑤 𝑥 𝑡 ]𝑛 + 𝑐𝑛
𝑢𝑤  ,   1 ≤ 𝑛 ≤  𝜈 (8)  

where 𝑀𝑢𝑤  

and 𝑐𝑢𝑤 , for (𝑢, 𝑤) ∈ 𝑈 × 𝑊, are matrices and column-vectors respectively. 
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 Two cases have been distinguished in [5]. 

 The 𝜈 cars move on a ring road. In this case, 𝑀𝑢𝑤  and 𝑐𝑢𝑤  are given by 

 

𝑀𝑢𝑤 =   

1 − 𝛼𝑢𝑤 0 ⋯ 𝛼𝑢𝑤

𝛼𝑢𝑤 1 − 𝛼𝑢𝑤  0
⋮ ⋱ ⋱ ⋮
0 0 𝛼𝑢𝑤 1 − 𝛼𝑢𝑤

  

 

and 

𝑐𝑢𝑤 =   
𝛼𝑢𝑤 𝜈

𝑑
+  𝛽𝑢𝑤  , 𝛽𝑢𝑤 , … , 𝛽𝑢𝑤  

 

𝑡

 

 

The dynamics (8) is stable under the condition 𝛼𝑢𝑤 ∊ [0,1], and the behavior law is 

realized at the stationary regime 

 𝑣 = min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 {𝛼𝑢𝑤 𝑦  + 𝛽𝑢𝑤 } (9)  

where 𝑣 denotes the asymptotic car-velocity (the same for all cars), and 𝑦 denotes the 

average inter-vehicular distance in the ring road ( 𝑦 = 1/𝑑).  

 The 𝜈 cars move on an “open” road, where the velocity 𝑣1(𝑡) of the first car (the leader 

one) varies over time but is stationary. In this case, 𝑀𝑢𝑤  and 𝑐𝑢𝑤  are given 

 by  

𝑀𝑢𝑤 =   

1 0 ⋯ 0
𝛼𝑢𝑤 1 − 𝛼𝑢𝑤  0
⋮ ⋱ ⋱ ⋮
0 0 𝛼𝑢𝑤 1 − 𝛼𝑢𝑤

  

 

and  

𝑐𝑢𝑤 (𝑡) =   𝑣1(𝑡) , 𝛽𝑢𝑤 , … , 𝛽𝑢𝑤   
𝑡  

 

Again, the dynamics (8) is stable under the condition 𝛼𝑢𝑤 ∊ [0,1] and the inverse  

behavior law at the stationary regime is obtained as follows. 

 𝑦 = max
𝑢 ∊𝑈

min
𝑤 ∊𝑊

 
𝑣1 − 𝛽𝑢𝑤

𝛼𝑢𝑤

 (10)  

where 𝑣1  denotes the asymptotic velocity of the first car.  

The dynamics (8) have been interpreted in [5], under the assumption 𝛼𝑢𝑤 ∈  0,1 , ∀ (𝑢, 𝑤) ∈

𝑈 × 𝑊, as a dynamic programming equation associated to a stochastic game on a controlled 

Markov chain; see [5] for more details.  

 

1 ANTICIPATION MODELLING 

We present in this section an extension of the model (7) to multi-anticipative traffic, where each 

car chooses its velocity depending on the inter-vehicular distance with respect to a given number 

m of cars ahead the considered car (multi-leaders). In order to situate our model with respect to 

the existing multi-anticipative models, and to explain the extension we do, let us first give a short 

review on multi-anticipative car-following models. 

A straightforward multi-leader extension of the model of Chandler et al. [3] is the Bexelius 

model [2]  
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 𝑣  𝑛, 𝑡 + 𝑇 =  𝛼𝑗∆𝑣
 𝑗   𝑛, 𝑡 

𝑚

𝑗=1

 (11)  

where 𝑣  denotes the acceleration, 𝛼𝑗 , 𝑗 = 1,2,… ,𝑚 are sensitivity parameters with respect to the 

𝑗th
 

car ahead, and where ∆𝑣 𝑗   𝑛, 𝑡 = 𝑣 𝑛 − 𝑗, 𝑡 − 𝑣(𝑛, 𝑡). This model is very simple but 

permits some mathematical analysis. 

