N Bourgeois
email: bourgeois@lamsade.dauphine.fr

A Giannakos
email: giannako@lamsade.dauphine.fr

G Lucarelli
email: lucarelli@lamsade.dauphine.fr

I Milis
email: milis@aueb.gr

V Th

O Paschos
email: paschos@lamsade.dauphine.fr

Pottié
email: pottie@lamsade.dauphine.fr

‡ I Milis

Paschos

O Pottié

The MAX QUASI-INDEPENDENT SET problem

In this paper, we deal with the problem of finding quasi-independent sets in graphs. This problem is formally defined in three versions, which are shown to be polynomially equivalent. The one that looks most general, namely, f -QIS, consists of, given a graph and a non-decreasing function f , finding a maximum size subset Q of the vertices of the graph, such that the number of edges in the induced subgraph is less than or equal to f (|Q|). For this problem, we show an exact solution method that runs within time O * (2 d-27/23 d+1 n) on graphs of average degree bounded by d. For the most specifically defined γ-QIS and k-QIS problems, several results on complexity and approximation are shown, and greedy algorithms are proposed, analyzed and tested.

Introduction and preliminaries

The problem of finding in a graph a maximum size subgraph whose density differs (being smaller or larger) from that of the whole graph, arises often in various application contexts. For example, inputs may represent graphs, wherein dense (with respect to the input) subgraphs are sought, as it is the case for call details database mining [START_REF] Abello | Massive quasi-clique detection[END_REF], or protein-protein interaction networks analysis [START_REF] Hartwell | From molecular to modular cell biology[END_REF]. In other cases, inputs may represent graphs from which one wants to extract maximum size, sparser than the input graphs, as for example in visualization tools for stock market interaction graphs [START_REF] Boginski | Mining market data: a network approach[END_REF].

In this paper we address the problem of finding in a graph a maximum size subgraph whose sparsity is less than or equal to a value specified with the input. In the case that appears as most general, the sparsity of a graph is measured by means of a function bounding the number of edges in the sought subgraph and depending on its size; we also study some special forms of this function, namely, when it has the form of the ratio of the number of edges of the solution to the number of edges in a complete graph of equal size, and also when it is a numeric parameter of the input.

We denote by G a simple finite graph without loops, by V and E(G) its vertex set and its edge set, respectively, and by n and m their respective sizes. Let A, B be two subsets of V . The induced subgraph by A in G is denoted by G[A] and its edge set by E[A], respectively. The edge set with one extremity in A and the other in B \ A will be denoted as E[A, B]. Clearly, if A and B are disjoint then E[A, B] = E[B, A] and E[A, A] = ∅. The degree of A towards B is equal to |E[A, B]| and is denoted by δ B (A); when A is reduced to a singleton {v}, we denote its degree in B by δ B (v), or simply by δ(v) whenever B = V . The maximum vertex degree in a graph G is denoted by ∆ G or simply by ∆ if there is no risk of confusion. We also set d B (A) = 1/|A| v∈A δ B (v), and d = 1/n v∈V δ(v).

We tackle the following variants of the quasi-independent set problem.

Maximum f -Quasi-Independent Set (f -QIS, the general quasi-independent set problem): Given a graph G and a polynomially computable non-decreasing real function f : N → R, find the largest possible

Q ⊆ V such that |E[Q]| ≤ f (|Q|).
In the above definition, f is used as a sparsity specification for the induced subgraph of the sought solution. We study in particular two variants of f -QIS, denoted by γ-QIS and k-QIS, respectively, formally defined in what follows.

In the first one, sparsity specification is given in the special form of the ratio of the number of edges in the subgraph induced by the quasi-independent set over the number of edges induced by a complete graph of the same size: Maximum γ-Quasi-Independent Set (γ-QIS): Given a graph G and a real γ, 0 ≤ γ ≤ 1, find the largest possible

Q ⊆ V such that |E[Q]| ≤ γ |Q| 2 .
It is easy to see that γ-QIS is not hereditary (a problem is said hereditary if its solutions satisfy some non-trivial hereditary property). Indeed, given a feasible solution for γ-QIS, the induced subgraph

G[Q ′] of a subset Q ′ of Q may violate the sparsity condition |E(Q ′)| γ|Q ′ |(|Q ′ | -1)/2.
In the second restricted variant of the problem considered in the paper, we simply seek for a maximum vertex subset of the graph with no more than a constant number of edges having both extremities in it:

Maximum k-Quasi-Independent Set (k-QIS): Given a graph G and a positive integer k, find the largest possible

Q ⊆ V such that |E[Q]| ≤ k.
Clearly, k-QIS is hereditary. In fact, it is easy to see that k-QIS belongs to the family of node-deletion problems, first defined in [START_REF] Krishnamoorthy | Node-deletion NP-complete problems[END_REF] and further studied in [START_REF] Yannakakis | The node-deletion problem for hereditary properties is NP-complete[END_REF]. Formally, a node-deletion problem consists of finding, given a graph G and a non-trivial hereditary property P , the minimum number of vertices of G that one has to delete from G, in order to have P satisfied in the remaining graph. In [START_REF] Yannakakis | The node-deletion problem for hereditary properties is NP-complete[END_REF], it is proved that the decision version of such problems is NPcomplete even for planar graphs.

For f ≡ 0 (resp., γ = 0 and k = 0), Q is simply a maximum independent set in G, while for f : f (|Q|) ≥ m (resp., for γ ≥ 2m/n(n -1) and k ≥ m), Q = V is a trivial solution; being a direct generalization of max independent set, the f -, γ-and k-QIS problems are obviously inapproximable within better than O(n 1-ǫ), unless P = NP [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF].

In [START_REF] Abello | Massive quasi-clique detection[END_REF] essentially the same problem as γ-QIS is addressed, formulated as the research, given a graph and 0 ≤ γ ≤ 1, of a maximum subgraph of sparsity (defined as the ratio of the number of its edges over the number of edges of the complete graph of the same size) at least γ; any solution to this problem can be obtained as the complementary of a quasi-independent set of sparsity at most 1γ in the complementary of the input graph. The authors present an algorithm equivalent to the greedy algorithm for γ-QIS, analyzed later in this paper; however, they focus in implementation issues on very large instances and they don't attempt to analyze its performance. To our knowledge, the k-QIS problem has been specifically formulated for the first time in [START_REF] Hochbaum | k-edge subgraph problems[END_REF]. The authors call it the k-edge-in subgraph problem. Nevertheless, in this paper the problem is not addressed, but simply mentioned as related to other subgraph problems on which it focuses.

