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Immersion and Invariance Control for Reference Trajectory Tracking
of Autonomous Vehicles

Gilles Tagne, Reine Talj and Ali Charara

Abstract— This paper presents design and validation of a
vehicle lateral controller for autonomous trajectory following
based on Immersion and Invariance (I&I) principle. The aim is
to minimize the lateral displacement of the autonomous vehicle
with respect to a given reference trajectory. The control input
is the steering angle and the output is the lateral displacement
error. A first version of this controller based on I&I principle
has been proposed previously by the authors in [1], but it
suffers from a lack of robustness in some critical situations, near
the nonlinear zones. In this paper, we propose a considerable
improvement in the used model and the control synthesis. To
validate the control strategy, the closed-loop system simulated
on Matlab-Simulink has been compared to the experimental
data acquired on the vehicle DYNA of Heudiasyc laboratory,
a Peugeot 308, according to several real driving scenarios.
The validation shows robustness and good performances of
the proposed control approach, and puts in evidence the
improvement with regard to the previous I&I control strategy
proposed in [1].

I. INTRODUCTION

Technological advances in recent years have favored the
emergence of intelligent vehicles with the capacity to an-
ticipate and compensate a failure (of driver, vehicle or
infrastructure) or even to ensure an autonomous driving.

An autonomous navigation requires three main steps:
• The perception: it consists on detecting the dynamical

environment of the vehicle including road, fix and
mobile obstacles, etc... A vision system composed of
sensors like cameras, lasers, radars and GPS is usually
used to achieve this goal. It provides a dynamic map of
the near environment of the autonomous vehicle.

• The path planning: it consists to generate and choose
one trajectory (reference path) in the navigable space,
according to several criteria.

• The vehicle control: it consists to handle the vehicle us-
ing actuators like brake, accelerator and steering wheel
to follow the reference path.

This paper focus on the third main step that treats the
vehicle control, more precisely, the lateral control of the
intelligent vehicle. This is a very active research field that
has been studied since the 1950s. Lateral control consists
on automatically steering the vehicle to follow the reference
trajectory. Given the high nonlinearity of the vehicle system
on one hand, and the uncertainties and disturbances of such
a system on the other hand, a very important issue to
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be considered in the control design is the robustness. The
controller should be able to reject the disturbances caused
by wind, coefficient of friction of the road and many other
reasons, and able to deal with parameter uncertainties and
variations.

For over 20 years, considerable research is conducted to
provide lateral guidance of autonomous vehicles. Several
control strategies have been developed in the literature. Sim-
ple Proportional (P) and Proportional-Integral (PI) controllers
have been proposed in [2] and [3] respectively. Also a nested
PID controller is presented in [4]. On the other hand, adaptive
controllers have been developed for this application, as in
[5]. Moreover, different other classical techniques have been
applied: H∞ control in [6], state feedback control in [7],
Lyapunov stability based control in [8], artificial intelligence
in [9], fuzzy logic in [10], linear quadratic optimal predictive
control in [11], and many other techniques.

Robust control as the sliding mode technique has been
applied to the lateral control in [12], [13], and [14]. This
control strategy is well suited to driving conditions, given its
robustness against uncertainties and its capacity to reject dis-
turbances encountered in automotive applications. However,
its main drawback is the chattering.

On the other hand, Model Predictive Control (MPC)
appears to be well suited to the trajectory following [15],
[16], [17]. It allows to consider the problem of trajectory
tracking for nonlinear systems taking into account the con-
straints on the state variables and/or control inputs. However,
the computation time increases considerably at high speed
autonomous driving, what renders difficult the use of such
method in real-time operation [11].

With such advances in this domain, the proposed con-
trollers have been subject of several performance comparison
as in [18], where a comparison is made between proportional,
adaptive, H∞ and fuzzy controllers. Different comparisons
showed that the class of adaptive controllers represents a
very promising technique for such uncertain and nonlinear
application.

The Immersion and Invariance (I&I) principle is a rel-
atively new method for designing nonlinear and adaptive
controllers for (uncertain) nonlinear systems. The method
relies upon the notions of system immersion and manifold
invariance. The basic idea of the I&I approach is to achieve
the control objective by immersing the plant dynamics into a
(possibly lower-order) target system that captures the desired
behavior [19]. This is achieved by finding a manifold in
state-space that can be rendered invariant and attractive –
with internal dynamics that reflect the desired closed-loop



dynamics– and by designing a control law that takes the
state of the system towards the manifold.