Hoogendoorn et al. [11] have noted the non convenience of the additive form of Bexelius 

model (11), and proposed the modification  

 𝑣  𝑛, 𝑡 + 𝑇 = min
1≤𝑗≤𝑚

𝛼𝑗∆𝑣
 𝑗   𝑛, 𝑡  (12)  

Hoogendoorn et al. [11] have also proposed a multi-anticipative generalization for the Helly 

model (5)  

 𝑣  𝑛, 𝑡 + 𝑇 =  𝛼𝑗∆𝑣
 𝑗   𝑛, 𝑡 +  𝛽𝑗 [∆𝑥 𝑗   𝑛, 𝑡 − 𝑆𝑗 (𝑛)]

𝑚2

𝑗=1

𝑚1

𝑗=1

 (13)  

where ∆𝑥 𝑗   𝑛, 𝑡 = 𝑥 𝑛 − 𝑗, 𝑡 − 𝑥(𝑛, 𝑡). Lenz et al. [12] have generalized the Bando  

model (4) as follows.  

 𝑣  𝑛, 𝑡 =  𝜅𝑗   𝑉𝑒  
∆𝑥 𝑗   𝑛, 𝑡 

𝑗
 − 𝑣 𝑛, 𝑡  

𝑚

𝑗=1

 (14)  

where 𝜅𝑗  expresses the sensitivity with respect to the 𝑗th leader. 

We propose here a multi-leader extension for the piecewise linear car-following model (7). 

We use a minimum form as in (12) (rather than an additive form as in (11)). Moreover, we use a 

uniform form for the sensitivity with respect to the inter-vehicular distance as in (14) (the inter-

vehicular distance with respect to the 𝑗th leader is divided by 𝑗). We consider the dynamics: 

 𝑥𝑛 𝑡 + 1 = 𝑥𝑛 𝑡 + min
1≤𝑗≤𝑚

(1 + 𝜆)𝑗−1 min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼𝑢𝑤  
𝑥𝑛−𝑗  𝑡 − 𝑥𝑛 𝑡 

𝑗
 + 𝛽𝑢𝑤   (15)  

where 𝑚 is the number of leaders taken into account in anticipation, and 𝜆 ≥ 0 is a discount 

parameter with respect to the leader index. The dynamics (15) can be written simply  

 𝑥𝑛 𝑡 + 1 = 𝑥𝑛 𝑡 + min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼𝑗𝑢𝑤  
𝑥𝑛−𝑗  𝑡 − 𝑥𝑛 𝑡 

𝑗
 + 𝛽𝑗𝑢𝑤   (16)  

where ∀ 𝑢, 𝑤 ∈ 𝑈 × 𝑊, (𝛼𝑗𝑢𝑤 )𝑗 , 1 ≤ 𝑗 ≤ 𝑚 are increasing non negative sequences, and 

(𝛽𝑗𝑢𝑤 )𝑗 , 1 ≤ 𝑗 ≤ 𝑚 are increasing sequences. 

The interpretation of the minimum operator with respect to the 𝑗th leader in (16) is that a car 𝑛 

maximizes its velocity under the constraints  

 
𝑥𝑛 𝑡 + 1 − 𝑥𝑛 𝑡 ≤ min

𝑢 ∊𝑈
max
𝑤 ∊𝑊

  𝛼𝑗𝑢𝑤  
𝑥𝑛−𝑗  𝑡 − 𝑥𝑛 𝑡 

𝑗
 + 𝛽𝑗𝑢𝑤  ,     1 ≤ 𝑗 ≤ 𝑚. 
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One consequence of anticipation in driving is that the information that a car 𝑖, for 𝑖 = 𝑛 −

1, 𝑛 − 2,… , max 1, 𝑛 − 𝑚 , decelerates at time 𝑡, is immediately transmitted to the car 𝑛 that 

reacts at time 𝑡 + 1,  instead of 𝑡 + 𝑛 − 𝑖. The discounting with respect to the leader indices, made 

by introducing the multiplicative term (1 + 𝜆)𝑗−1, permits to favor closer leaders over distant 

ones. If 𝜆 = 0, then the cars respond equally to the stimulus of all the leaders 𝑗, with 𝑗 =

1,2,… ,𝑚.  

In the following section (section 2), we study the stability of the car dynamics (15), and 

characterize the existence of stationary regimes. Two cases are distinguished: traffic on a ring 

road, and traffic on an open road. In both cases, we give the asymptotic car positions when 

stationary regimes exist. The transient traffic for the car dynamics (15) is treated in section 3. 

 

2 STABILITY ANALYSIS AND STATIONARY REGIMES 

As in [4, 5], we consider 𝜈 cars moving on a 1-lane road without passing. We first study the case 

where the cars move on a ring road, and then explore the “open” road case.  

