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Abstract 
 
This paper presents numerical predictions for the behavior of the sensitive marine Haney Clay 
subject to undrained creep and constant load tests. The predictions were carried-out based on the 
framework model proposed by Martins (1992) and in accordance with concepts developed by 
Terzaghi (1941), Taylor (1942, 1948), Bea (1960), Lo (1969a, 1969b), Bjerrum (1973), Finn and 
Snead (1973), Vaid and Campanella (1977) and others. The complete differential equations as well 
as simple numerical procedures used to predict the undrained creep and constant load tests are 
presented. In addition, analytical solutions are presented for the simplified differential equations of 
both undrained creep and constant load tests. It is shown that satisfactory predictions were achieved 
both qualitatively and quantitatively for most of the 11 undrained creep and 9 constant load tests.  
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Introduction 
 
Clays present time-dependent behavior. Experimental evidence of the this behavior based on 
consolidation and shear strength characteristics have been presented by Buisman (1936), Taylor 
(1942, 1948), Casagrande & Wilson (1950), Murayama & Shibata (1958), Bishop and Henkel 
(1962), Mitchell et al. (1968), Crawford (1964), Bishop and Lovenbury (1969), Bjerrum (1973), 
Finn and Snead (1973), Lacerda (1976), Vaid and Campanella (1977), Tavenas et al (1978), Mesri 
et al (1981), Leroueil et al (1985), Martins (1992) and others. 
 
The study presented herein deals with the behavior of clays subjected to shearing under undrained 
loadings and is applies to the tests carried-out by Vaid and Campanella (1977) on the Haney Clay. 
In more specific terms, this study aims to answer the following questions regarding the undrained 
creep behavior of a saturated clay: 
 
− Will failure occur to a clay specimen subjected to a given stress state? 
− If the specimen fails, how long will it take to fail? And; 
− If not, what will be the final state of strain of the specimen and how long will it take for the 

specimen to reach it? 
 
To answer these questions, the model developed by Martins (1992) for saturated clayey soils, as 
modified by Alexandre (2006), was used.  
 
Previous Studies and Approaches 
 
It seems that Casagrande and Wilson (1951) were among the first investigators to study creep and 
the effects of rate of loading on the shear characteristics of soils. They showed that soil specimens 
subjected to undrained creep loadings failed with deviatoric stresses in the range of 40% to 80% of 
the maximum deviatoric stresses of conventional tests. 
 



Bishop and Lovenbury (1969) carried-out long term drained creep tests on London Clay as well as 
on Pancone Clay that lasted for about 3.5 years. They observed the lack of secondary or steady-state 
creep and demonstrated the limitation of the power law or logarithmic functions in representing 
strain vs time curves. 
 
Finn and Snead (1973) carried out undrained creep tests on the Haney Clay. The specimens were 
left with closed drainage prior to the shearing phase for 8 hours when most of the pore-pressure 
dependent on the secondary consolidation developed. The investigators observed the lack of 
secondary (steady-state) creep. They attributed the start of failure to the minimum strain rate of 
creep tests and to an upper yielding strength. Also, according to them, specimens subjected to 
deviatoric stresses below the upper yielding strength would not fail and specimens subjected to 
deviatoric stresses greater than the upper yielding strength would fail. They also proposed an 
equation for the upper yielding strength, reproduced below: 
 

! 

" d =" uy + K # ˙ $ 1/ n       (1) 
 
Where: 
 

! 

"
d
 is the maximum deviatoric stress in a constant strain rate test or the deviatoric stress in a creep 

test; 

! 

" uy is the upper yielding strength; 

! 

˙ "  is the strain rate in a constant strain rate test or the transient minimum strain rate in a creep test; 
and 

! 

K  and 

! 

n  are constants;  
 
For the Haney Clay the authors found that n = 3, a value which was confirmed by Sherif (1965) for 
the clays of Seattle. 
 
According to Finn and Snead (1973), the idea of an upper yielding strength is also postulated by 
Murayama and Shibata (1961) and by Vialov and Skibitsky (1957). 
 
Bjerrum (1973), accepting that the shear strength can be represented by the parameters proposed by 
Hvorslev, explains a mechanism for creep mentioned in Schmertmann and Hall (1961) and 
proposed by Bea (1960).  
 
According to Bjerrum, if the applied stress in a creep test is not greater than the maximum friction 
resistance available, the cohesion, which is fully mobilized for very small strains at the beginning of 
the test, would eventually be entirely transferred to friction with creep deformations coming to an 
end. On the other hand, if the applied stress is greater than the available friction, the transference of 
cohesion to friction will continue until all the available friction is mobilized. However, because the 
applied stress is greater than the available friction, the difference between the stress applied and 
friction will be carried by the cohesion. As the cohesion is assumed to be strain rate dependent, the 
strain rate will decrease until all the available friction is mobilized and remain constant thereafter.   
 
Having these concepts in mind, the creep process involves the transference of “effective cohesion” 
to “effective friction”.  
 
Vaid and Campanella (1977) carried out several strength tests to simulate various deformation rate 
histories. Tests such as creep (constant stress), constant load, constant rate of loading, constant rate 
of strain and step creep were carried out on the Haney Clay. The intent was to test the hypotheses 
that the shear stress, 

! 

q, is a function of the strain, 

! 

", as well as the strain rate, 

! 

˙ " . That is 

! 

q = q ", ˙ " ( ) . 



The authors were able to show that the relationship between these variables holds throughout the 
entire creep process for the Haney Clay, even when the strain rate reaches a minimum and starts to 
increase again.  
 
They also showed that the minimum strain rate for the Creep Test corresponds to a strain of about 
2.5%, which is close to the strains at maximum deviatoric stress of the Constant Rate of Strain Test. 
 
With regards to models for explaining creep behavior, one of the main models is the Rate Process 
Theory. This theory was developed in the area of Physical Chemistry and was originally intended 
for assessing the speed at which chemical reactions occur. Various investigators such as Murayama 
and Shibata (1958), Mitchell et al (1968) and Anderson and Douglas (1970) applied the Rate 
Process Theory to soil mechanics with success. It is recommended that works by Glasstone et al. 
(1940) as well as Mitchell et al (1968) be referred to for the fundamentals of this theory. 
 
Other models for assessing creep include visco-elastic, visco-plastic or visco-elasto-plastic models 
combined with or not with the Rate Process Theory or the 

! 

c"#  concept. A few of the models in this 
category were described by Murayama and Shibata (1958, 1961, 1964), Mesri et al (1981), Adachi 
and Okano (1974), Sekigushi (1984) and Kutter and Sathialingam (1992). As it will be seen in the 
following section the model developed by Martins’ (1992) falls within this category. 
 