A kind of dual of the maximum quasi-independent set problem is to search, given a graph and a positive integer k, for the sparsest -or densest -(maximal) subgraph with exactly k vertices. This kind of problems have been extensively studied during the last years under the names of "k-sparsest" or "k-densest subgraph" problem (see, for example, [START_REF] Asahiro | Greedily finding a dense subgraph[END_REF][START_REF] Feige | The dense k-subgraph problem[END_REF][START_REF] Hochbaum | k-edge subgraph problems[END_REF]).

The remainder of the paper is organized as follows. Section 2 gives several bounds to the optimal solutions for γ-QIS. Section 3 tackles a specific polynomial case for the three variants of max quasi-independent set and proves its NPhardness in bipartite graphs. In Section 4 an exact solution method with nontrivial worst-case running time for the general f -QIS problem is presented and analyzed. As we discuss here this method applies also to other combinatorial optimization problems. Finally, in Section 5 approximation results are proved for both γ-QIS (Subsection 5.1) and k-QIS (Subsection 5.

2).

In what follows, when we indifferently refer to either one of the quasiindependent set versions defined above, we use the term max quasi inpendent set instead. Also, when no confusion arises, we sometimes use f -, or γ-, or k-QIS in a twofold way: either to denote the problem itself, or to denote a feasible solution of the corresponding problem.

Solution properties and bounds

As it is already mentioned, in general, γ-QIS is not a hereditary problem; just consider an instance where the graph is an edge plus some isolated vertices, and γ is the smallest possible for having the whole graph as a trivial solution. Obviously, the sparsity condition will be violated for any strict part of the solu-tion containing the edge. However, γ-QIS is still a weakly hereditary problem, in the sense given by the following lemma that will be used later.

Lemma 1 Let Q be a γ-QIS in G, of size q. Then, for any k ≤ q, there exists in G some γ-QIS R(k) ⊆ Q, of size k.

Proof: Let p < q be the maximum value such that the property is false. Consider some R(p + 1); for any v ∈ R(p + 1) it is γp(p-1)

2 < |E[R(p + 1) \ v]|.
Summing up these inequalities, we get:

γp(p -1)(p + 1) 2 < v∈R(p+1) |E[R(p + 1) \ v]| = (p + 1)|E[R(p + 1)]| - v∈R(p+1) δ R(p+1) (v) = (p + 1)|E[R(p + 1)]| -2|E[R(p + 1)]| ≤ γ(p -1)p(p + 1) 2
which is a contradiction.

Next lemma gives some bounds for the solutions of the γ-QIS.

Lemma 2 Let Q be any non-trivial γ-QIS (0 < γ < m/ n 2), with size q, not contained in any γ-quasi-independent set of size q+1. Let ϑ(Q) = min v∈V \Q {δ Q (v)}, let Q * = Q be an optimal solution for γ-QIS, q * be its size, and for any vertex-subset P , let d(P) be the average degree of the subgraph induced by P (recall that we denote d(V) by d). Finally, let α min be the size of a smallest maximal independent set (minimum independent dominating set) in G. Then:

(1) q * ≤ α min ∆; (2) q * q ≤ ∆ ϑ(Q) ; (3) q ≥ n -∆ γ ; (4) q * ≤ ∆ γ ; (5) q * ≤ dn γ ; (6) q * ≤ d(Q *)+2 γ -1.
Proof: Let S be a smallest maximal independent set in G, denote by Q * a quasiindependent set of maximum size, and set S ′ = Q * ∩ S. By the maximality of S, q * -|S ′ | ≤ δ S (Q *) ≤ (|S| -|S ′ |)∆; hence q * ≤ |S|∆ = α min ∆ and item 1 is proved.

We now prove item 2. By the definition of Q, it is ϑ(Q) > 0 and:

ϑ(Q)(n -q) ≤ δ V (Q) = v∈Q δ(v) -2|E[Q]| ≤ ∆q (1)
By a similar argument, it holds that ϑ(Q

)(q * -|Q * ∩Q|) ≤ δ Q\(Q * ∩Q) (Q * \ (Q * ∩ Q)) ≤ ∆(q -|Q * ∩ Q|)
, and hence:

q * q ≤ q * -|Q * ∩ Q| q -|Q * ∩ Q| ≤ ∆ ϑ(Q) (2)
By the definition of Q, we have also that:

γ q(q + 1) 2 < |E[Q]| + ϑ(Q) ≤ γ q(q -1) 2 + ϑ(Q) ⇒ ϑ(Q) > γq (3)
Combining (1) and (3) we get γq(nq) ≤ ∆q ⇒ q ≥ n -∆ γ , that proves item 3, while combining (2) and (3) we get immediately q * ≤ ∆ γ , proving so item 4. Assuming that Q * is non-trivial, we get γq(q+1)

2 < m = dn 2 ⇒ γq 2 2 < dn 2 ⇔ q * ≤ dn
γ , that proves item 5, and also that γq(q+1)

2 < |E[Q ∪ v]| ≤ |E[Q]| + q = d(Q)q 2 + q ⇔ γ(q + 1) < d(Q) + 2 ⇒ q * < d(Q *)+2
γ -1 that proves item 6 and completes the proof of the lemma.

Complexity results for max quasi-independent set in various graph-classes

The following proposition claims that all three variants of max quasi inpendent set dealt in this paper are closely interrelated.

Proposition 1 f -QIS, γ-QIS and k-QIS are polynomially equivalent with respect to their exact solution.