2.1 Traffic on a ring road  

The cars being moving on a ring road, the indices 𝑛 − 𝑗, in the dynamics (15), are cyclic in the set 

{1,2, … , 𝜈}. The idea here is that the two minimum operators in (15) can be summarized in only 

one minimum operator, and then retrieve the one car-anticipative form for the dynamics. Let us 

denote by 𝑍 the set of all pairs of indices (𝑗, 𝑢), with 1 ≤ 𝑗 ≤ 𝑚 and 𝑢 ∈ 𝑈 

𝑍 =  𝑧 =  𝑗, 𝑢 , 1 ≤ 𝑗 ≤ 𝑚, 𝑢 ∈ 𝑈 . 
The dynamics (15) is then written  

 𝑥𝑛 𝑡 + 1 = min
𝑧∈𝑍

max
𝑤∊𝑊

 { 𝑀𝑧𝑤𝑥 𝑡 ]𝑛 + 𝑐𝑛
𝑧𝑤  ,   1 ≤ 𝑛 ≤  𝜈 (17)  

where the matrices 𝑀𝑧𝑤 = 𝑀𝑗𝑢𝑤  and the column vectors 𝑐𝑧𝑤 = 𝑐𝑗𝑢𝑤  are given as follows.  

 

𝑀𝑗𝑢𝑤 =  

 

 
 
 
 

1 − 𝛼𝑗𝑢𝑤 /𝑗 0 ⋯ 𝛼𝑗𝑢𝑤 /𝑗 0 0

0 1 − 𝛼𝑗𝑢𝑤 /𝑗 ⋱ ⋱ 𝛼𝑗𝑢𝑤 /𝑗 0

⋮ ⋱ ⋱ ⋱ ⋱ 𝛼𝑗𝑢𝑤 /𝑗

𝛼𝑗𝑢𝑤 /𝑗 ⋱ ⋱ ⋱ ⋱ ⋮

0 𝛼𝑗𝑢𝑤 /𝑗 ⋱ ⋱ ⋱ 0

0 0 𝛼𝑗𝑢𝑤 /𝑗 … 0 1 − 𝛼𝑗𝑢𝑤 /𝑗 

 
 
 
 

 

and 

𝑐𝑗𝑢𝑤 =   
(𝛼𝑗𝑢𝑤 /𝑗)𝜈

𝑑
+  𝛽𝑗𝑢𝑤  , 𝛽𝑗𝑢𝑤 , … , 𝛽𝑗𝑢𝑤  

 

𝑡

. 

The dynamics (18) have the same form as (8). It is then interpreted as a dynamic programming 

equation associated to a stochastic game on a controlled Markov chain. The stability is guaranteed 

under the condition 𝛼𝑗𝑢𝑤 ∈  0,1 , ∀ 𝑗, 𝑢, 𝑤 ∈ {1,2,… ,𝑚} × 𝑈 × 𝑊; see [4,5] for more details. 

The stationary regime is characterized by the additive eigenvalue problem  

 𝑣 + 𝑥𝑛 = min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 { 𝑀𝑗𝑢𝑤 𝑥]𝑛 + 𝑐𝑛
𝑗𝑢𝑤

 ,   1 ≤ 𝑛 ≤  𝜈 (18)  

where 𝑣 is the asymptotic car-velocity, the same for all cars, the vector 𝑥 is the asymptotic car-

positions, given up to an additive constant. The following result gives a solution for the system 

(19).  
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Theorem 1. If ∀  𝑗, 𝑢, 𝑤 ∈  1,2, … ,𝑚 × 𝑈 × 𝑊, 𝛼𝑗𝑢𝑤 ∈ [0,1], then the system (19) admits a 

solution (𝑣, 𝑥) given by:  

𝑣 = min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼1𝑢𝑤𝑦  + 𝛽1𝑢𝑤  ,

𝑥 =   𝜈 − 1 𝑦,  𝜈 − 2 𝑦,… , 𝑦, 0 .
 

𝑡  

where 𝑦 = 1/𝑑 is the average inter-vehicular distance in the ring road. 

Proof. Following the same approach as in [4, 5], we obtain the following solution for the system 

(19).  

𝑣 = min
𝑧 ∊𝑍

max
𝑤 ∊𝑊

  𝛼𝑧𝑤𝑦  +  𝛽𝑧𝑤  =  min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 {𝛼𝑗𝑢𝑤 𝑦  +  𝛽𝑗𝑢𝑤 } ,

𝑥 =   𝜈 − 1 𝑦,  𝜈 − 2 𝑦,… , 𝑦, 0 .
 