In [1], we have developed a controller based on the I&I
approach for autonomous lateral trajectory tracking. During
validation with real data, we noticed that an offset appears in
the lateral displacement error after an important solicitation
of the vehicle near the nonlinear operating zone. This offset
is due to the use of the yaw angle error in the control
input, which is noisy variable and difficult to measure. To
solve this problem, we have previously added a term of
robustness to the control input to cancel the lateral error.
In this paper, we propose a solution to the problem in the
design of the I&I controller, where another state variables –
reliable in measure or estimation [20]– are used to represent
the vehicle dynamics. Moreover, this method allows to prove
a very strong stability criterion of the closed–loop system
with this I&I controller, for all controller gains chosen to be
positive. Some interesting characteristics of the system are
demonstrated and used to succeed to this result.

To design the controller, we consider that the vehicle is
equipped with sensors and/or observers to measure sideslip
angle, yaw rate, lateral error and its derivative. To validate the
proposed approach, tests were made with real data acquired
on the vehicle DYNA, on the tracks and circuits of CERAM1.
The simulation results show the performance and robustness
of the proposed approach.

This paper is organized as follows. Section II presents the
dynamical models of the vehicle, used for control design and
validation. In Section III, the I&I main principle is presented
and the control strategy for lateral vehicle dynamics is
developed. Section IV presents the simulation results and the
performance validation of the proposed controller. Finally,
we conclude in Section V, with some remarks and future
work directions.

II. DYNAMIC MODELS OF VEHICLE

In this work, we use two vehicle models. The first one
is the bicycle model used in Section III.B for the control
design for its simplicity. The second is the 4-wheel vehicle
model used to validate in simulation the proposed controller
in closed-loop.

A. Bicycle model

To design the controller, a simple and widely used dy-
namic bicycle model [7] is considered. This model is used
to represent the lateral vehicle behavior (lateral acceleration,
yaw rate, sideslip angle) and assumes that the vehicle is
symmetrical, and tire sideslip angles on the same axle
are equal. The roll and pitch dynamics are neglected and
angles are assumed to be small (steering, sideslip, yaw).
With a linear tire force model we obtain a linear parameter
varying (LPV) model, where the longitudinal velocity Vx is
considered as a varying parameter. Dynamic equations in

1CERAM -”Centre d’Essais et de Recherche Automobile de Morte-
fontaine” is an automobile testing and research center located in France.

terms of slip angle and yaw rate of the bicycle model are
given by: β̇ =− (C f +Cr)

mVx
β − (1+ L f C f−LrCr

mV 2
x

)ψ̇ +
C f
mVx

δ

ψ̈ =−L f C f−LrCr
Iz

β −
L2

f
C f +L2

rCr

IzVx
ψ̇ +

L f C f
Iz

δ

(1)

where β and ψ represent respectively the sideslip angle
and the yaw angle of the vehicle. Table I presents vehicle
parameters and nomenclature.

TABLE I
VEHICLE PARAMETERS AND NOMENCLATURE (BICYCLE MODEL)

Vx Longitudinal velocity - [m/s]
β Sideslip angle - [rad]
ψ̇ Yaw rate - [rad/s]
δ Steering wheel angle - [rad]
m Mass 1719 [kg]
Iz Yaw moment of inertia 3300 [kgm2]
L f Front axle-COG distance 1.195 [m]
Lr Rear axle-COG distance 1.513 [m]
C f Cornering stiffness of the front tire 170550 [N/rad]
Cr Cornering stiffness of the rear tire 137844 [N/rad]

B. 4-wheel model

To compare our simulation results with real data, we used
a more representative model; namely, the 4-wheel model to
represent the behavior of the vehicle and Dugoff’s tire model
for longitudinal and lateral forces [21].

III. I&I CONTROLLER DESIGN

After a brief presentation of the I&I principle and the
controller developed above, we will present the design of a
new controller.

A. I&I main principle

The developed controller is based on the following theo-
rem, representing the main stabilization result of the Immer-
sion and Invariance method.