Proof: (i) We first show that γ-QIS f -QIS. This is trivial since the condition for sparsity formed as expression of γ is, as noted before, just one particular case of a sparsity specification defined by f (q) = γq(q -1)/2. (ii) We now show that f -QIS k-QIS: indeed, consider an instance I = (G, f) of the f -QIS problem, and let Q * (I) be any of its optimal solutions; denote its size by q * (I). Let |E[Q * (I)]| = k ′ ≤ f (q * (I)) be the number of the edges in this optimal; clearly, Q * (I) should be also an optimal solution for the instance (G, k ′) of the k-QIS problem, i.e., some instance (G, i) with 0 ≤ i ≤ m. Thus, q * (I) has to be the size of one of the optimal solutions Q * (G, i) of the family of instances {(G, i) : 0 ≤ i ≤ m}, and more specifically of such an optimal Q * (G, i)

that satisfies argmax i {q * (G, i) : |E[Q * (G, i)]| ≤ f (q * (G, i))}.
Since there are at most m of k-QIS instances to solve, the claim follows.

(iii) Now it remains to show that k-QIS γ-QIS. In a similar manner as before, consider some instance I = (G, k) of the k-QIS, and let Q * (I) be any of its optimal solutions; denote its size by q * (I). Let |E[Q * (I)]| = k ′ ≤ k be the number of edges in this optimal; clearly, Q * (I) must also be an optimal solution for some instance (G, γ(q * (I), k ′)) with γ(q * (I), k ′) = 2k ′ q * (I)(q * (I)-1) of the γ-QIS problem; notice that 0 ≤ k ′ ≤ k ≤ m and, w.l.o.g., 2 ≤ q * (I) ≤ n. Thus, q * (I) has to be the size of one of the optimal solutions

Q * (G, γ(i, j)) of the family of instances of γ-QIS, {(G, γ(i, j)) : γ(i, j) = 2i j(j-1) , 0 ≤ i ≤ k, 2 ≤ j ≤ n}, and more specifically of such an optimal Q * (G, γ(i, j)) that satisfies argmax 0≤i≤m,2≤j≤n {q * (G, γ(i, j)) : |E[Q * (G, γ(i, j))]| ≤ k}.
Since there are at most nm instances of the γ-QIS to solve, the claim follows.

Combining all the above derives the proposition's claim.

We now tackle max quasi-independent set in bipartite graphs. The following result characterizes its complexity.

Theorem 1 max quasi-independent set is NP-hard on bipartite graphs.

Proof: We first prove that k-QIS is NP-hard. Our reduction goes from the rsparsest subgraph problem, which consists of seeking, given a graph G(V, E) and an integer 1 < r < n, a subset H ⊂ V of size r such that G[H] has a minimum number of edges, among all induced subgraphs of size r. In the decision version of r-sparsest subgraph, we are given G(V, E) and two positive integers r and l and we ask if there a subset H ⊂ V of size r such that G[H] has at most l edges. The r-sparsest subgraph problem is NP-complete for bipartite graphs by a reduction from the r-densest subgraph problem. The decision version of this later problem asks for a subset H ⊂ V of size r such that G[H] has at least l edges, and it is known to be NP-complete for bipartite graphs [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF] Consider the decision version of k-QIS: given G and two positive integers t and k, is there Q ⊆ V such that |Q| ≥ t and G[Q] has at most k edges? It is straightforward to see that given an instance I = (G, r, l) of (the decision version of) r-sparsest subgraph, the instance Putting together Proposition 1 and the above result, the NP-hardness of γand f -QIS is directly derived.

I ′ = (G, t = r, k = l) of k-QIS is a "yes"-instance if I is a "yes"-instance
There are several hereditary graph classes the definitions of which imply direct conditions on their sparsity, independently of the measure used; take for instance complete graphs, split graphs or trees. Such proprieties, together with heredity, can be exploited in order to polynomially solve the k-QIS (in fact, by Proposition 1, any of the three variants of max quasi-independent set). In the sequel, we present a polynomial algorithm for k-QIS, that works on split graphs.

Let S = (I, C, E) be a split graph, where I is an independent set, C is a clique, and E is the set of edges between I and C plus the edges of the clique C. The following lemma holds.

Lemma 3 There is an optimal k-QIS on a split graph S = (I, C, E) such that it contains the independent set I.

Proof: Let I ′ ∪ C ′ , I ′ ⊂ I, C ′ ⊆ C,
be the set of vertices selected by an optimal solution. If we remove a vertex c ∈ C ′ from this optimal we remove at least

|C ′ | -1 edges. If we add a vertex i ∈ I \ I ′ we add at most |C ′ | -1 edges.
Hence, the number of edges in S[(C ′ \ {c}) ∪ (I ′ ∪ {i})] is reduced and the new solution is again feasible and optimal. Thus, we can create an optimal solution that includes the set I.

Based upon Lemma 3, the following theorem holds:

Theorem 2 max quasi-independent set is polynomial on split graphs.

The optimal solution Q * to k-QIS on a split graph S = (I, C, E) can be found in polynomial time. Indeed, by Lemma 3, Q * can be initialized to I. Next, we consider the vertices of the clique C in increasing order with respect to their degree, that is in increasing order with respect to the number of edges between any vertex c ∈ C to its neighbors in I. Using this order, we add vertices to Q * until the number of edges of S[Q *] becomes greater than k. The proof for this greedy selection is straightforward.

Exact solution of max quasi-independent set

In this section we give an exact algorithm for f -QIS with non-trivial worst-case running time. Let us note that to our knowledge, no algorithm that optimally solves max quasi-independent set with running time better than O * (2 n) is known. Also, as we will see in the sequel, the scope of the results of this section is even larger than the max quasi-independent set case. Indeed, the method described in what follows concerns a broad class of optimization problems, those that "match vertex branching", defined in Definition 1, below.

Problems that match vertex branching

The intuition behind the exact solution method for max quasi-independent set, lies in the possibility of organizing the solution space of the problem in a tree-like manner. So we need first to formally characterize the class of optimization graph-problems for which such an organization is possible. This is done in Definition 1.