𝑡  

Then since (𝛼𝑗𝑢𝑤 )𝑗  and (𝛽𝑗𝑢𝑤 )𝑗  are increasing sequences (with respect to 𝑗) and 𝑦 ≥ 0, we have 

min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 {𝛼𝑗𝑢𝑤 𝑦  +  𝛽𝑗𝑢𝑤 } =  min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼1𝑢𝑤𝑦  +  𝛽1𝑢𝑤  . 

■ 

A particular case is important here, which is the non discounting case where 𝜆 = 0 in (15). In this 

case, the matrices 𝑀𝑗𝑢𝑤  

and the vectors 𝑐𝑗𝑢𝑤  still depend on 𝑗, whilst the parameters 𝛼𝑗𝑢𝑤  and 

𝛽𝑗𝑢𝑤  are independent of 𝑗 for all 𝑗 ∈ {1,2, … ,𝑚}. Thus the average car speed 𝑣 coincides with the 

average car-speed obtained in the one car anticipative model (7):  

𝑣 = min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼𝑢𝑤𝑦  +  𝛽𝑢𝑤  , 

where 𝛼𝑢𝑤 = 𝛼𝑗𝑢𝑤  and 𝛽𝑢𝑤 = 𝛽𝑗𝑢𝑤 , ∀ 𝑗 ∈ {1,2, … ,𝑚}. 

 

2.2 Traffic on an open road 

We suppose here given the speed 𝑣1(𝑡) of the first car over time, since the cars move on an open 

road. In addition, in order to analyze the stability and the stationary regime of the car dynamics, 

we assume that the velocity of the first car approaches a constant value 𝑣1. That is to say that 

lim𝑡→+∞ 𝑣1(𝑡) = 𝑣1. Moreover, the number of anticipation cars for the first 𝑚 cars cannot be 𝑚 (it 

is less than 𝑚). More precisely, the number of anticipation cars for a car numbered 𝑛 is min 𝑛 −

1,𝑚.  
 

 The dynamics (15) is written here  

 𝑥𝑛(𝑡 + 1) = min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 { 𝑀𝑗𝑢𝑤 𝑥 𝑡 ]𝑛 + 𝑐𝑛
𝑗𝑢𝑤

 ,   1 ≤ 𝑛 ≤  𝜈 (19)  

where the matrices 𝑀𝑗𝑢𝑤  and the vectors 𝑐𝑗𝑢𝑤  
 

are given by  

 

𝑀𝑗𝑢𝑤 :

 

 
 
 
 
 
 

1 0 0 ⋯   ⋯ 0
0 1 0 0 ⋯   0
⋮  ⋱     ⋮
0 0 ⋯ 1 0 0 ⋯ 0

𝛼𝑗𝑢𝑤 /𝑗 0 ⋯ 0 1 − 𝛼𝑗𝑢𝑤 /𝑗 ⋯ 0  

0 𝛼𝑗𝑢𝑤 /𝑗 0 ⋯ 0 1 − 𝛼𝑗𝑢𝑤 /𝑗  ⋮

⋮ 0 ⋱ 0 ⋯ ⋱ 0  
0 ⋯ 0 𝛼𝑗𝑢𝑤 /𝑗 0 ⋯ 0 1 − 𝛼𝑗𝑢𝑤 /𝑗 

 
 
 
 
 
 

1
2
⋮
𝑗

𝑗 + 1
𝑗 + 2
⋮
𝜈
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𝑐𝑗𝑢𝑤 =

 

 
 
 
 
 
 

𝑣1(𝑡)
+∞
⋮

+∞
𝛽𝑗𝑢𝑤
𝛽𝑗𝑢𝑤
⋮

𝛽𝑗𝑢𝑤  

 
 
 
 
 
 

1
2
⋮
𝑗

𝑗 + 1
𝑗 + 2
⋮
𝜈

 

 

The entries (𝑀𝑗𝑢𝑤 )𝑖𝑘  and (𝑐𝑗𝑢𝑤 )𝑖 for 𝑖, 𝑘 ≤ 𝑗 do not play any role in the car dynamics since 

(𝑐𝑗𝑢𝑤 )𝑖 = +∞, ∀𝑖 ≤ 𝑗. Those entries correspond to anticipation of a car 𝑖 with respect to its 𝑗th 

leader that does not exist since 𝑖 ≤ 𝑗.  
 