Theorem 1: [19] Consider the system

ẋ = f (x)+g(x)u, (2)

with x ∈ Rn, u ∈ Rm, and an equilibrium point x? to be
stabilized. Assume that there exist smooth mappings α :
Rp → Rp, π : Rp → Rn, φ : Rn → Rn−p, c : Rp → Rm and
v : Rnx(n−p)→Rm, with p < n, such that the following hold.
• (A1) The target system

ξ̇ = α(ξ ), (3)

with ξ ∈ Rp has a globally asymptotically stable equi-
librium at ξ ? ∈ Rp and

x? = π(ξ ?). (4)

• (A2) For all ξ ∈ Rp,

f (π(ξ ))+g(π(ξ ))c(π(ξ ))) =
∂π

∂ξ
α(ξ ). (5)

• (A3) The set identity

{x ∈ Rn| φ(x) = 0}= {x ∈ Rn | x = π(ξ ), ξ ∈ Rp} (6)



holds.
• (A4) All trajectories of the system

ż =
∂φ

∂x
( f (x)+g(x)v(x,z)) , (7)

ẋ = f (x)+g(x)v(x,z), (8)

are bounded and (7) has a uniformly globally asymp-
totically stable equilibrium at z = 0.

Then x? is a globally asymptotically stable equilibrium of
the closed-loop system

ẋ = f (x)+g(x)v(x,φ(x)). (9)

���
Any trajectory x(t) of the closed-loop system ẋ = f (x)+

g(x)v(x,φ(x)) is the image through the mapping π(.) of a
trajectory ξ (t) of the target system. Note that the mapping
π : ξ → x is an immersion, i.e., the rank of π is equal to the
dimension of ξ . Then, the approach consists on applying a
control law that renders the manifold x = π(ξ ) attractive and
keeps the closed-loop trajectories bounded.

B. I&I Version 1 (I&I V1) controller

In [1], we have developed a controller based on the
principle of Immersion & Invariance for autonomous lateral
trajectory tracking. This controller is based on a bicycle
model with the following state variables: the yaw angle error,
the yaw rate error, the lateral displacement error and its
derivative;

χ = (ψ̃, ˙̃ψ,e, ė)

with ψ̃ = ψ−ψ?, the yaw angle error.
During validation we noticed that an offset appears in the

lateral displacement error after an important solicitation of
the vehicle near the nonlinear operating zone. This offset is
due to the use of the yaw angle error in the control input,
which is estimated by integrating the yaw rate error noisy
in measurement. To solve this problem, we have previously
added a term of robustness δrob to the control input, of the
form:

δrob =−α
|ė+λe|
|ė+λe|+ ε

∫
sign(ė+λe) , (10)

to cancel the lateral error.
In this paper, we propose a solution to the problem in the

design of the I&I controller, where another state variables
–reliable in measure or estimation– are used to represent the
vehicle dynamics. The proposed model reformulation avoids
the use of the yaw angle error. Instead, the sideslip angle is
used, this variable can be estimated as in [20].

C. I&I Version 2 (I&I V2) controller design

The lateral error dynamics at the center of gravity of the
vehicle, with respect to a reference trajectory, is given by:

ë = ay−ayre f (11)

where ay and ayre f represent respectively the lateral accel-
eration of the vehicle, and the desired one on the reference
trajectory. Assuming that the desired lateral acceleration of

the vehicle can be written as ayre f = V 2
x ρ , where ρ is the

curvature of the road and given that ay = Vx(β̇ + ψ̇), we
have:

ë =Vx(β̇ + ψ̇)−Vx
2
ρ (12)

Replacing β̇ by its expression in equation (1), we obtain:

ë =−C f +Cr
m β − L f C f−LrCr

mVx
ψ̇−V 2

x ρ +
C f
m δ (13)

The new system state variables are the sideslip angle, the
yaw rate, the lateral error and its derivative. The system has
the following dynamics:

ẋ = Ax+B1δ +B2ρ (14)

where,

A =


− (C f +Cr)

mVx
−1− (L f C f−LrCr)

mV 2
x

0 0

− (L f C f−LrCr)

Iz
−

(L2
f
C f +L2

rCr)

IzVx
0 0

− (C f +Cr)

m − (L f C f−LrCr)

mVx
0 0

0 0 1 0



B1 =


C f
mVx

L f C f
Iz

C f
m
0


B2 =


0
0
−V 2

x
0


The control input is the steering angle and the lateral

displacement is the output. The aim of the lateral control
is to cancel the lateral error displacement. Then, for a given
curvature ρ and longitudinal velocity Vx, the desired behavior
corresponds to ė1 = e1 = 0. Hence, it is easy to prove that
the desired equilibrium point is [7]:

(β , ψ̇, ė,e)> = (β ?, ψ̇?,0,0)>

with

β ? = (Lr−
L f mV 2

x
Cr(L f +Lr)

)ρ

ψ̇? =Vxρ

(15)

At the equilibrium point, the control input is:

δ
? =

L fC f −LrCr

L fC f
β
? +

L2
f
C f +L2

r Cr

L fC fVx
ψ̇

? (16)

We define the new error variables:
β̃ = β −β ?