Definition 1

We say that a graph problem Π matches vertex branching, if for any graph instance G(V, E), for any v ∈ V , there exist some sets of parameters S i , some subsets v ∈ H i ⊂ V and two functions f 1 , f 2 bounded above by some polynomial of n, such that

opt Π (G, S 3) ≤ max {f 1 (opt Π (G[V \ H 1], S 1)), f 2 (opt Π (G[V \ H 2], S 2))}
where opt Π (G, S) denotes the value of the optimal solution of Π for G with parameter set S.

Notice that, with appropriate choice for f 1 , f 2 , it is possible to replace max by min, or to make a single reduction.

Several problems whose aim is to find a specific subset in a given graph may be generalized as a problem that matches vertex branching. For example, for the Maximum Weighted Independent Set: Given a graph G(V, E) and a weight function w : V → R, we search for an independent set S maximizing v∈S w(v),

we have opt(G, w) ≤ max {opt(G[V \ v], w), opt(G[V \ N [v]], w) + w(v)}.
Obviously, this remains true for the non-weighted version, i.e., whenever w = 1.

Also the f -QIS can be reformulated as a problem that matches vertex branching, in the following manner: Given a graph G(V, E), two constants w 0 , q 0 and a weight function w : V → R, we search for a maximal size vertex subset

Q ⊆ V whose induced graph G[Q] = (Q, R) verifies |R| + w 0 + v∈Q w(v) ≤ f (|Q| + q 0). Let w + ≡ w + 1 on N (v) = {u : {u,
v} ∈ E} and w + ≡ w elsewhere. Then, it is opt(G, w 0 , q 0 , w) ≤ max{opt(G[V \v], w 0 , q 0 , w), 1+opt(G[V \ v], w 0 + w(v), q 0 + 1, w +)}, and the formulation is completed by setting initially q 0 = w 0 = 0, w ≡ 0.

Informally, w 0 and q 0 stand, respectively, for the number of edges and of vertices that are already in the solution, while w(v) represents the number of edges that will be added, if one decides to keep v.

Notice that, as it can be shown by straightforward recurrence, any problem that matches vertex branching can be solved within time O(2 n × poly(n, k)), where |S i | < k. Obviously, this is useless for problems where a specific subgraph is sought, since they can be solved in O * (2 n).

However, an exact algorithm for f -QIS based upon vertex branching would be interesting if its running time T (n) could be shown to be in 2 φ(∆)n with φ some increasing function bounded above by 1 for any ∆. Intuitively, a possibility for such an improvement lies in finding an efficient vertex branching rule for fast reduction of the remaining graph's degree, and showing fast (polynomial) algorithms for computing a maximum f -QIS problem in bounded degree graphs.

Bottom-up Algorithms

We give below a general scheme, using vertex branching for finding a maximum f -QIS in a graph G. Recall that by Proposition 1 such a method can be used for computing an optimal solution for any of the three variants of the max quasi-independent set problem, with a polynomial overhead. This scheme, parameterized by a graph G, some integer function f , two integers q 0 and w 0 , and some vertex weight function w, can be written as follows:

procedure exactrec(G(V, E), f , q 0 , w 0 , w) in, not in: integer;

if

(V = ∅) then if (w 0 ≤ f (q 0)) then return q 0 else return -∞ endif; endif; pick v ∈ V (G) such that δ V (v) = max; not in ← exactrec(G[V \ v], f , q 0 , w 0 , w); for all u neighbors of v w(u) ← w(u) + 1 endfor; in ← exactrec(G[V \ v], f , q 0 + 1, w 0 + w(v), w); return max{ in, not in}; end exactrec; procedure f QIS(G(V, E): graph, f : integer function)
return exactrec(G, f , 0, 0, 0); endf QIS As noted at the end of the previous subsection, the running time for an exact method based upon the above scheme can be improved if the f -QIS problem is shown polynomial on graphs of bounded small degree graphs.

Lemma 4 Assume that some problem that matches vertex branching can be computed on graphs whose average degree is at most

d -1, d ∈ N, within time O * (2 α d n) for a given α d ≥ 1/2.
Then, it can be computed on graphs whose average degree is at least d -

1 within time O * (2 α d n+β d (m-(d-1)n/2)), where β d = 2(1-α d)
d+1 .

Proof: Let T (m, n) be the running time of the algorithm on graphs of order n with m edges. We first need to prove that T increases with m (this is trivial) and with n. Indeed:

∂(α d n + β d (m -(d -1)n/2)) ∂n = α d - d -1 2 β d = 2dα d -d + 1 d + 1 ≥ 1 d + 1 > 0
We now proceed by induction on m, n. Trivially, the hypothesis of the statement holds for m 0 = (d -1)n/2. Suppose that it is true for any pair n ′ < n, m ′ < m.

Since the graph has average degree greater than d -1, there exists some vertex of degree d or more. When branching on it, we get:

T (m, n) ≤ 2T (m -d, n -1) ≤ 2 1+α d (n-1)+β d (m-(d-1)n/2)-(d+1)/2 ≤ 2 1-α d -(d+1)/2×2(1-α d)/(d+1) × 2 α d n+β d (m-(d-1)n/2) ≤ 2 α d n+β d (m-(d-1)n/2)
that completes the proof.

As a straightforward consequence of the above lemma, the following proposition holds: Proposition 2 Assume that some problem that matches vertex branching can be computed on graphs with average degree at most d-1, d ∈ N, in time O * (2 α d n) for a given α d ≥ 0.5. Then, it may be computed on graphs whose average degree is at most

d within time O * (2 α d+1 n), where α d+1 = dα d +1 d+1 .
Direct consequence of Proposition 2, is the following theorem:

Theorem 3 Any problem that is polynomial on totally disconnected graphs and matches vertex branching can be solved on graphs of average degree at most d with running time O * (2 dn/(d+1)).