 We assume that the velocity 𝑣1(𝑡) of the first car reaches a fixed value 𝑣1  at the stationary 

regime. The stationary regime is thus characterized as follows. 

 𝑣 + 𝑥𝑛 = min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 { 𝑀𝑗𝑢𝑤 𝑥]𝑛 + 𝑐𝑛
𝑗𝑢𝑤

 ,   1 ≤ 𝑛 ≤  𝜈 (20)  

The following result gives a solution for the system (21).  

Theorem 2. For all 𝑦 ∈ 𝑅 satisfying min𝑢∈𝑈 max𝑤∈𝑊 𝛼1𝑢𝑤 𝑦 + 𝛽1𝑢𝑤  = 𝑣1, the couple (𝑣, 𝑥) is 

a solution for the system (21), where 𝑣 = 𝑣1 and 𝑥 is given up to an additive constant by  

 𝑥 =   𝜈 − 1 𝑦,  𝜈 − 2 𝑦, … , 𝑦, 0 .
 

𝑡
 (21)  

Proof. The proof is similar to that of Theorem 3 of [5]. Let 𝑦 ∈ 𝑅 satisfying  

min
𝑢∈𝑈

max
𝑤∈𝑊

 𝛼1𝑢𝑤𝑦 + 𝛽1𝑢𝑤  = 𝑣1. 

Let 𝑥 be given by (22). Then ∀𝑛 ∈ {1,2,… , 𝜈} we have  

min
1≤𝑗≤𝑚

min
𝑢∈𝑈

max
𝑤∈𝑊

[𝑀𝑗𝑢𝑤 𝑥]𝑛 + 𝑐𝑛
𝑗𝑢𝑤

= min
1≤𝑗≤𝑚

min
𝑢∈𝑈

max
𝑤∈𝑊

 𝛼𝑗𝑢𝑤 𝑦 + 𝛽𝑗𝑢𝑤  + 𝑥𝑛

 = min
𝑢∈𝑈

max
𝑤∈𝑊

 𝛼1𝑢𝑤𝑦 + 𝛽1𝑢𝑤  + 𝑥𝑛

 = 𝑣1 + 𝑥𝑛 .

 

Moreover, the optimal strategy at the stationary regime is  𝑗, 𝑢, 𝑤 = (1, 𝑢, 𝑤) such that 𝛼1𝑢 𝑤𝑦 +
𝛽1𝑢 𝑤 = 𝑣1. Indeed  

[𝑀1𝑢 𝑤𝑥]
𝑛

+ 𝑐𝑛
1𝑢 𝑤 =   𝛼1𝑢 𝑤 𝑦 + 𝛽

1𝑢 𝑤
 + 𝑥𝑛

 =  min
𝑢∈𝑈

max
𝑤∈𝑊

 𝛼1𝑢𝑤𝑦 + 𝛽
1𝑢𝑤

 + 𝑥𝑛

 = min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

  𝛼𝑗𝑢𝑤𝑦 + 𝛽
𝑗𝑢𝑤

 + 𝑥𝑛

 =  min
1≤𝑗≤𝑚

min
𝑢 ∊𝑈

max
𝑤 ∊𝑊

 [𝑀𝑗𝑢𝑤𝑥]
𝑛

+ 𝑐𝑛
𝑗𝑢𝑤

.

 

■ 

Theorem 2 gives the car-velocity at the stationary regime with one stationary configuration of 

cars (uniform configuration) and gives the optimal strategy for drivers at that regime. An 

important remark here is that the car-velocity obtained is the same as the one obtained for the one 

car anticipative model (7). Moreover, the “optimal strategy” of driving at the stationary regime in 
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the case of multi-anticipative model is to drive by taking into account only one leader:  𝑗, 𝑢, 𝑤 =

(1, 𝑢, 𝑤). That is, at the stationary regime, once the traffic is stabilized, it is not necessary for 

drivers to take into consideration more than one leader.  

Moreover, the stationary configurations of cars in the two cases of one car anticipation and 

multi-anticipation models may coincide. This case is interpreted as follows. Even though the cars 

reduce their approach in the multi-anticipative dynamics (due to the minimum operator over the 

leader indices), comparing to their movement under the one car anticipative dynamics; as long as 

the cars approach the stationary regime, where the traffic is stabilized, they retrieve what they 

have lost on the transient regime. Therefore, by introducing the minimum on the multi-

anticipative dynamics, the traffic becomes smoother, without decreasing the stationary car speed. 