˙̃ψ = ψ̇− ψ̇?

δ̃ = δ −δ ?
(17)

Hence, the error dynamics of the system (14) having the ori-
gin as equilibrium point (β̃ , ˙̃ψ, ė,e)> = (0,0,0,0)> become:

˙̃x = Ax̃+B1δ̃ (18)

where, A and B1 have been defined above.
Now, consider the vehicle lateral dynamical model (18).

As mentioned before, the main objective of the steering



controller is to cancel the lateral error displacement with
respect to a given trajectory, then e= ė= 0 at the equilibrium.
Hence, the target dynamical system (ξ1,ξ2) with ξ1 = β̃ and
ξ2 = ˙̃ψ , has been chosen as the image of the system (18)
when e = ė = 0. Notice that for e = ė = 0, we have also
ë = 0. The target dynamics can be expressed as follows,[

ξ̇1

ξ̇2

]
=

[
0 −1

Cr(L f +Lr)

Iz
−LrCr(L f +Lr)

IzVx

][
ξ1
ξ2

]
(19)

Proposition 1: The target model (19) has a globally
asymptotically stable equilibrium at the origin (0,0).

Proof: The dynamics of the state vector ξ = [ξ1,ξ2]
can be written in the form ξ̇ =Cξ , with

C =

[
0 −1

Cr(L f +Lr)

Iz
−LrCr(L f +Lr)

IzVx

]
(20)

Then, after some simple calculations, we obtain:

det(sI−C) = s2 +
LrCr(L f +Lr)

IzVx
s+

Cr(L f +Lr)

Iz
(21)

The matrix C verifies the Routh-Hurwitz stability criterion
(Vx > 0), what yields to the desired result.

Proposition 2: Consider the system (18) having the equi-
librium point at the origin. Moreover, the subsystem (19),
which is the image of the system (18) for e = ė = 0, has
a globally asymptotically stable equilibrium at the origin.
Then, the system (18) is I&I-stabilisable with target dynam-
ics (19).

Proof: We define now the off-the-manifold variable

z = ė+λe, s.t. λ > 0 (22)

We have to select a control input δ̃ such that the trajectories
of the closed-loop system are bounded and z = ė + λe
converges to zero. Notice that, when z → 0, e converges
exponentially to zero with the rate of convergence λ . Then,
ė converges also to zero, yielding to the desired result.
To this end, let

ż =−Kz, with K > 0. (23)

K represents the rate of exponential convergence of z to zero.
Given the principle of the controller, it can be noticed that
there are two manifolds, an outer manifold M1 reached
when the off-the-manifold variable z converges exponentially
to zero with the rate of convergence K > 0. Then, an inner
manifold M2 can be reached from any point in M1 with
the off-the-manifold variable e that converges exponentially
to zero with the rate of convergence λ > 0.

Replacing ż and z by their expressions in (23), and
after some calculations, one can find that the corresponding
control input has the following expression:

δ̃ =−m(K +λ )

C f
ė− mKλ

C f
e+

C f +Cr

C f
β̃ +

L fC f −LrCr

C fVx
˙̃ψ (24)

The closed-loop system becomes:
˙̃
β

¨̃ψ
ë
ė

=

[
A11 A12
A21 A22

]
β̃

˙̃ψ
ė
e

 (25)

with,

A11 =

[
0 −1

Cr(L f +Lr)

Iz
−LrCr(L f +Lr)

IzVx

]
=C,

A12 =

[ −(K+λ )
Vx

−Kλ

Vx

−L f m(K+λ )

Iz
−L f mKλ

Iz

]
,

A21 =

[
0 0
0 0

]
,

A22 =

[
−(K +λ ) −Kλ

1 0

]
.

The closed-loop system can be interpreted as the inter-
connection of two subsystems: S1 with the state variables
(β̃ and ˙̃ψ), and S2 (with the state variables ė and e). Given
that the interaction matrix A21 is identically zero, hence, the
dynamics of the subsystem S2 are independent of S1, and
can be written as follows:[

ë
ė

]
=

[
−(K +λ ) −Kλ

1 0

][
ė
e

]
(26)

The subsystem S2 combines and represents the interactions
between the dynamics of both off-the-manifold variables z
and e, which ensure convergence to the manifolds M1 and
M2 respectively.

Proposition 3: The subsystem S2 has a globally asymp-
totically stable equilibrium at the origin (0,0).