Proof: One can run some exact algorithm for max independent set (for instance, the one in (F.V. Fomin and K. Hoie. Pathwidth of cubic graphs and exact algorithms, Information Processing Letters, 97 (5): 191-196, 2006), that has complexity bounded by O * (2 0.288n)). Let S * the computed solution. Branch on any vertex belonging to its complementary, V \ S * ; the remaining graph is totally disconnected, so it can be solved in polynomial time. Thus, the total running time will be in

O * (2 0.288n +2 n-α(G)) ⊂ O * (2 d d+1 n).
Notice that this bound is tight for some problems that fit Definition 1. If the problem has the worst possible recurrence, then:

opt(G, w) = max {f 1 (opt(G \ {v}, w 1)), f 2 (opt(G \ {v}, w 2))}
For instance, this is the case of maximum quasi-independent set. If we either make a greedy choice for the branching, i.e., if we always branch on a vertex of maximal degree, or we select an independent set of maximal size, then there exists an instance where the running time is at least 2 d d+1 n . To see this, consider for any δ ≤ d the graph G δ that is composed of n/(d + 1) cliques of size δ + 1. T (G 1) = 2 n/(d+1) . The algorithm removes one vertex in each connected component; we so have T (G δ) = 2 n/(d+1) T (G δ-1) and finally T (G d) = 2 dn/(d+1) . On the other hand, α(G d) = n/(d + 1) (one vertex per clique).

Unfortunately, there is little hope for generalizing this corollary, since, unless P = NP no problem is polynomial on graphs of average degree bounded above by some d > 0, unless it belongs to P (just add some independent set to decrease d). Furthermore, restricting the instance set to graphs without isolated vertices, or even to connected graphs, does not help much, since the greedy branching may disconnect the graph as well. On the other hand, some improved results can be obtained for graphs of bounded maximum degree.

Many problems that match vertex branching are in fact well-known to be polynomial on graphs of maximum degree 2, for instance max independent set (or equivalently max clique and min vertex cover). For some difficult problems like max quasi-independent set this remains true, but it is not straightforward. The corresponding result is stated in Subsection 4.3 (Proposition 8).

Proposition 3 Any problem that is polynomial on graphs of maximum degree 2 and matches vertex branching can be solved on graphs of average degree d with running time O * (2 dn/6). This bound is tight for d = 3 and a greedy choice of the branching.

Proof: If there is no vertex of degree 3 or more, the problem can be solved in polynomial time. Otherwise, when branching on some vertex of maximum degree, we remove at least 3 edges from the graph, that means T (m) ≤ 2T (m -3), that leads to T (m) = O * (2 m/3) = O * (2 dn/6).

To show the tightness, consider a graph composed of n/6 copies of K 3,3 . In any connected component, the algorithm greedily branches on three vertices, so

K1 L1 L2 L3 K2 K3 K'1 L'1 L'2 L'3 K'2 K'3 a1,4 a2,4 a3,4
T (n) = 2 n/2 .
Proposition 4 Any problem that is polynomial on graphs of maximum degree 2 and matches vertex branching can be solved on graphs of average degree that rounds up to d ≤ 2 with running time O * (2

d-1 d+1 n).
If the average degree is d, this bound is tight for a greedy choice of the branching.

Proof: In a notation like the one introduced in Proposition 2, this means that we claim α d+1 = (d -1)/(d + 1). As a consequence of Proposition 3 with d ∈ {2, 3} , we see that any problem which is polynomial on graphs of maximum degree 2 and matches vertex branching can be solved on graphs of average degree 2 (resp., 3) within time O * (2 n/3) (resp., O * (2 n/2)). Thus, our hypothesis is verified for d = 2 and 3. Now assume that the statement holds for d -1. Then, according to Proposition 2, α d+1 =

d d-2 d +1 d+1 = d-1 d+1
, and the result yields by recurrence. In order to prove tightness, we form the graph G ′ δ in the following way (Figure 1):

• G ′ 3 is composed of 2n 3(d+1) copies of K 3,3 . T (G ′ 3) = 2 2n(d+1) .
• Partition each pair of copies of K 3,3 into three subsets of size 4, namely A 1 , A 2 , A 3 . For any i add a vertex a i,4 adjacent to all the vertices in

A i . That is G ′ 4 . • For any δ ≤ d -1, form G ′
δ+1 by adding a vertex a i,d+1 adjacent to all the vertices in A i ∪ {a i,4 , ..., a i,d }.

The algorithm removes three vertices from each connected component, so we have

T (G ′ δ) = 2 n/(d+1) T (G ′ δ-1) and finally T (G ′ d) = 2 (d-1)n/(d+1) .
We now study the performance of bottom-up algorithms for problems that match vertex branching, on graphs of bounded maximum degree. We first deal with the case of graphs of maximum degree 3, followed by the general case of graphs with bounded maximum degree.

Proposition 5 Any problem that matches vertex branching and is polynomial on graphs of maximum degree 2 can be solved on graphs of maximum degree 3 within time O * (2 3n/8).

Proof: Notice that the bound claimed is lower than the O * (√ 2 n) on graphs of average degree 3 or less from Proposition 4. In our analysis, we use the following result, established by Reed in (B. Reed. Paths, stars and the number three. Combinatorial Probabilistic Computing, 5: 277-295, 1996): On graphs of minimum degree 3, the size of min dominating set is not greater than 3n/8. We consider separately each connected component that contains at least a vertex of degree 3. Notice that the graph we consider may have vertices of degree 2 or less, so we complete the graph by adding edges between them until they all have degree at least 3. No vertex that was already at the beginning of the process of degree 3 shall receive a new neighbor this way. Then, we run an exact algorithm to find a min dominating set on the modified graph. This subset, namely D, has a size at most 3n/8. D is perhaps not a dominating set in G, but it is adjacent to all vertices of degree 3. That means, once we have branched on any v ∈ D, the remaining graph contains only vertices of degree 2 or less.

Of course there is an additive factor to our running time, that is the complexity of solving min dominating set on a graph where any vertex but a finite number have degree 3. Using algorithm by Fomin & Hoie, we see that can be found in O * (2 0.265n) ⊂ O * (2 3n/8).

A rather immediate corollary is that any problem that matches vertex branching and is polynomial on graphs of maximum degree 2 can be solved on graphs of maximum degree ∆ with running time O * (2 n(1-(5/8) ∆-2)). Unfortunately, for ∆ ≥ 4, result from Proposition 4 overlap this one.