Basic concepts of Martins' Model (1992) 
 
According to Terzaghi (1941), the contact between clay particles can be separated into “solid 
bonds” and “film bonds”. In his view, both contacts are able to transmit effective stresses and 
would result from the adsorbed water layers that surround the clay particles. The “solid bonds” 
would result from the contact between the adsorbed water layers in the immediate vicinity of the 
clay particle, which, according to Terzaghi, would be in the solid state. The “film bonds” would 
result from the contact between adsorbed water layers which would not be in the solid state but 
which would possess a higher viscosity than the viscosity of the free water (by free water it refers to 
the water that flows out of the voids between soil particles during seepage or consolidation).  
 
Having this picture in mind, Martins assumes as a hypothesis that the shear strength of a saturated 
normally consolidated clay has two components; the frictional resistance and the viscous resistance. 
The frictional resistance would develop between Terzaghi's “solid bonds” and it would be a 
function of the shear strain. The viscous resistance would develop between Terzaghi's “film bonds” 
and it would be a function of the strain rate. The equation for shear strength would then be: 
 

! 

" = # $ % tg # & mob +' e( ) % ˙ (      (2) 
 
Where: 
 

! 

" #  is the normal effective stress (taken as the difference between the normal total stress, 

! 

" , and 
pore-pressure, 

! 

u); 

! 

" # 
mob

is the mobilized effective angle of internal friction; 

! 

" e( )  is the coefficient of viscosity of the adsorbed water layer surrounding the clay particles (a 
function of void ratio for a normally consolidated clay); and 

! 

˙ "  is the strain rate. 
 
The model assumed that pore-pressure that develops in a shear test would be a function of the shear 
strains as shown by Lo (1969a, 1969b). In addition, it is assumed in the model that normalization is 
valid. In other words, both the frictional and viscous resistances are proportional to consolidation 
pressure, σ'c, and are a function of Over Consolidation Ratio (OCR). Equation (2) is similar to the 



equation proposed by Taylor (1948). 
 
Mechanism of Creep – Modified Martins’ Model 
 
Alexandre (2006) modified Martins’ model by replacing Equation (2) by the following: 
 

! 

" d =" df #( ) + K e( ) $ ˙ # n       (3) 
 
Where: 
 

! 

"
d
 is the deviatoric stress of a creep test;  

! 

" df  is the deviatoric friction resistance (considered a function of the shear strain for normally 
consolidated soils); 

! 

K  and 

! 

n  are constants (

! 

K  is also a function of the consolidation pressures, 

! 

" # 
c
). 

 
Equation (3) can be seen as a generalization of the equation proposed by Finn and Snead (1973) and 
is consistent with the hypothesis raised by Vaid and Campanella (1977), where the shear stress, 

! 

q, 
is a function of strain, 

! 

", and the strain rate, 

! 

˙ " . 
 
The mechanics of creep can be understood with the aid of Equation (3) and the Figure below, where 
two creep tests are represented together with what is called in accordance to Martins’ model, the 
“basic” deviatoric curve for a normally consolidated clay.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 – Deviatoric stress x strain curves for two creep tests 

 
The “basic” deviatoric curve is the component of the strength which is independent of rate or time 
effects. This curve is the one that would be obtained in a test where the strain rate is zero, provided 
such a test could be carried out. In addition, a Creep Test is a strength test where the deviatoric 
stress is held constant throughout its duration.  
 
Scenario 1 will be analyzed first. As can be seen in Figure 1, the maximum frictional deviatoric 
stress is 

! 

" df max , which occurs for a given shear strain, 

! 

" f . At the beginning of Test 1, at t = 0, the 
deviatoric stress, 

! 

" d1 <" df max is applied instantaneously. Considering Equation (3) and Figure 1, the 
vertical distance between the curve of Test 1 and the “basic” curve is therefore the viscous 
resistance. Therefore, at this point, the viscous resistance is identical to the applied deviatoric stress, 

! 

"
d1

. At this point 

! 

˙ "  assumes the value 

! 

˙ " = #
d
K( )

1
n . After some time, at Point A, the frictional 

resistance will be 

! 

" dfA , relative to shear strain 

! 

"
A
. At Point A, because of Equation (3), the viscous 

“basic curve” 

ε 

! 
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resistance will be smaller than before, assuming the value 

! 

˙ " = # d1
$# dfA( ) /K[ ]

1
n . As the process 

continues, the frictional resistance is mobilized and the viscous resistance is demobilized, with 
continuously decreasing strain rate, to balance Equation (3). Because Creep Test 1 has an applied 
deviatoric stress 

! 

" df1 <" df max , the transference of viscous resistance to frictional resistance will 
continue until the frictional resistance equals the applied deviatoric stress, at Point B. At this point, 
the viscous resistance and the strain rate are both equal to zero and the shear strain is 

! 

"
B
.  

 
The same process occurs in Scenario 2, but, because the applied deviatoric stress is now greater 
than the maximum frictional resistance, there will not be not enough frictional resistance to be 
mobilized. At Point C, where the frictional resistance is maximum, the viscous resistance will be 
minimum and equal to 

! 

" d 2 #" df max  and the strain rate will be 

! 

˙ " = # d 2
$# df max( ) /K[ ]

1 n

. From this 
point on, the soil will continue to creep at constant strain rate indefinitely. 
 
Having in mind the two Creep Tests described above, creep, in the light of the model developed by 
Martins, would be the process of transference of viscous resistance to frictional resistance with 
time, and failure in a creep test would be achieved when 

! 

˙ " > 0  and when 

! 

˙ ̇ " # 0 . Failure, in other 
words, would be achieved when all the available frictional resistance is mobilized and the soil 
element still continuous to deform at a constant strain rate or with a strain rate that increases with 
time. 
 
The transference of viscous resistance to frictional resistance during creep as idealized in Martins’ 
Model is in general agreement with the creep failure criteria proposed by Bea (1960).  
 
