
HAL Id: hal-00880207
https://hal.science/hal-00880207v1

Preprint submitted on 5 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The max quasi-independent set problem
Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis,

Vangelis Paschos, Olivier Pottié

To cite this version:
Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, Vangelis Paschos, et al..
The max quasi-independent set problem. 2010. �hal-00880207�

https://hal.science/hal-00880207v1
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour
l'Aide à la Décision

CNRS FRE 3234

CAHIER DU LAMSADE

292

Janvier 2010

The MAX QUASI-INDEPENDENT SET problem

N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis

V. Th. Paschos, O. Pottié

The max quasi-independent set problem∗

N. Bourgeois† A. Giannakos† G. Lucarelli†‡ I. Milis‡

V. Th. Paschos† O. Pottié†

Abstract

In this paper, we deal with the problem of finding quasi-independent
sets in graphs. This problem is formally defined in three versions, which
are shown to be polynomially equivalent. The one that looks most general,
namely, f -QIS, consists of, given a graph and a non-decreasing function
f , finding a maximum size subset Q of the vertices of the graph, such
that the number of edges in the induced subgraph is less than or equal
to f(|Q|). For this problem, we show an exact solution method that runs

within time O∗(2
d−27/23

d+1
n) on graphs of average degree bounded by d. For

the most specifically defined γ-QIS and k-QIS problems, several results
on complexity and approximation are shown, and greedy algorithms are
proposed, analyzed and tested.

1 Introduction and preliminaries

The problem of finding in a graph a maximum size subgraph whose density
differs (being smaller or larger) from that of the whole graph, arises often in
various application contexts. For example, inputs may represent graphs, wherein
dense (with respect to the input) subgraphs are sought, as it is the case for call
details database mining [1], or protein-protein interaction networks analysis [7].
In other cases, inputs may represent graphs from which one wants to extract
maximum size, sparser than the input graphs, as for example in visualization
tools for stock market interaction graphs [3].

In this paper we address the problem of finding in a graph a maximum size
subgraph whose sparsity is less than or equal to a value specified with the input.
In the case that appears as most general, the sparsity of a graph is measured
by means of a function bounding the number of edges in the sought subgraph
and depending on its size; we also study some special forms of this function,
namely, when it has the form of the ratio of the number of edges of the solution

∗This work is partially supported by the French Agency for Research under the DEFIS

program TODO, ANR-09-EMER-010.
†LAMSADE, CNRS and Université Paris-Dauphine, France.

{bourgeois,giannako,lucarelli,paschos,pottie}@lamsade.dauphine.fr
‡Department of Informatics, Athens University of Economics and Business, Greece.

{gluc,milis}@aueb.gr

1

to the number of edges in a complete graph of equal size, and also when it is a
numeric parameter of the input.

We denote by G a simple finite graph without loops, by V and E(G) its
vertex set and its edge set, respectively, and by n and m their respective sizes.
Let A, B be two subsets of V . The induced subgraph by A in G is denoted by
G[A] and its edge set by E[A], respectively. The edge set with one extremity in
A and the other in B \ A will be denoted as E[A, B]. Clearly, if A and B are
disjoint then E[A, B] = E[B, A] and E[A, A] = ∅. The degree of A towards B
is equal to |E[A, B]| and is denoted by δB(A); when A is reduced to a singleton
{v}, we denote its degree in B by δB(v), or simply by δ(v) whenever B = V .
The maximum vertex degree in a graph G is denoted by ∆G or simply by ∆
if there is no risk of confusion. We also set dB(A) = 1/|A|∑v∈A δB(v), and
d = 1/n

∑

v∈V δ(v).
We tackle the following variants of the quasi-independent set problem.

Maximum f-Quasi-Independent Set (f -QIS, the general quasi-independent
set problem):
Given a graph G and a polynomially computable non-decreasing real function
f : N→ R, find the largest possible Q ⊆ V such that |E[Q]| ≤ f(|Q|).

In the above definition, f is used as a sparsity specification for the induced
subgraph of the sought solution. We study in particular two variants of f -QIS,
denoted by γ-QIS and k-QIS, respectively, formally defined in what follows.

In the first one, sparsity specification is given in the special form of the ratio
of the number of edges in the subgraph induced by the quasi-independent set
over the number of edges induced by a complete graph of the same size:

Maximum γ-Quasi-Independent Set (γ-QIS):
Given a graph G and a real γ, 0 ≤ γ ≤ 1, find the largest possible Q ⊆ V such
that |E[Q]| ≤ γ

(|Q|
2

)

.

It is easy to see that γ-QIS is not hereditary (a problem is said hereditary
if its solutions satisfy some non-trivial hereditary property). Indeed, given a
feasible solution for γ-QIS, the induced subgraph G[Q′] of a subset Q′ of Q may
violate the sparsity condition |E(Q′)| 6 γ|Q′|(|Q′| − 1)/2.