In case we can only make the weaker hypothesis that the problem is polynomial on totally disconnected graphs (in fact, we need a somewhat stronger hypothesis, namely, polynomiality on collection of bounded cliques), it is still possible to improve the O * (2 3n/4) result from Theorem 3, if we know that our graph has maximum degree 3 instead of average degree 3 or less: Proposition 6 Any problem that matches vertex branching and is polynomial on collections of cliques of bounded cardinality can be solved on graphs of maximum degree 3 within time O * (2 2n/3).

Proof: If G(V, E) contains a collection of 4-cliques, namely K, we first consider G ′ (V ′ , E ′) = G[V \ K].
We can find in polynomial time a 3-coloring of G ′ . One of the three colors is an independent set S of size at least |V ′ |/3. Any possible subset of V ′ \ S can be tested within time O * (2 2|V ′ |/3) ⊂ O * (2 2n/3), and the remaining graph is a collection of cliques of size 1 or 4.

Proposition 7 Any problem that matches vertex branching and is polynomial on graphs of maximum degree 2 can be solved on graphs of average degree d ≤ 3 with running time O * (2 21n/46).

Proof: If ∆ ≤ 3, the proposition is a consequence of Proposition 5. Otherwise we perform a sequence of branchings, at each time choosing a vertex of maximal degree, until our graph have maximum degree 3. Then, we consider the size of the remaining graph:

(i) If n ′ < 20n/23, we greedily branch on vertices of degree 3 until the graph has maximum degree 2.

(ii) Otherwise, we compute a min dominating set as described on Proposition 5 and branch on any vertex of it.

We form the finite sequence {n ∆ , n ∆-1 , ..., n 4 }, where n i is the number of vertices of degree i we branch on during first step of our algorithm. Fix σ = i≥4 n i . Since i is the degree at the time we branch, not in the initial graph, the number of deleted edges is i≥4 in i ≥ 4σ.

If hypothesis (i) holds, our algorithm is within time

O * (2 x), where x ≤ σ + m-4σ 3 ≤ n 2 -1 3 × 3n 23 = 21n
46 . On the other hand, if hypothesis (ii) is true, the time of the algorithm is within O * (2 x ′), and

x ′ ≤ σ + 3(n-σ) 8 ≤ 3n 8 + 5 8 × 3n 23 = 21n
46 , that completes the proof.

Thus, the following theorem holds:

Applying the bottom-up scheme for exact solution of the f -QIS problem

Next proposition establishes the possibility to use a vertex branching method directly derived from the bottom-up scheme, for finding an optimal f -QIS within the time stated in Theorem 4.

Proposition 8 max quasi-independent set is polynomial on graphs of maximum degree 2 or less.

Proof: Let ∆ be the maximum degree of the graph we consider. If ∆ = 0, we add vertices with minimum weight in a greedy manner, until condition w 0 + v∈Q w(v) ≤ f (|Q| + q 0) gets violated, and find the optimal. If some vertex v has degree 1, let u be its only neighbor.

• If δ(u) = 1, and, say, w(u) ≥ w(v), we can assume u belongs to the solution only if v does. Thus, we may remove edge {u, v} and increase w(u) by one. Of course this is symmetric between v and u.

• If δ(u) = 2 and w(u) ≥ w(v), we can a fortiori remove the edge and increase w(u) by 1.

• Otherwise, δ(u) = 2 and w(u) ≤ w(v) -1. Since w(u) might increase by at most 1 (if the second neighbor of u belongs to the sought optimal), we can safely remove {u, v} and increase w(v) by 1.

One can also consider the case where no vertex has degree 1, meaning that G is a set of cycles (at least one) and isolated vertices. Let {a i } i≤k be one of these cycle. If there exists some i where w(a i) ≤ w(a i+1) -1, then we can remove {a i , a i+1 } and add 1 to w(a i+1). On the other hand, if for any i holds that w(a i) = w(a i+1), then all vertices in the cycle are identical, some we can decide arbitrarily to remove {a 1 , a 2 } and increase w(a 1) by 1. In any case, the cycle will become a path, and thus we can remove all its edges by successively disconnecting leaves, as explained above.

From the discussion made in this Section, the following result is immediate.

Theorem 5 Optimal max quasi-independent set-solutions in graphs of average degree ≤ d can be found in time O * (2

d-27/23 d+1 n).
For instance, max quasi-independent set on graphs of average degree 3 can be solved in time O * (2 In this case, things are rather optimistic, since the following result holds.

Theorem 6 Consider the γ-QIS problem when γ is bounded below by a positive constant c. For any fixed k ≤ ∆, a solution of size at least k/∆ the optimal can be computed within polynomial time.

Proof: Assume, w.l.o.g., that ∆ > 2 and the graph of the instance is not a collection of cliques (otherwise, the optimum can be found in polynomial time).

Under these assumptions, there is always a ∆-coloring of the graph and it can be found in polynomial time. Let S be a color class of the greatest size s; recall that s ≥ n/∆. If s ≥ k/c, then S will be a γ-QIS with the desired property, since by Lemma 2 we get q * s ≤ ∆/γ k/c ≤ ∆/c k/c = ∆ k , where q * is the size of the optimal Q * .

Otherwise, we can enumerate all subsets of size ks or less within polynomial time, since S has bounded finite size and k is fixed by definition. If q * < ks, we come with the optimal; else, by Lemma 1 we know that there exists a γ-QIS Q ⊂ Q * of size q = ks. For that set, we have q * q ≤ n ks ≤ n k(n/∆) = ∆ k , and the result yields.

Corollary 1 If γ is bounded below by some positive constant, then γ-QIS is polynomial for graphs with bounded degree.

A greedy algorithm.

In this subsection, a greedy algorithm for computing a γ-QIS is discussed; the solution is initialized to some independent set S, and at each step a vertex of minimum degree to the current solution is being inserted; the insertions keep on, until the largest solution, respecting the sparsity specification, is reached.

procedure γ QIS (G(V, E): graph, 0 ≤ γ ≤ 1: real, S ⊆ V : some independent set) Q ← S; Q ′ ← S; while (|Q ′ | ≤ |V |) pick v ∈ V \ Q ′ such that δ Q ′ (v) = min (break ties arbitrarily) Q ′ ← Q ′ ∪ {v}; if (|E[Q ′]| ≤ γ |Q ′ | 2) and (|Q| ≤ |Q ′ |) Q ← Q ′ ; endif; endwhile; return(Q); end γ QIS
Obviously, γ QIS always returns a solution, if S is set to some γ-QIS (any independent set in G, for instance the empty set, would do).