The creep process explained here is able to explain the so-called “primary” stage of creep, where 
the strain rate decreases with time, and “secondary” stage of creep, where the strain rate remains 
constant with time, but is unable to explain the “tertiary” creep, where the strain rate increase with 
time. However, a conjecture for the increase in time of the strain rate observed during the “tertiary” 
stage of creep is presented below, based on Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Conjecture for explaining the “tertiary” creep 
 
According to Figure 9, the frictional resistance no longer reaches a plateau in strength but instead 
passes through a peak. In other words, the frictional resistance, which is initially zero for shear 
strain equal to zero, increases with time, reaches a maximum value and then starts to decrease 
again. This behavior can be observed in over-consolidated clays, sensitive soils or whenever the 
pore-pressure continues to increase with time after the soil have reached the maximum shear 
strength. In addition to these cases, even normally consolidated clays can experience a peak, as long 
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as large deformations occur. In this case the maximum shear strength observed decreases until the 
residual strength is reached. 
 
Referring to Figure 2 and also to Equation (3), the difference between the applied deviatoric stress 
and the frictional resistance is the viscous resistance. As the frictional resistance increases with the 
development of shear strains, reaches a peak and starts to decrease, the viscous resistance will have 
the opposite behavior. That is, the viscous resistance will decrease, pass through a minimum and 
then starts to increase again. Because the viscous resistance is proportional to the strain rate, the 
strain rate, as well, will decrease with time, reach a minimum (at the peak strain) and then start to 
increase again. This possible explanation for the tertiary creep was studied by Alexandre (2006) for 
the tests carried out by Vaid and Campanella (1977) on the sensitive Haney clay and will be 
explained in details in this paper. 
 
Another conjecture for explaining the tertiary creep is a reduction in the coefficient of viscosity 
with the development of shear strains. If the coefficient of viscosity is shear strain dependent and 
decreases with the development of strains, then the strain rate will have to increase to balance 
Equation (3). 
 
Finally, in this conjecture, the “tertiary” creep may also occur by any combination of the factors 
explained above. 
 
Prediction of Creep 
 
It can be shown that Equations (2) and (3) are the differential equations for the creep process. It can 
also be shown that these equations are non-linear and an analytical solution is very difficult (if not 
impossible) to obtain. Therefore, a numerical procedure is required for predicting creep. Referring 
to Equation (3), with the knowledge of the frictional and viscous resistances, for a given applied 
deviatoric stress, 

! 

"
d
, there is a relationship between the shear strain and strain rate. This 

relationship can be better seen by re-arranging Equation (3) as follows: 
 

! 

˙ " =
# d $# df "( )[ ]

K

% 
& 
' 

( ' 

) 
* 
' 

+ ' 

1 n

      (4) 

 
Equation (4) allows the construction of a plot for the relationship between the inverse of the strain 
rate and the shear strain for a given applied deviatoric stress, as the one below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Relationship between strain rate and strain for a given deviatoric stress in a creep test. 
 
Therefore, the expression for the computation of time is equal to the area between the curve and the 
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horizontal axis in Figure 3. That is: 
 

! 

t "( ) =
d"

dt

# 

$ 
% 
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' 
( 

0

"

)
*1

d"        (5) 

 
Equations (3) to (5) are valid for any stage of creep, as according to Martins’ model, no significant 
difference exists between what is arbitrarily considered “primary”, “secondary” (or steady-state) or 
“tertiary” creep. Creep is, according to the model, the transference that occurs between viscous and 
frictional resistances. 
 
Although an analytical solution for Equations (2) or (3) may never be obtained, one particular case 
of interest may be solved. Referring to Equation (3) and considering a specified stress range, the 
frictional deviatoric stress may be considered linearly proportional to the shear strains (although not 
necessarily implying elastic behavior), and the following differential equation can be written: 
 

 

! 

"
d

= E # $ + K # ˙ $ n                 (6) 
 

Equation (6) is similar to Kelvin-Voigt's rheological model, although the viscosity function is non-
linear. The solution of Equation (6) and the expression of the variation of the strain rate with time 
are presented below. 
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Referring to Equation (7), it can be seen that for 

! 

t = 0, 

! 

" = 0 , and for 

! 

t"#  the strain is equal to 

! 

"=#
d
E . In addition, considering Equation (8), it can be shown that, after applying log to both 

sides of the equation, an approximate linear relationship (apart from the very beginning of the creep 
process) between 

! 

log ˙ " ( )  and 

! 

log t( ) exists as shown on Figure 4 below. The slope of this curve is, 
according to the equation, equal to 

! 

"1 1" n( ) . 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Relationship between the strain rate and time in a bi-log scale. 
 
Although, strictly speaking, Equations 6 to 8 can be applied only for “primary” creep for a stress 
range where 

! 

E  can be considered constant, it can be shown that it may be considered as an 
approximation for the entire process by considering different E's by parts and according to stress 
range.  
 
Vaid and Campanella (1977) also carried out Constant Load Tests on the Haney.  As it will be 
shown in the next section, these tests can be analyzed in a similar fashion as the creep tests. For 
developing the numerical procedure and the analytical solution for the constant load tests it is only 
necessary to account for the decrease in the applied initial deviatoric stress during the test as a 
function of the shear strain. 
 
Prediction of Constant Load Tests 
 
A Constant Load Test is similar to a Creep Test, but, instead of maintaining the deviatoric stress 
constant during the entire test, a deviatoric load is held constant. Due to Poisson’s effect, as the 
deformation of the specimen progress with time under constant loading, the cross section of the 
specimen (subjected to compressive loads) increases and therefore decreasing the initial deviatoric 
stress. Referring to Equation (3) and considering that the Poisson ratio in an undrained test for a 
saturated soil is 0.5, it follows that: 
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" d =" d
0

# 1$%( ) =" df %( ) + K # ˙ % n      (9) 
 
Similarly to what was done in the numerical procedure for the Creep Tests, Equation (9) can also be 
re-arranged to show explicitly the relationship between strain rate and shear strain for a given initial 
deviatoric stress, σd0. This relationship is: 
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      (10) 

 
In a similar fashion, Equation (5) can be used to calculate time required for a specimen subjected to 
a given initial deviatoric stress to achieve a certain strain, 

! 

".  
 
Referring to Equation (9) and again assuming that the frictional deviatoric stress is linearly 
proportional to the strain (although not necessarily implying elastic behavior) the following 
equation can be written: 
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"
d
# 1$%( ) = E # % + K # ˙ % n       (11) 

 
The solution for differential equation (11) and the expression of strain rate are as follows: 
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It can be seen from Equation (12), that for 

! 

t = 0, 

! 

" = 0 , and for 

! 

t"#  the strain reaches 

! 

"=#
d
0

#
d
0

+ E( ) . In addition, considering Equation (13), it can be shown that, after applying log to 
both sides of the equation, that an approximate linear relationship (apart from the very beginning of 
the creep process) between 

! 

log ˙ " ( )  and 

! 

log t( ) exists similar to the one represented in Figure 4. 
 