Proof: The dynamics of the state vector ζ = [ė,e] can
be written in the form : ζ̇ = A22ζ . The matrix A22 verifies
the Routh-Hurwitz stability criterion, for all λ > 0 and K > 0,
hence the attractivity of both manifolds is ensured. Then, the
rates of convergence K and λ have to be chosen based on
other practical considerations related to the system.

The subsystem S1 depends on S2 via the matrix A12.
Defining ũ = (K +λ )ė+Kλe, the subsystem S1 in closed-
loop has the form:[

˙̃
β

¨̃ψ

]
= A11

[
β̃

˙̃ψ

]
+

[
− 1

Vx

−L f m
Iz

]
ũ (27)

Finally it is clear that when S2 converges to (0,0), the input
ũ of the subsystem S1 converges to zero. Then, the system S1
converges to the target system, whose dynamics (19) is stable
and converges to (0,0). Indeed, we have proved previously
that this target model has a globally asymptotically stable
equilibrium at the origin (0,0). So, the trajectories of the
closed-loop system are bounded, yielding to the desired
result.

Finally, the control input applied to the system (14) is:

δ = δ̃ +δ ? =−m(K+λ )
C f

ė− mKλ

C f
e+ C f +Cr

C f
β

+
L f C f−LrCr

C f Vx
ψ̇ + mV 2

x
C f

ρ
(28)



To apply our control law, the yaw rate, lateral error and its
derivative are measured. The sideslip angle is estimated.

IV. SIMULATION RESULTS
The experimental data used here are acquired on the

CERAM test circuits by the vehicle DYNA of Heudiasyc
laboratory (Fig. 1). This vehicle is equipped with several
sensors: an Inertial Measurement Unit (IMU) measuring
accelerations (x, y, z) and the yaw rate, the CORREVIT
for measuring the sideslip angle and longitudinal velocity,
torque hubs for measuring tire-road efforts and vertical loads
on each tire, four laser sensors to measure the height of the
chassis, GPS and a CCD camera. Data provided via the CAN
bus of the vehicle are also used, as the steering angle, and
the rotational speed of the wheels.

Fig. 1. Experimental vehicle (DYNA)

To validate our control law, we perform several tests on
the vehicle DYNA. The collected data are reference data
that will be compared to those obtained by simulation of
the closed–loop system with a complete 4-wheel vehicle
model and the developed I&I controller. For the control
law, we used the gains λ = 8 and K = 1, with the nominal
vehicle parameters (see Table I). We compared the results
of the controller that we developed previously [1], called
I&I V1 with the one developed in this paper (I&I V2), to
highlight the improvements. After that, we will perform tests
of robustness with respect to parametric uncertainties and
varriations of the new controller.

A. Test of the controller during normal driving

The first test (Figures 2, 3, 4 and 5) was carried out with
the goal of verifying the robustness of the controller during
normal driving. The lateral acceleration is less than 4m/s2.
Longitudinal velocity is almost constant (13.5m/s).
Fig. 2 shows the longitudinal speed variations. Fig. 3 presents
different curves: the reference path and the trajectory fol-
lowed by the controlled vehicle ; the lateral deviation ; and
the yaw angle error.

We observe that the I&I V1 controller and the I&I V2
can ensure the convergence to zero of the lateral error. After
a large curvature, we note the presence of an offset in the
measurement of the yaw rate. Hence, a bias appears in the
yaw angle given that the latter is estimated by integrating
the yaw rate. The I&I V1 controller depends on the yaw
angle error, what renders the robustness of the controller
weak, and subject for measures imprecisions. However, the
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I&I V2 controller is conceived in such a way to avoid the
dependence on the fragile yaw angle error. Hence, this new
controller allows to overcome the mentioned problem, it is
able to track the reference path with small error under various
conditions. The displacement from the guideline does not
exceed 5cm in transient phase in this test conditions.
Fig. 4 presents dynamic variables of the vehicle: the steering
angle, the yaw rate and the lateral acceleration. We compared
the real data with data given by the simulated closed-loop
system. Dynamic variables are very close to the measured
ones. When the system is in the linear zone (e.g. for
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low steering angle), the controllers I&I V1 without robust
term and I&I V2 have similar responses. In this case, the



robust term disturbs the system behavior (at low curvature
variations), indeed it caused undesired peaks in the lateral
error (see Fig. 3-b) and some oscillations in the control input
(see Fig. 5). It therefore requires a delicate adjustment of the
robustness term parameters, which is not obvious.
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In this scenario, although the assumption of small angles
is not respected (the steering angle is greater than 12 degrees
while turning), the new controller is able to follow the path
with lower error than the previous. This first simulation
shows the good performance and robustness of the controller.
Note that in the previous controller, the addition of the
robust term was necessary to follow the reference trajectory
with low errors after a strong non-linearity. Moreover, an
important improvement to be noticed is the smoothness of
the control input (steering angle) with the new controller at
the contrary of the previous one (Fig. 5).