As it has already been mentioned, the non-hereditary character of γ -QIS is reflected to the algorithm by the fact that it may some Q ′ produced during the execution of the algorithm be infeasible while after some later vertex-insertions it may become feasible. This non-hereditary character of the problem is a major difficulty for a more refined analysis of algorithm γ QIS. The following lemma gives a lower bound on the size of the solutions returned by this algorithm.

Lemma 5 Let q be the size of the γ-QIS returned by the algorithm, where S has been initialized to some independent vertex set. It holds that q > α-1 √ 1-γ where α is the size of Q during the last step of the algorithm's execution before the first edges insertion.

Proof: Let |E[Q]| be the number of edges in the solution Q. By the definition of algorithm γ QIS, if S is initialized to an independent set, the first α vertices inserted into the solution form a maximal independent set. Then q = α + κ, for some κ, 0 ≤ κ ≤ nα, i.e., after the insertion into the solution of the first α vertices which are independent of each other, v 1 , . . . , v κ have been inserted. Let δ Qi (v i) be the degree of v i to the solution at the moment of its insertion, that is to

Q i . Then, |E[Q]| = κ i=1 δ Qi (v i). Notice that δ Q1 (v 1) ≤ α and ∀i, 2 ≤ i ≤ κ, δ Qi (v i) ≤ α + i -1; hence, it holds that |E[Q]| ≤ κ i=1 [α + (i -1)] = κα + κ(κ-1)

2

. Assume, w.l.o.g., that the solution computed is not a the whole graph (in which case it is trivially optimal). Then, by the definition of γ QIS, for any other candidate solution Q ′ containing Q and having size α + κ + l for some l ≥ 1, we have:

γ (α + κ + l)(α + κ + l -1) 2 < |E[Q ′]| = κ+l i=1 δ Qi (v i) ≤ κ+l i=1 [α + (i -1)] = (κ + l)α + (κ + l)(κ + l -1) 2
γ (α -1 + κ + l)(α + κ + l) 2 < (κ + l)α + (κ + l)(κ + l -1) 2
Setting a = α -1, k = κ + l, inequality (4) is written:

γ(a + k)(a + k + 1) < 2k(a + 1) + k(k -1) ⇔ (1 -γ)k 2 + [2(1 -γ)a + 1 -γ]k -γa(a + 1) > 0 ⇔ (1 -γ)k 2 + (1 -γ)(2a + 1)k -γa(a + 1) > 0 (5)
Solving inequality [START_REF] Feige | The dense k-subgraph problem[END_REF] with respect to k, we get, after some easy algebra:

k > -a - 1 2 + (1 -γ) 2 (2a + 1) 2 + 4(1 -γ)γa(a + 1) 2(1 -γ) = -a - 1 2 + 4a 2 + 4a + 1 -γ 2 √ 1 -γ > -a - 1 2 + 4a 2 + 4a √ 1 -γ + 1 -γ 2 √ 1 -γ = -a - 1 2 + (2a + √ 1 -γ) 2 √ 1 -γ = -a + a √ 1 -γ (6)
Righthand-side inequality in (6) yields finally

κ + l + α > α -(α -1) + α -1 √ 1 -γ ⇔ q = κ + α > 1 -l + α -1 √ 1 -γ (7)
with the last inequality in [START_REF] Hartwell | From molecular to modular cell biology[END_REF] holding also for l = 1; hence, q > α-1

√ 1-γ ⇒ q ≥ α-1 √
1-γ , that completes the proof.

Combining Lemma 5 and item 1 of Lemma 2, we finally get:

Theorem 7 For the γ-QIS problem it is possible to find in polynomial time a solution of size q achieving approximation ratio q * q ≤ ∆αmin α-1 √ 1γ where q * is the size of an optimal quasi-independent set and α min the size of a minimum independent dominating set of the input graph. This ratio tends to ∆ √ 1γ.

Algorithm γ QIS has been run on 20 randomly generated graphs of each size (10, 20 and 30 vertices; edges in an instance have been generated with a probability p, 0.1 < p < 0.5). Optimal solutions have been computed with the exact method of Section 4. The following table gives a summary of the experimental results obtained. It contains for every value of γ, the worst, best and average ratios and the percentage of optima returned by the algorithm.

γ value

Worst ratio Best ratio Average ratio % of optimal solutions 0.2d(G) 0.667 One may remark that the more the density of the sought subgraph comes close to the density of the instance, the best the quality of the returned solution is.

Moderately exponential approximation for γ-QIS.

We finish the approximation section for γ-QIS by showing how it can be approximated within any constant ratio by exponential algorithms with running time better than that of an exact computation.

Theorem 8 For any k ≥ 1, it is possible to compute a γ-QIS of size at least 1/k of the optimal, within time O * (2 (log 2 (k+1)-k/(k+1) log 2 k)n).

Proof: We enumerate every subset of size at most n/(k + 1) or at least kn/(k + 1), within time:

i≤n/(k+1) n i + n n-i ≤ n n n/(k+1) ≤ n 2 n n (kn/(k+1)) kn/(k+1) (n/(k+1)) n/(k+1) ≤ n 2 k+1 k k/(k+1) n .
We return the minimal one which is a γ-QIS. If for the size of the optimal q * it holds that q * ≥ kn/(k + 1) or q * ≤ n/(k + 1), we come with the optimal. Otherwise, by Lemma 1, we find a quasi-independent set Q of size q ≥ n/(k +1), that means q * q ≤ kn/(k+1) n/(k+1) ≤ k and the proof is completed.

The following result exhibits a further link between γ-QIS and max independent set.

Theorem 9 Given some algorithm that computes an exact solution for max independent set on G within time O * (c n), for some constant c, a γ-QIS of size at least 1 + γn/2 can be computed within time O * (c n).