Assessment of the Parameters of the Model 
 
According to Vaid and Campanella (1977), “Haney Clay is believed to have been deposited in a 
marine environment and later subjected to partial leaching due to surface infiltration. It is a grey 
silty clay with liquid limit = 44%, plastic limit = 26%, maximum past pressure of about 3.5 kg/cm2 
(340 kPa) and a sensitivity from 6 to 10”. 
 
Majority of the laboratory tests undertaken by Vaid and Campanella (1977) were normally 
consolidated hydrostatically to 515 kPa. After consolidation, the specimens were left resting in an 
undrained condition for 12 hours under the consolidation pressures prior to shear loading. 
According to Vaid and Campanella (1977), the pore-pressure generated during this undrained 
period was attributed to the arrest of secondary consolidation. All measurements were done 
electronically and all data were automatically recorded on a digital magnetic tape using a high 
speed (10 channels per second) Vidar Digital Data Acquisition System. In addition, the test 
program was carried out in a constant temperature environment with a maximum temperature 
variation of 

! 

±  0.25o C.  
 
According to Vaid (2004), the tests were not carried out with internal load cells and did not use the 
“free-ends” technique to minimize friction between the specimens and the top cap and pedestal. 
Instead, an external load cell with a specially designed continuously air leaking seal was used.  
According to Vaid (2004), the maximum friction in the air seal on the loading ram was 10 grams, 
and was independent of the cell pressure. 
 
The experimental results of the Constant Rate of Strain Tests were used for deriving parameters of 
the Modified Martins’ Model (the frictional and the viscous resistances) in order to allow for the 
predictions of the undrained creep and constant load tests and are reproduced below. 
 

Axial strain 



 
Figure 5 – Constant rate of Strain Test carried out by Vaid and Campanella (1977) 



 

 
Figures 6 and 7 – Creep Tests carried out by Vaid and Campanella (1977). 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figures 8 and 9 – Constant Load Tests carried out by Vaid and Campanella (1977) 

 
According to the model developed by Martins the viscous resistance in a Constant Rate of Strain 
test is instantaneously mobilized at the beginning of the test and remains constant thereafter. This 
effect can be seen both on a deviatoric stress vs strain plot as well as on an effective stress path plot. 



The best procedure for assessing the viscous resistance, if possible, is by using both plots. The 
assessment of the viscous resistance using only the deviatoric stress vs strain plots is very difficult 
as it involves the assessment of deviatoric stress for very small strains, and may lead to apparent 
discrepancies in the assessed viscous resistance, if not used together with the stress path plots. 
 
As pore-pressure measurements of the tests were not available, the assessment of the viscous 
resistances of the Constant Rate of Strain tests could only be carried out using the deviatoric stress x 
strain plot. However, as this assessment led to apparent discrepancies, another procedure was 
developed.  
 
First, the viscous resistance from the test with the highest strain rate was assessed, as it possesses 
the highest viscous resistance. The viscous resistance for the test with the strain rate of 1.1%/min, 
when normalized with respect to the consolidation pressure, is about 0.2. However, because of the 
reasons explained above, it could be greater or smaller than this value. 
 
Subtracting the viscous resistance from the deviatoric stress curve of the test with the strain rate of 
1.1%/min, the frictional resistance curve was assessed. The Figure below presents the frictional 
resistance for the test with a strain rate of 1.1 %/min. 
 

 
Figure 10 – Frictional resistance curve from the Constant Rate of Strain test with strain rate = 1.1 

%/min. 
 
Having assessed the frictional resistance curve from this test, the viscous resistances of the other 
tests were assessed by subtracting, for a given strain, the frictional deviatoric resistance for that 
strain from the deviatoric stress at the same strain. For a strain of 2.5%, the normalized frictional 
resistance is about 0.46. Subtracting this frictional resistance from the deviatoric stresses of the 
other tests for the same strain, the following viscous resistance were obtained: 
 

! 

˙ "  (%/min) 2

! 

V " # 
c
 

1.5x10-1 0.15 
1.4x10-2  0.09 
2.8x10-3 0.07 
9.4x10-4 0.06 

Table 1 – Normalized viscous resistances and respective strain rates.  



 
The following plot shows the pairs of values of strain rate and normalized viscous resistances, 
2

! 

V " # 
c
, as well as a power function of the strain rate fitting the data. 

 
Figure 11 – Assessment of the viscous resistance function. 

 
Where 2V=

! 

" # 
dv

 is the viscous deviatoric stress. 
 
By assessing the viscous resistances for all the other tests, the frictional resistance for each test can 
be assessed. This can be done by subtracting the assessed viscous resistance from the deviatoric 
curves for each one of the other tests. Figure 2 shows the frictional resistances of all tests as well as 
a curve representing the average deviatoric stress vs strain curve.  

 
Figure 12 – Assessment of the normalized frictional resistance curves. 

 



It is worth noting that, because the test results are normalized in relation to the consolidation 
pressures, both the assessed viscous and frictional resistances are also normalized with respect to 
the consolidation pressure. This normalization, however, does not make the analysis invalid, as 
according to Martins's model, the normalizing behavior is one of the hypotheses.  
 
Finally, it is also worth mentioning that the maximum frictional resistance, 0.46, assessed above, is 
consistent with the upper yielding strength concept from Finn and Snead (1973). Although close, 
this value differs from the upper yielding value suggested by Vaid and Campanella (1977). For 
Vaid and Campanella (1977), the upper yielding would be between 0.5, which is the creep test that 
did not fail within 3 weeks, and 0.518, which is the creep test that did fail. 

 
Check of the Assessed Parameters 
 
Using Dimensional Analysis 
 
Dimensional analysis is frequently used for providing guidance for the conception, construction, 
execution and interpretation of physical models. In this work, the tests carried out by Vaid and 
Campanella (1977) can be considered the physical models and therefore dimensional analysis was 
used to assess the consistency of the parameters of the model. The basis of the theory will not be 
presented here but can be found on Vaschy (1890), Buckingham (1915), Bridgman (1922), 
Langhaar (1965) and Carneiro (1993), 
 
By using the Theorem of Vaschy-Buckingham, the dimensional matrix of the time-dependent 
strength problem was assembled and the following 

! 

"  numbers were obtained: 
 

! 

"
1

=
# d

# df max

 and  

! 

"
2

= t #
$ df max

K

% 

& 
' 

( 

) 
* 

1 n

 

 
Therefore, if the physical understanding of the process is correct and if the parameters assessed are 
consistent, there must by a functional relationship between 

! 