3 TRANSIENT TRAFFIC 

We take here the same example presented in [5], which we adapt to multi-anticipative case, in 

order to make a comparison. We simulate the car-dynamics (15). We take as the time unit half a 

second (1/2 s), and as the distance unit 1 meter (m). The parameters of the model are the same as 

those of Example 1 of [5] (the parameters have been determined by approximating a given 

behavior law). More precisely, The behavior law considered here is approximated by the 

following piecewise linear curve of six segments.  

𝑉  𝑦 = max 𝛼1𝑦 + 𝛽1, min 𝛼2𝑦 + 𝛽2, 𝛼3𝑦 + 𝛽3, 𝛼4𝑦 + 𝛽4, 𝛼5𝑦 + 𝛽5, 𝛼6𝑦 + 𝛽6  , 

where the parameters 𝛼𝑖  and 𝛽𝑖  for 𝑖 = 1,2,… , 6 are given by  

 

TABLE 1 Approximation of the behavior law 𝑽 (𝒚) with a piecewise-linear curve 

Segments 1 2 3 4 5 6 

𝛼𝑖  0 0.54 0.32 0.13 0.34 0 

𝛽𝑖  0 −8.1 −1.47 6.11 10.6 14 

 
We simulate the car dynamics on a one lane road of about 10,000 meter. We vary the number of 

leaders and the velocity of the first car (over time) in order to show the effect of multi-anticipation 

on the transient traffic. We give the results on Table 1. We see easily on that table that the 

trajectories are smoothed by anticipation. We notice here that the trajectory of the first car is the 

same for all views of Table 2. Although the number of leaders taken into account by drivers 

cannot exceed 5 in practice, we simulated here the car dynamics with anticipation with up to 100 

leaders. We did it for curiosity, but it can be interesting in the case, for example, where one likes 

to study the traffic of communicating cars or automatic ones, etc. 

4 PARAMETER IDENTIFICATION 

We propose here a parameter identification method based on (piecewise) linear regression. Given 

measured data of the car positions and velocities on a given section, the method permits to 

determine the optimal parameters that match our model with the measured data. Since the 

dynamics of the model is simply the car-velocities given as functions of the inter-vehicular 

distances, then the optimal parameters would be the ones that approximate the scatter plot of 

instantaneous inter-vehicular distances and velocities. 
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TABLE 2   Traffic on a 1-lane road. On the 𝒙-axis: time. On the 𝒚-axis: car-position. The 

number of cars taken into account in anticipation are 1, 5, 10, 20, 50 and 100. The length of 

the road is 10,000 meter. The total simulation time is 500 seconds 

 

1 leader anticipation 

 

5 leaders anticipation 

 
10 leaders anticipation 

 

20 leaders anticipation 

 
50 leaders anticipation 

 

100 leaders anticipation 

 
 

We denote by 𝑦 (𝑚,𝜆) the variable  

𝑦  𝑚,𝜆 (n, t) =  min
1≤j≤m

 1 + λ j−1 x n − j, t − x n, t  

j
. 

For fixed values of 𝑚 and 𝜆 and with measured velocities 𝑣(𝑛, 𝑡) and inter-vehicular distances 

𝑥 𝑛 − 𝑗, 𝑡 − 𝑥(𝑛, 𝑡) for every car 𝑛, we approximate the scatter plot 𝑉(𝑦 ) by a piecewise-linear 

curve 

 𝑉 𝑦  =  min
𝑢∈𝑈

max
𝑤∈𝑊

  𝛼𝑢𝑤𝑦 + 𝛽𝑢𝑤  . (22)  
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The min-max piecewise linear approximation (23) is based on a piecewise linear regression 

approach where the number of segments as well as the points where they intersect are determined 

optimally by deterministic dynamic programming. The optimization with respect to the 

parameters 𝑚 and 𝜆 is done numerically by varying the two parameters in convenient intervals, 

and then determine the optimal parameters.  

For fixed values of parameters 𝑚 and 𝜆, the scatter plot 𝑉(𝑦 (𝑚,𝜆)) is approximated by linear 

regression on separated intervals. The intervals are determined by a dynamic programming 

approach. More precisely, we divide the axis of inter-vehicular distances 𝑦  into unity intervals 

(𝑦 𝑖 , 𝑦 𝑖+1). We start from the first interval, make a linear regression on that interval, and then 

decide for the second interval whether we make only one linear regression for the two intervals, or 

approximate the scatter plot on the second interval with another linear segment. Then we do the 

same for the third unity interval, and so on. We solve here the optimal control problem associated 

to the decision process. Note that the inter-vehicular distance plays the role of time in this 

decision process.  