B. Robustness of the controller during driving at high and
varying speed

The Second test (Figures 6 and 7) was carried out with
the goal of verifying the robustness of the controller during
normal driving at high and varying speed. Longitudinal speed
varies between 5m/s and 25m/s. Note that the maximal
lateral acceleration is 5m/s2. In this scenario we have some
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manoeuvres at low speed (large curvature) and at high speed.
However, the lateral displacement of the closed–loop system
remains smaller than 5cm in this test conditions, while the
lateral error with the previous controller reaches 20cm (Fig.
7). The narrow peak of the I&I V1 shows that the I&I V2
is more robust to strong non-linearities caused by a large
steering.

These two tests show the good performance and improve-
ments of the new control strategy during normal driving at
high and varying speed.

Fig. 7. Trajectories: Real (reference) and simulation (control laws)

C. Robustness of the new controller to vehicle parameters
uncertainties

Several parameters of the vehicle can be uncertain, for
example, the cornering stiffness, the mass, etc.

It is difficult to estimate accurately the cornering stiffness
of the tire. Moreover, this parameter varies greatly depending
on the type of road, the vertical load, camber, etc. It is
therefore important to assess the robustness of the controller
over cornering stiffness variations. Fig. 8 presents lateral
errors for different cornering stiffness. Despite a +/−30%
of variation in the value of cornering stiffness, the controller
is able to follow the path with acceptable errors. In other
words, the controller could be able to track the trajectory
(giving acceptable errors) with a road coefficient of friction
of 0.7. Indeed, the robustness of the controller against
cornering stiffness variations, implicitly allows us to evaluate
the robustness with respect to an unknown road coefficient
of friction.
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Fig. 8. Robustness against uncertainties of cornering stiffness

The mass of the vehicle may vary or be poorly estimated.
It depends on the number of persons in the vehicle and the
amount of fuel. We performed a last test concerning the
robustness of the control law against the uncertainties on the
vehicle mass (Fig. 9). For variations in the order of 10%, the
error remain acceptable.

We note that large variations in the parameters degrade
performance but stability is maintained. This clearly shows
that we have a robust stability (do not depend on the value
of the parameters of the system).

We also assess a test to evaluate the robustness of the
controller to strong nonlinear dynamics. This test shows that
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Fig. 9. Robustness against uncertainties of vehicle mass

the control law can ensure good behavior with high lateral
accelarations up to 8m/s2. Finally, these results show the
robustness of the controller.

V. CONCLUSIONS

In this paper, a lateral controller for autonomous vehicles
has been proposed. This control strategy is based on the
Immersion and Invariance theory to provide robust lateral
tracking of a reference trajectory. An simulation validation
has been done according to several scenarios representing
different driving situations. The different tests performed
highlight the robustness of the developed control law. Note
that the robustness of the controlled system has been tested
with respect to speed, curvature variations and parametric
uncertainties /varriations (the cornering stiffness, the mass).
The new controller has better performance than the previous
one [1]. It achieves lower errors and a smooth steering. In
addition, it is not necessary to add a term of robustness
to ensure an exact path tracking even in high nonlinear
situations at the limit of stability.

Stability of the system is assured with the proposed I&I
controller for all its gains λ > 0 and K > 0. This is a very
strong result that reveals some interesting characteristics of
the system. More deep and promising characteristics of the
system are under study now by the authors. Moreover, several
parameters of the vehicle and its environment can be uncer-
tain or varying, for example, the cornering stiffness, the mass,
the road coefficient of friction etc. Then, in future work,
we will study the stability and robustness of the proposed
controller with respect to these parameters variations and
uncertainties. We will do a thorough study of the system to
define the performances (stability margins, robustness) for
high speed driving. Also, we will do a comparative study
with other control strategies to highlight the improvements
of this strategy in terms of robust stability and robustness
with respect to parametric uncertainties.

Moreover, our robotized vehicle arriving soon in the
laboratory Heudiasyc, we will also test this control law on a
semi-autonomous vehicle.
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