"
1
 and 

! 

"
2
. The following figure shows 

a plot of the two 

! 

"  numbers assessed above for the Constant Rate of Strain, Undrained Creep and 
Constant Load Tests for a strain of 2.5%. 

 
Figure 13 – Dimensional Analysis of the Time-Dependent Strength for the Haney Clay. 



Numerical Verification 
 
Equations (3) and (11) can be re-arranged to the following formats: 
 

! 

" df #( ) + K $ ˙ # n

" d

=1

     (14) 
 
 

! 

" df #( ) + K $ ˙ # n

" d
0

$ 1%#( )
=1

     (15) 
 

Using the re-arranged equations above, the consistency of the assessed parameters can be checked 
by using any point of the creep or constant load tests. Tables 2 and 3 below show the results of this 
numerical verification for the creep and constant load tests. 
 

cd
!"!  Time (min) ( )%!  dtd! (%/min) cdf

!"!  Equation (16) Error (%) 
0.638 1 1.58 3.70E-01 0.449 0.97 -3.19 
0.638 5 2.72 2.78E-01 0.462 0.97 -2.54 
0.616 1 1.26 2.78E-01 0.436 0.97 -3.23 
0.616 20 3.87 2.41E-01 0.456 0.99 -0.62 

0.6 5 1.65 8.43E-02 0.451 0.97 -3.22 
0.6 60 5.72 2.86E-01 0.441 1.00 0.33 

0.586 1 0.96 1.87E-01 0.415 0.96 -3.73 
0.586 80 6.3 1.00E+00 0.436 1.09 8.57 
0.572 5 1.28 5.99E-02 0.438 0.98 -1.93 
0.572 50 2.73 2.86E-02 0.462 1.00 -0.47 
0.552 1 0.74 1.22E-01 0.393 0.96 -3.62 
0.552 500 7.62 1.00E+00 0.425 1.13 13.33 
0.53 500 2.55 2.10E-03 0.461 1.00 -0.05 
0.53 1000 3.5 2.30E-03 0.458 1.00 -0.41 
0.518 2000 3.4 6.00E-04 0.459 0.99 -0.79 
0.518 10000 6.38 4.00E-04 0.435 0.94 -6.11 

0.5 400 1.8 1.10E-03 0.454 1.03 3.07 
0.5 7000 3.44 1.00E-04 0.459 1.00 -0.23 

0.446 1 0.44 5.05E-02 0.339 1.03 2.80 
0.446 10000 1.41 2.00E-05 0.443 1.06 6.06 
0.374 1 0.31 3.11E-02 0.300 1.09 9.39 
0.374 4000 0.86 2.00E-05 0.404 1.16 16.23 

Table 2 – Numerical verification for the creep tests. 

 

 

 

 

 

 

 



c0d
!"!"  Time (min) ( )%!  dtd! (%/min) cdf

!"!  Equation (17) Error (%) 
0.63 1 1.78 3.91E-01 0.454 1.01 0.86 
0.63 10 4.22 2.75E-01 0.453 1.01 1.35 
0.606 2 1.54 1.72E-01 0.448 1.00 -0.26 
0.606 20 3.17 7.76E-02 0.460 1.00 0.21 
0.592 3 1.57 1.13E-01 0.448 1.00 0.35 
0.592 30 3.23 5.06E-02 0.460 1.01 0.95 
0.578 10 1.45 3.55E-02 0.445 0.98 -2.33 
0.578 100 3.05 1.43E-02 0.461 0.99 -0.82 
0.558 50 2 1.24E-02 0.457 1.01 0.60 
0.558 800 8.25 1.07E-02 0.420 0.99 -0.89 
0.542 1000 5.72 3.80E-03 0.441 1.01 0.80 
0.542 2000 10.74 8.90E-03 0.400 1.00 -0.36 
0.532 1000 3.6 1.00E-03 0.458 1.01 0.84 
0.532 10000 8.03 2.00E-04 0.422 0.95 -5.14 
0.528 100 2.75 4.20E-03 0.462 1.05 4.83 
0.528 10000 6.98 2.00E-04 0.430 0.96 -3.63 
0.63 3 2.4 2.62E-01 0.461 1.01 0.68 
0.606 40 5.05 1.03E-01 0.446 1.01 0.72 
0.592 60 4.83 5.93E-02 0.448 1.01 0.98 
0.578 400 10.71 5.77E-02 0.392 0.98 -1.57 

Table 3 – Numerical verification for the Constant Load tests. 

 
The numerical verification carried out in this section can be seen as similar to the one carried out by 
Vaid and Campanella (1977) for checking the validity of the equation 

! 

q = q ", ˙ " ( ) . 
 

Undrained Creep and Constant Load Test Predictions 
 
Figures 14 to 52 shows the strain x time and strain rate x time plots for all the creep and constant 
load tests. 
 
For carrying out the predictions of all the Figures (except Figures 32 to 35), the numerical 
procedures described in this paper were used. For integrating the areas below the inverse of the 
strain rate x strain curve (Figure 3) the method on the Trapezoids with a strain step of 0.05% was 
used. 
 
The predictions carried out for Figures 32 to 35 were made using the analytical solution of the 
differential equation, Equations (7) and (8) with a different E every 0.05% strain interval.  
 
All predictions made use of the assessed viscous resistance function and three different frictional 
resistance curves. The frictional resistance curves used were the average curve (showed as a thick 
black solid line) and two other curves (showed as thin black dashed line with crosses) representing 
the upper and lower bounds of the frictional resistance data shown in Figure 12. 
 
A discussion of the numerical sensitivity of the predictions is included in the discussion of the 
results. 
 
The tests data presented in the plots were obtained by interpolation of Figures 4, 5, 6 and 7 from 
Vaid and Campanella (1977). 
 