The decision at the unity interval 𝑦𝑖 , denoted here by 𝑟(𝑦𝑖), is in  0,1 : 

 𝑟 𝑦𝑖 =  0, if we decide to make one linear regression for the interval 𝑦𝑖  together with the 

intervals before it. 

 𝑟 𝑦𝑖 =  1 if we decide to start a new linear regression from the unity interval 𝑦𝑖 . 

 

We define costs 𝑘(𝑦, 𝑁, 𝑟) in order to minimize regression errors and penalize large segmentation 

(limit the number of segments used in the approximation).  

 𝑘(𝑦𝑖 , 𝑁, 𝑟) the error of regression at the unit interval (𝑦𝑖 , 𝑦𝑖+1), when the interval 

(𝑦𝑖−𝑁 , 𝑦𝑖) is wholy approximated by one segment, and when the decision 𝑟 is taken at the 

stage 𝑦𝑖 .  

Then the costs 𝑘(𝑦, 𝑁, 𝑟) are given by  

 𝑘(𝑦,𝑁, 𝑟) = Linear regression error in (𝑦𝑖−𝑁 , 𝑦𝑖+1) if 𝑟 = 0, 

 𝑘(𝑦,𝑁, 𝑟) = Linear regression error in  𝑦𝑖 , 𝑦𝑖+1 + 𝜑 if 𝑟 = 1, 

      where 𝜑 is a penalization of starting a new linear regression. Then the following optimal control 

problem is solved 

 min
𝛾∈𝛤

 𝑘(𝑦,𝑁, 𝑟)

𝑦𝑚𝑎𝑥

𝑦=0

, (23)  

      

where 𝛤 is the set of boolean strategies on {0,1, … , 𝑦𝑚𝑎𝑥 }. That is 𝛾 ∶  0,1,… , 𝑦𝑚𝑎𝑥  ∋ 𝑦 ↦ 𝑟 ∈

{0,1}. The value function associated to (24) is  

 𝐺 𝑦,𝑁 =  𝑘 𝑧,𝑁, 𝑟 

𝑦𝑚𝑎𝑥

𝑧=𝑦

 (24)  

𝐺 satisfies the dynamic programming equation 
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𝐺(𝑦𝑚𝑎𝑥 ) = 0

𝐺(𝑦𝑖 , 𝑁) = min 𝑘 𝑦𝑖 , 𝑁, 0 + 𝐺 𝑦𝑖+1, 𝑁 + 1 , 𝑘 𝑦𝑖 , 𝑁, 1 + 𝐺 𝑦𝑖+1, 1  .
 (25)  

The parameter identification method is thus summarized as follows. For each couple of 

parameters (𝑚, 𝜆), we calculate 𝑦 (𝑚,𝜆). Then the curves 𝑉(𝑦 (𝑚,𝜆)) are approximated by using the 

piecewise linear regression approach explained above (that is by solving the dynamic 

programming equation (26)). We obtain a total regression error for each approximation (𝑚, 𝜆). 

Finally, we determine the best couple (𝑚, 𝜆) that gives the minimal total error.  

We show below, a first application of the identification method proposed above. We base here 

on NGSIM data of vehicle trajectories on a segment of U.S. Highway 101 (Hollywood Freeway) 

in Los Angeles, California. The data are collected between 7:50 a.m. and 8:05 a.m. on June 15, 

2005. A preliminary  analysis of the trajectories showed that, according to the multi-anticipative 

model presented here, the 𝑛th leaders’ positions for 𝑛 > 3 are redundant in the data considered 

here, even with a null discount parameter (𝜆 = 0). That is to say that  

∀ 𝜆 ≥ 0, ∀ 𝑛, 𝑡,    𝑦  𝑚,𝜆  𝑛, 𝑡 ≥ 𝑦  3,𝜆  𝑛, 𝑡 . 

By consequent, we do not consider more than 3 leaders here (𝑚 ∈ {1,2,3}). Indeed, we can see 

from the dynamics (15), that, for 𝜆 = 0, taking into account more than one leader in anticipation 

does not change anything in the case where the traffic is accelerating, because the spacing to the 

𝑗th leader is bigger than 𝑗 times the spacing to the first leader. That is  

𝑥𝑛−𝑗  𝑡 − 𝑥𝑛 𝑡 ≥ 𝑗.  𝑥𝑛−1 𝑡 − 𝑥𝑛 𝑡  ,    𝑗 = 1,2, … 

Nevertheless, this is realistic because, in case of accelerating traffic, anticipation is not significant.  