Proof: Suppose, w.l.o.g., that γ/2 < 1, (otherwise the optimal is trivial). Consider an optimal γ-QIS Q * of size q * . We denote by α * (G) the size of a maximum independent set in G. Applying Turán's Theorem (see, for example (C. Berge. Graphs and hypergraphs. North Holland, Amsterdam, 1973) to G[Q *], we get:

α * (G[Q *]) ≥ (q *) 2 |E[Q *]| + q * ≥ q * γ(q * -1)/2 + 1 ≥ 2 γ + (2 -γ)/q * (8)
Hence, by [START_REF] Hochbaum | k-edge subgraph problems[END_REF], using the optimal solution returned by the algorithm as a γ-QIS, guarantees the ratio

q * α * (G) ≤ q * α * (G[Q *]) ≤ γq * +2-γ 2
≤ γn 2 + 1, that completes the proof.

Approximation of k-QIS

In this section we deal with polynomial approximation of k-QIS. We propose a greedy algorithm for that purpose, based upon the same idea as γ QIS presented above; however, k-QIS being a hereditary problem, the algorithm stops as soon as it finds the first vertex whose insertion violates the condition on the number of edges allowed in the solution.

Procedure k QIS(G(V, E): Graph, k: integer≥ 0, S: some independent set)

Q ← S; while (|E(Q)| ≤ k) pick v ∈ V \ Q such that δ Q (v)
= min (break ties arbitrarily) Q ← Q ∪ {v}; endwhile return(Q \ {v}); end k QIS Theorem 10 For the k-QIS problem it is possible to find in polynomial time a solution of size q achieving approximation ratio q * q ≤ α * θ(S)+kθ(Q) αθ(Q)+k ≤ max α * α , θ(Q) , where q * is the size of the optimal, α * is the size of a maximum independent set in G and α the size of some independent set.

Proof: Let Q be the solution computed by the algorithm; as in the proof of Lemma 5, we note by q its size, and write q = α + x, with α the size of Q at the last step before the first edge insertions performed by the algorithm; we can suppose, w.l.o.g., that this set is already computed before starting the algorithm. Let θ(S) = max v∈V \S {δ S (v)}. Clearly, for each of the remaining x vertices, at most θ(S) edges are inserted into the QIS; thus, with Q i be the solution after the i-th from the x vertices insertions that brought some edges in, we have: Recall that the best approximation ratio (as function of ∆) known for max independent set is (∆ + 2)/3 and is guaranteed by the natural greedy max independent set-algorithm [START_REF] Halldórsson | Greed is good: approximating independent sets in sparse and bounded-degree graphs[END_REF].

k = x i=1 δ Qi (v i) ≤ θ(S)x ⇒ k ≤ θ(S)(q -α) ⇔ q ≥ k θ(S) + α (9
Suppose first that θ(Q) ≥ 3. Then, by item 2 of Lemma 2, the approximation ratio of algorithm k QIS is bounded from above by ∆/3. Assume now that θ(Q) ≤ 3. Then, by Theorem 10, the approximation ratio of the algorithm is bounded above by max α * α , 6 ≤ α * α ≤ ∆+2 3 , and the following holds.

Corollary 2 k-QIS is approximable in polynomial time within ratio (∆ + 2)/3.

Another set of tests have been implemented in order to experimentally observe the behavior of performance of algorithm k QIS presented for several values of k. As for the case of γ-QIS, we have used the exact method of Section 4 to compute optimal solutions of the test instances. Instances have been generated randomly, following a probability p, 0.1 < p < 0.

 too. On the other hand, if I ′ has a solution, say Q * with |Q * | > r, one can easily get a solution for I, just by eliminating any |Q * |r vertices from Q * (recall that k-QIS is hereditary).

Figure 1 :

 1 Figure 1: Tightness example for ∆ = 4.

Theorem 4

 4 Any problem that matches vertex branching and is polynomial on graphs of maximum degree 2 can be solved on graphs of average degree bounded above by d within time O * (2 d-27/23 d+1 n), for any d ≥ 3. Proof: The case d = 3 is nothing but Proposition 7. Assume that it is true for all values of average degree less than or equal to d -1. Then, thanks to Proposition 2, we can compute a solution when the average degree is less than or equal to d, within time O * (2 α d+1 n), where α d+1 = dα d +1 d+1 = d d-1-27/23 d +1 d+1 = d-27/23 d+1 . By induction, this is true for any d.

2 13 1

 21 2146 n), while in graphs of average degree 4, the corresponding time is O * (Approximation of γ-QIS 5.1.1 When γ is bounded from below by a fixed constant.

)Let Q * be an optimal solution with |Q * | = q * and consider the graphG[Q *] = (Q * , E ′). Obviously, |E ′ | ≤ k. The set Q * canbe seen as the union of two sets S * and T , where S * is a maximum independent set of G[Q *] and T = Q * \ S * . On the other hand, E ′ is the union of the set E ′ T of edges within the set T and of the set E ′ S * ,T of edges between S * and T . Obviously, |E ′ S * ,T | ≤ k. Moreover, since the graph (Q * , E ′ S * ,T) is bipartite and connected (the set S * is maximal for inclusion in both G[Q *] and (Q * , E ′ S * ,T)), the fact that |E ′ S * ,T | ≤ k implies |T | ≤ k. So, q * ≤ |S * | + k ≤ α * + k, where α * is the size of a maximum independent set in the graph G. Combining this bound with (9), we finally get the result.

 [START_REF] Feige | The dense k-subgraph problem[END_REF], for an edge to be present in the instance graph. The tests indicate that the algorithm performs fairly well in small instances. A summary of the obtained results is given in the following table.

	k value Worst ratio Best ratio Average ratio % of optimal solutions 2 √ m 0.93 1 0.99 90% √ n 0.83 1 0.98 80%
	log(m)	0.83	1	0.98	80%
	log(n)	0.83	1	0.97	75%
	m/2	0.96	1	0.99	92.5%
	m/3	0.96	1	0.99	95%
	n/2	0.90	1	0.99	90%
	n/3	0.90	1	0.99	87.5%

* This work is partially supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.