 
 
 

 
 
 

Figures 14 and 15 – Creep test -
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c

= 0.638 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 

 
 
 

Figures 16 and 17 – Creep test - 
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"
d

# " 
c

= 0.616 
 
 
 
 
 



 
 
 

 
 
 

Figures 18 and 19 – Creep test - 
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"
d

# " 
c

= 0.600 
 
 



 
 
 

 
 
 

Figures 20 and 21 – Creep test - 
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"
d

# " 
c

= 0.586 
 
 
 
 
 
 
 
 



 
 
 

 
 
 

Figures 22 and 23 – Creep test -
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"
d

# " 
c

= 0.572 
 
 



 
 

 
 
 

Figures 24 and 25 – Creep test -
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"
d

# " 
c

= 0.552 
 
 
 
 
 
 



 
 
 

 
 
 

Figures 26 and 27 – Creep test - 
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"
d

# " 
c

= 0.530 
 
 



 
 

 
 
 

Figures 28 and 29 – Creep test - 
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"
d

# " 
c

= 0.518 
 
 



 
 
 

 
 
 

Figures 30 and 31 – Creep test - 
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"
d

# " 
c

= 0.500 
 
 



 
 
 

 
 
 

Figures 32 and 33 – Creep test - 
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"
d

# " 
c

= 0.446 
 



 
 
 

 
 
 

Figures 34 and 35 – Creep test -
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"
d

# " 
c

= 0.374  
 

 



 
 
 

 
 
 

Figures 36 and 37 – Constant Load test -
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"
d
0

# " 
c

= 0.630  
 
 



 
 
 

 
 
 

Figures 38 and 39 – Constant Load test -
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"
d
0

# " 
c

= 0.606  
 
 



 
 
 

 
 
 

Figures 40 and 41 – Constant Load test -
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"
d0

# " 
c

= 0.592  
 



 
 
 

 
 
 

Figures 42 and 43 – Constant Load test -
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"
d0

# " 
c

= 0.578  
 
 



 
 
 

 
 
 

Figures 44 and 45 – Constant Load test -
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"
d0

# " 
c

= 0.558  
 



 
 
 

 
 
 

Figures 46 and 47 – Constant Load test -
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"
d0

# " 
c

= 0.542  
 
 



 
 
 

 
 
 

Figures 48 and 49 – Constant Load test -
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"
d0

# " 
c

= 0.532  
 



 
 
 

 
 
 

Figures 50 and 51 – Constant Load test -

! 

"
d0

# " 
c

= 0.528  
 



 
 

Figure 52 – Constant Load test -

! 

"
d0

# " 
c

= 0.540  
 
Discussion 
 
Frictional and Viscous resistances 
 
As attested by the correlation coefficient (

! 

R
2

= 0.9988), the power function represents the viscous 
resistance well for the range of strain rate of the laboratory tests. Also, the frictional resistances of 
all the laboratory tests, apart from some small variation, are very close to one another, supporting 
the hypotheses that the frictional resistance (for a given consolidation pressure and OCR) is an 
exclusive function of the shear strain and therefore independent of the strain rate.  
 
Creep Tests 
 
In general, it can be said that the numerical predictions carried out for the Creep Tests are 
satisfactorily, both qualitatively and quantitatively. However, a more detailed discussion will be 
presented below. 
 
As mentioned in the Introduction, the three most important questions about creep behavior are: 
  
− Will failure occur to a clay specimen subjected to a given stress state? 
− If the specimen fails, how long will it take to fail? And; 
− If not, what will be the final state of strain of the specimen and how long will it take for the 

specimen to reach it? 
 
To answer the first question, it is sufficient to compare the applied deviatoric stress to the maximum 
frictional deviatoric stress. If the applied stress is greater than the maximum frictional resistance, 
the specimen will fail. On the other hand, if the applied stress is less than the maximum frictional 
resistance the specimen will not fail. Making this comparison for all the 11 laboratory tests, in 
accordance to the model, for creep tests with 
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"
d

# " 
c

= 0.638, 

! 

"
d

# " 
c

= 0.616, 

! 

"
d

# " 
c

= 0.600, 

! 

"
d

# " 
c

= 0.586, 

! 

"
d

# " 
c

= 0.572, 

! 

"
d

# " 
c

= 0.552, 

! 

"
d

# " 
c

= 0.530, 

! 

"
d

# " 
c

= 0.518 and

! 

"
d

# " 
c

= 0.500, 
failure was expected to occur and for creep tests with 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374  failure 



was not expected to occur. Therefore, except for test 

! 

"
d

# " 
c

= 0.500, the numerical predictions are 
in agreement with the laboratory tests results.  
 
The creep test with 

! 

"
d

# " 
c

= 0.500 presents characteristics of failure and stabilization at the same 
time. This test appears to be stabilizing as the strain rate is continuously decreasing, but on the other 
hand, the strain after 32,000 min is about 4.6% and therefore above the peak strain which is about 
2.5-3.0%. Taking into account these peculiar facts, the prediction made for this test is in agreement 
with the test results in the sense that strains greater than 2.5-3.0% were expected. Despite of this, 
the prediction is not in agreement with the test results as this test was expected to reach a minimum 
strain rate at about 10,000 to 15,000 minutes, which did not occur. 
 
As Vaid and Campanella (1977) observed that thixotropic effects were observed after a time of 
about 20,000 minutes in creep tests with 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374 , perhaps the difference 
between the prediction and the test results for creep test with 

! 

"
d

# " 
c

= 0.500 may be related to 
thixotropy as well.  
 
Regarding the second question, the answers will be provided in the context of the definition of 
failure in a creep test according to Martins’ model. According to the definition, failure will occur  
when 

! 

˙ " > 0  and when 

! 

˙ ̇ " # 0 . Therefore the onset of failure for a soil with a peak in strength is when 
the creep tests reach the minimum strain rate (which is consistent with the proposition made by 
Finn and Snead, 1973). For the Constant Rate of Strain tests, the peak is in the strain range of about 
2.5 % to 3 % and therefore the minimum strain rates should occur within this range of strain. Table 
4 below presents the predictions and the laboratory tests data: 
 

Experimental Data Predictions 
cd

!"!

 
Minimum 

! 

˙ "  
(%/min) 

Time 
(min) 

! 

" %( )
 

Minimum 

! 

˙ "  
(%/min) 

Time (min) 

! 

" %( )  

0.638 0.24 4 2.45 0.483 – 0.481 2.9 – 3.6 2.5 – 3.0 
0.616 0.12 9 2.38 0.224 – 0.227 5.9 – 7.4 2.5 – 3.0 
0.600 0.054 20 2.57 0.119 – 0.121 10.6 – 13.5 2.5 – 3.0 
0.586 0.04 23 2.25 0.065 – 0.066 18.9 – 24.2 2.5 – 3.0 
0.572 2.7x10-2 40 2.49 3.25 a 3.3 x 10-2 35.9 – 46.5 2.5 – 3.0 
0.552 6.9x10-3 200 2.84 1.0 a 1.1 x 10-2 105 – 133.7 2.5 – 3.0 
0.530 2.0x10-3 700 2.89 2.0 a 2.2 x 10-3 467 - 610 2.5 – 3.0 
0.518 3.3x10-4 6000 4.92 6.9 a 7.1 x 10-4 1307 - 1744 2.5 – 3.0 

Table 4 – Comparison of minimum strain rate, time and strain for creep tests. 
 