First, we show in Table 3 the scatter plot for 𝑦 (𝑚,0) with the average car-velocities (the average 

over all cars), for 𝑚 ∈  1,2,3 . It seems that 𝑉(𝑦 (2,0)) and 𝑉(𝑦 (3,0)) (where we denote also by 𝑉 

the average car-velocity over all cars) can easily be approximated with piecewise linear curves, 

comparing to 𝑉(𝑦 (1,0)). We do not have justification for that presently. 
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TABLE 3   Average car-velocity function of the inter-vehicular distance. 𝝀 = 𝟎 

 

1 leader 

 
 

 
2 leaders 

 
 

 
3 leaders 
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In Figure 1, we give the results of the parameter identification. The figure gives the total 

errors from the piecewise linear regression, obtained for varied values of parameters 𝑚 ∈ {1,2,3} 

and 𝜆 ∈ [0, 5], increased by 0.1. The optimal parameters obtained here are 𝑚 = 2 and 𝜆 = 1.5. 

As mentioned above, it is not worthy to consider values of 𝑚 that exceed 3 (for the data 

considered here). Also, for large values of 𝜆, we retrieve the same results as if we take 𝑚 = 1. 

Therefore, the optimization we did here is significant. 

 

 

FIGURE 1   Identification of parameters 𝒎 and 𝝀 

 

The scatter plot for 𝑦 (2,1.5) with 𝑉, is approximated by the following curve of four segments.  

 𝑉 𝑦  = max 0, min 0.38𝑦 − 1.90, 0.11𝑦 + 2.95, 10  . (26)  

The approximation is shown in Figure 2.  

 

 

FIGURE 2   Approximation of the law 𝑽(𝒚 (𝟐,𝟏.𝟓)) with a min-max piecewise linear curve. 

The number of leaders taken into account is 𝒎 = 𝟐. The discounting parameter is 𝝀 = 𝟏. 𝟓 



N. Farhi, H. Haj-Salem and J.-P. Lebacque  16 

As shown in Figure 2, it is not easy to identify one behavior for a big number of drivers. In 

fact the parameter identification should be made for each driver. The identification of the behavior 

law for a randomly selected driver has given the following result. The optimal parameters (𝑚, 𝜆) 

are 𝑚 = 2 (anticipation with two leaders) and 𝜆 = 0 (no discounting). The curve 𝑉(𝑦 (2,0)) is 

approximated as follows. 

𝑉 𝑦  2,0  ≈ max 0, min 0.33𝑦  2,0 − 1.71, 8  . 

The approximation is shown in Table 4, where we have shown also the approximation of the 

curve 𝑉 𝑦  1,0  . 

𝑉 𝑦  1,0  ≈ max 0, min 0.26𝑦  1,0 − 0.9, 8  . 

As obtained by the parameter identification approach, we can see on Table 4 that the curve 

𝑉 𝑦  2,0   is well fitted by a piecewise-linear curve, comparing to the curve 𝑉 𝑦  1,0  . Note that 

the analytical results on the stability of the dynamics and the stationary regimes, presented in 

section 2 do not necessarily hold for the case of several driver behaviors. We will consider in a 

next step, the driver heterogeneity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



N. Farhi, H. Haj-Salem and J.-P. Lebacque  17 

TABLE 4   Parameter identification of one driver behavior 

 

Driver behavior 𝑉(𝑦 (1,0)) - one leader anticipation 

 
 
 

Driver behavior 𝑉(𝑦 (2,0)) - two leaders anticipation 
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5 CONCLUSION 

We presented in this article an extension of the piecewise linear car following model to multi-

anticipative driving. The minimum form used for taking into account more than one leader, with 

the discounting parameter used to favor closest leaders over distant ones, seem to be convenient to 

recapture the main characteristics of the anticipative traffic. We have, in particular, shown that the 

trajectories are smoothed by the anticipation on the transient traffic, without affecting the 

stationary regimes. That is, the anticipation do not slow down the stationary traffic. The minimum 

form used for anticipation allows us to make the same variational formulation as done in the one-

car anticipative traffic, and by this, it allows us to characterize the stability of the car-dynamics 

and calculate the stationary regimes. The identification test we made here is only a first step of 

analyzing the proposed model. In-depth analyses on exhaustive data should be done in the future, 

in order to improve the modeling approach presented in this article. In particular, we shall try to 

extend the model in a way that it takes into consideration heterogeneity in driving. 
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