Finally, the third question can be answered by comparing the strains from the frictional resistance 
curve for the creep deviatoric stresses of tests 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374with the strains of 
these tests. The predictions for test 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374  are between 

! 

" =1.4%  and 

! 

" =1.6% , and for test 

! 

"
d

# " 
c

= 0.374 are between 

! 

" = 0.5%  and 

! 

" = 0.7% . The experimental results 
for tests 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374 , when they were roughly terminated between about 2 
and 3 weeks, are respectively 

! 

" =1.5%  and 

! 

" =1.0% .  
 
Regarding the time for stabilization, the comparison between prediction and test results are not 
possible as, according to Equation (7), the behavior is asymptotic. However, it is possible to 
compare the values of the strain rates for the last experimental data point. For this data point, the 
strain rate for tests 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374  at 

! 

t =10,000min  and

! 

t = 7,000min  are 1.55 
x 10-5 %/min and 1 x 10-5 %/min, respectively. According to the predictions, the strain rates range 
from 1.14 to 1.55 x 10-5 %/min for test with

! 

"
d

# " 
c

= 0.446 and from 1.3 to 1.6 x 10-5 %/min for test 



with 

! 

"
d

# " 
c

= 0.374 . 
 
In relation to the variation of the strain rate with time, Figure (7), it can be seen that the curves for 
tests 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374 , when represented in a log (de/dt) x log (t) plot, are not 
perfectly straight but slightly curved downwards. 
 
The examination of Equation (8) allows for an interpretation of the shape of this curve. Equation (8) 
was obtained considering that the relationship between frictional deviatoric stresses and strains can 
be represented by a straight line. However, the stress-strain diagram of a real soil is not straight. 
Considering that Equation (8) can be applied by parts, in intervals in which E can be assumed 
constant, for each interval a different Equation (8) with its respective E modulus can be applied. 
The effect of the modulus E on Equation (8) is such that, having all the other parameters the same, 
the curve is displaced to the right for decreasing values of the E modulus. The Figure below 
exemplifies this point. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 53 – Effect of E on Equation (8). 
 
Now consider a frictional deviatoric stress curve such as the one represented in the Figure below 
and an undrained creep test with a deviatoric stress 

! 

"
d
3

.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 54 – Discretization of a frictional deviatoric stress curve with constant E by parts. 
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According to the concepts developed so far, it is expected that this creep test will stabilize at a strain  

! 

" = " f where the modulus is E3. However, before reaching this strain, the specimen will reach strains 
between 

! 

" = "
3
 and 

! 

" = "
2
, where the modulus is E2, and before that, strains between 

! 

" = "
2
 and 

! 

" = "
1
 

where the modulus is E1. Therefore, the strain rate x time curve of this specimen will start at a curve 
representing Equation (8) where the modulus is E0, for 

! 

" = 0 , cross the curves relative to E1 and E2 
and reach (asymptotically) the curve where the modulus is E3. In the process of crossing these 
curves and reaching the curve relative to E3, the curve of the specimen subjected to the creep stress 
presents itself slightly convex. This effect is expected to be more pronounced for creep tests with 
higher applied deviatoric stresses (that do not fail) and for soils presenting strongly curved stress-
strain curves before reaching its maximum strength value. 
 
For assessing these “boundary lines”, the following equation can be used:  
 

! 

˙ " =
1

K # $ 
c

$
d

# $ 
c

% 

& 
' 

( 

) 
* 

1+n

n

% 

& 
' 

( 

) 
* 

+
1+ n

n

% 

& 
' 

( 

) 
* ,

E # $ 
c( ) , t

K # $ 
c( )

- 

. 

/ 
/ 
/ 

0 

1 

2 
2 
2 

1

1+n

% 

& 
' 

( 

) 
* 

     (16) 

 
Equation (16) is Equation (8) normalized in relation to 

! 

" # 
c
. 

 
Regarding the creep test with 

! 

"
d

# " 
c

= 0.446, from Figure 12, for ε = 1.55 % and ε = 0 %, 

! 

E " # 
c
 

modulus of about 

! 

E " # 
c
 = 0.033%-1 and 

! 

E " # 
c
 = 1.65%-1 can be assessed respectively. For creep 

test with 

! 

"
d

# " 
c

= 0.374 , from Figure 12, for ε = 1.0 % and ε = 0 %, 

! 

E " # 
c
 modulus of about 

! 

E " # 
c
 

= 0.084%-1 and 

! 

E " # 
c
 = 1.65%-1 can be assessed respectively.  

 
For these values and considering that 

! 

K " # 
c

= 0.200  min0.174 and that 

! 

n = 0.174 , the strain rate for a 
given time can be assessed using Equation (16) and the parameters mentioned above, the following 
strain rates were assessed for the selected times shown in the table. 
 

! 

"
d

# " 
c
 

! 

" %( )  

! 

E " # 
c
(%-1) Time (min) 

! 

˙ "  (%/min) 
10 8.2x10-2 
100 5.1x10-3 1.55 0.033 

1000 3.1x10-4 
1 1.2x10-2 

10 7.3x10-4 

0.446 

0 1.65 
100 4.5x10-5 
10 2.7x10-2 
100 1.6x10-3 1.0 0.084 

1000 1.0x10-4 
1 1.2x10-2 

10 7.3x10-4 

0.374 

0 1.65 
100 4.5x10-5 

Table 5 – Assessment of the “boundary” lines for creep tests with 

! 

"
d

# " 
c

= 0.446 and 

! 

"
d

# " 
c

= 0.374 . 
 
The “boundary” lines assessed on Table 5 are shown as thick dashed lines in the figures below: 
 



 
Figure 55 – Strain rate x time boundary lines for test with 

! 

"
d

# " 
c

= 0.446. 
 

 
Figure 56 – Strain rate x time boundary lines for test with 

! 

"
d

# " 
c

= 0.374 . 
 
In addition, the convexity of the strain rate x time curve can, of course, be seen on Figure 7 as well. 
 
When all the test results are compared together it can be seen that, in general, for creep tests with a 
deviatoric stress equal or smaller than 

! 

"
d

# " 
c

= 0.518 the prediction deviate more from the tests 
results than the other tests. Looking at the strain rate, it appears that tests that presented strain rates 
below 1x10-3 %/min show greater deviations than the others. The effect of the strain rate can also be 
seen on the Constant Rate of Strain tests. The tests with constant strain rate equal or lower than 
2.8x10-3 %/min show a smaller decrease in the strength with strain than the others. Therefore it is 
believed that 

! 

"
d

# " 
c

= 0.518 was affected by the thixotropy. 
 
 



Constant Load Tests 
 
In general, it can be said that the predictions carried out for the Constant Load Tests are also 
satisfactorily, both in qualitative and quantitative terms. As for the Creep tests results, a more 
detailed discussion will be presented below for the Constant Load tests. 
 
As the load is constant and the cross section area of the specimen increases with strain, the initial 
deviatoric stress decreases with strain as well. As pointed out before, the current deviatoric stress is 
related to the initial deviatoric stress by the equation 

! 

"
d

="
d
0

# 1$%( ). In this context, to answer the 
first question about the failure of a specimen subject to a given deviatoric stress, it is necessary to 
compare the current deviatoric stress with the frictional deviatoric stress for the same strain. This 
comparison can be made with the help of Figure 57 below. 
 
                                                                                                 
                                                                                                                               
 
 
                                                                    
                                                                 
 
 
 
  
 
 
 

 
 
 
 

Figure 57 - Constant Load Test. 
 

If the current frictional deviatoric stress is greater than the frictional deviatoric stress (for the same 
strain), the specimen will continue to deform. That means, if the constant load test curve is above 
the frictional deviatoric curve for any strain, the specimen will not stabilize. Stabilization will occur 
only if the current stress curve “touches” the frictional resistance curve. 
 
Undertaking this comparison for the Constant Load Tests, it is predicted that no test will stabilize 
for the range of strains experienced by the tests. The tests results show that in fact 7 of the 9 tests 
fail by reaching the minimum strain rate and presenting an increase in the strain rates afterwards. 
Tests 

! 

"
d 0

# " 
c

= 0.532  and 

! 

"
d0

# " 
c

= 0.528  did not pass through a minimum in strain rate although 
they experienced large strains (greater than about 7% in both tests) as predicted. In accordance to 
the concept that, by having a constant load curve above the frictional curve the specimen will not 
stabilize, these two tests can also be considered to have failed. Therefore predictions and test results 
regarding stabilization agree. 
 
The question about the minimum strain rate and its relationship with the strains will be addressed 
considering the stress decrease with the development of strains that occurs in a Constant Load Test. 
 
Because of the shape of the current deviatoric stress function, the minimum viscous resistance, and 
therefore, the minimum strain rate, will not necessarily occur for the strain related to the peak 
strength, but for a strain somewhat greater than that. The minimum strain rate will occur for the 
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strain where the viscous resistance is minimum. For the values of the initial deviatoric stresses of 
the tests carried out by Vaid and Campanella (1977) and considering the shape of the frictional 
resistance, the strain interval within which the minimum strain rates are expected to occur are 
between 2.9% and 4%. Table 6 below presents the predictions and the tests results data. 
 

Experimental Data Predictions 
σd0/σ’c Minimum 

dε/dt (%/min) 
Time 
(min) 

ε (%) Minimum dε/dt 
(%/min) 

Time (min) ε (%) 

0.630 0.243 6 3.17 0.161 to 0.2 6.4 to 13.8 2.7 to 4.0 
0.606 7.7 x 10-2 17.2 2.80 6.0 to 7.6 x 10-2 15.8 to 34.6 2.9 to 4.0 
0.592 5.1 x 10-2 30 3.23 3.1 to 4.0 x 10-2 28.9 to 65.2 2.9 to 4.0 
0.578 1.4 x 10-2 100 3.05 1.4 to 1.9 x 10-2 57 to 133.2 2.9 to 4.0 
0.558 6.7 x 10-3 300 3.91 4.9 to 6.7 x 10-3 179.2 to 449.5 2.9 to 4.0 
0.542 3.6 x 10-3 700 4.77 1.1 to 1.7 x 10-3 556 to 1510 2.9 to 4.0 
0.532 No minimum strain rate reached  4.1 to 6.7 x 10-4 1277 to 3906 2.9 to 4.0 
0.528 No minimum strain rate reached 2.65 to 4.44 x 10-4 1868 to 5925 2.9 to 4.0 

Table 6 – Comparison between predictions and the Constant Load tests results for the point of 
minimum strain rate. 

 
Comparison with test 

! 

"
d0

# " 
c

= 0.540  was not possible as the strain rate vs time curve of this test 
was not presented by Vaid and Campanella (1977).  
 
Apart from this test for which a comparison was not possible, it can be seen agreement between 
predictions and test results in 6 of the 8 tests.  
 
It is believed that the difference between the predictions and the tests results for Constant Load tests 
with 

! 

"
d0

# " 
c

= 0.532  and 

! 

"
d0

# " 
c

= 0.528  may also be attributed to the thixotropy effects as these 
were the only Constant Load tests that presented strain rates below 1x10-3 %/min.   
 
Conclusions 
 
Considering the results of the predictions for the sensitive undisturbed Haney Clay, the following 
conclusions can be made: 
 

• The separation of the shear strength of the Haney Clay into the frictional and viscous 
resistances for explaining the undrained creep behavior of the Haney Clay, as established by 
Martins (19992), can be considered adequate; 

• The viscous resistance can be represented by a power law function of the strain rate for the 
range of strain rates observed in this study; 

• The hypothesis of considering the frictional resistance as a unique function of the shear 
strain, and therefore independent of the strain rate, as established by Martins, was verified 
for the Haney Clay; 

• The hypothesis of normalization, as adopted by Martins (1992) was also verified for the 
Haney Clay; 

• The undrained behavior under constant stress or constant load for the Haney Clay can be 
considered as a unique process, an interaction between frictional and viscous resistances, 
and not a segmented one.  

• The minimum strain rates in creep tests are associated with the peak strength strain range as 
the minimum viscous resistance occurs within this strain range.  

• The minimum strain rates for the constant load tests occur at strains greater than the peak 
strength strain. However, the minimum strain rates for these tests are also associated with 



the minimum viscous resistance which occur for a different strain range than the creep tests. 
• The so-called “tertiary” creep, for the Haney Clay, can be considered as a consequence of 

the decrease of the frictional resistance and therefore increase in the viscous resistance of the 
soil; 

• The model developed by Martins (1992) for non-sensitive, saturated, normally consolidated 
clays, as modified by Alexandre (2006), was able to predict qualitatively the behavior of the 
sensitive Haney Clay. The model was also able to predict quantitatively the behavior of the 
Haney Clay for the tests not affected by the thixotropy.  
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