In the second restricted variant of the problem considered in the paper, we
simply seek for a maximum vertex subset of the graph with no more than a
constant number of edges having both extremities in it:

Maximum k-Quasi-Independent Set (k-QIS):
Given a graph G and a positive integer k, find the largest possible Q ⊆ V such
that |E[Q]| ≤ k.

Clearly, k-QIS is hereditary. In fact, it is easy to see that k-QIS belongs
to the family of node-deletion problems, first defined in [9] and further studied
in [10]. Formally, a node-deletion problem consists of finding, given a graph G
and a non-trivial hereditary property P , the minimum number of vertices of G
that one has to delete from G, in order to have P satisfied in the remaining

2

graph. In [10], it is proved that the decision version of such problems is NP-
complete even for planar graphs.

For f ≡ 0 (resp., γ = 0 and k = 0), Q is simply a maximum independent
set in G, while for f : f(|Q|) ≥ m (resp., for γ ≥ 2m/n(n − 1) and k ≥ m),
Q = V is a trivial solution; being a direct generalization of max independent

set, the f -, γ- and k-QIS problems are obviously inapproximable within better
than O(n1−ǫ), unless P = NP [12].

In [1] essentially the same problem as γ-QIS is addressed, formulated as the
research, given a graph and 0 ≤ γ ≤ 1, of a maximum subgraph of sparsity
(defined as the ratio of the number of its edges over the number of edges of
the complete graph of the same size) at least γ; any solution to this problem
can be obtained as the complementary of a quasi-independent set of sparsity at
most 1 − γ in the complementary of the input graph. The authors present an
algorithm equivalent to the greedy algorithm for γ-QIS, analyzed later in this
paper; however, they focus in implementation issues on very large instances and
they don’t attempt to analyze its performance. To our knowledge, the k-QIS
problem has been specifically formulated for the first time in [8]. The authors
call it the k-edge-in subgraph problem. Nevertheless, in this paper the problem
is not addressed, but simply mentioned as related to other subgraph problems
on which it focuses.

A kind of dual of the maximum quasi-independent set problem is to search,
given a graph and a positive integer k, for the sparsest - or densest - (maximal)
subgraph with exactly k vertices. This kind of problems have been extensively
studied during the last years under the names of “k-sparsest” or “k-densest
subgraph” problem (see, for example, [2, 5, 8]).

The remainder of the paper is organized as follows. Section 2 gives several
bounds to the optimal solutions for γ-QIS. Section 3 tackles a specific polynomial
case for the three variants of max quasi-independent set and proves its NP-
hardness in bipartite graphs. In Section 4 an exact solution method with non-
trivial worst-case running time for the general f -QIS problem is presented and
analyzed. As we discuss here this method applies also to other combinatorial
optimization problems. Finally, in Section 5 approximation results are proved
for both γ-QIS (Subsection 5.1) and k-QIS (Subsection 5.2).

In what follows, when we indifferently refer to either one of the quasi-
independent set versions defined above, we use the term max quasi inpen-

dent set instead. Also, when no confusion arises, we sometimes use f -, or γ-,
or k-QIS in a twofold way: either to denote the problem itself, or to denote a
feasible solution of the corresponding problem.

2 Solution properties and bounds

As it is already mentioned, in general, γ-QIS is not a hereditary problem; just
consider an instance where the graph is an edge plus some isolated vertices,
and γ is the smallest possible for having the whole graph as a trivial solution.
Obviously, the sparsity condition will be violated for any strict part of the solu-

3

tion containing the edge. However, γ-QIS is still a weakly hereditary problem,
in the sense given by the following lemma that will be used later.

Lemma 1 Let Q be a γ-QIS in G, of size q. Then, for any k ≤ q, there exists
in G some γ-QIS R(k) ⊆ Q, of size k.

Proof: Let p < q be the maximum value such that the property is false.

Consider some R(p + 1); for any v ∈ R(p + 1) it is γp(p−1)
2 < |E[R(p + 1) \ v]|.

Summing up these inequalities, we get:

γp(p− 1)(p + 1)

2
<

∑

v∈R(p+1)

|E[R(p + 1) \ v]|

= (p + 1)|E[R(p + 1)]| −
∑

v∈R(p+1)

δR(p+1)(v)

= (p + 1)|E[R(p + 1)]| − 2|E[R(p + 1)]| ≤ γ(p− 1)p(p + 1)

2

which is a contradiction.

Next lemma gives some bounds for the solutions of the γ-QIS.

Lemma 2 Let Q be any non-trivial γ-QIS (0 < γ < m/
(

n
2

)

), with size q, not
contained in any γ-quasi-independent set of size q+1. Let ϑ(Q) = minv∈V \Q{δQ(v)},
let Q∗ 6= Q be an optimal solution for γ-QIS, q∗ be its size, and for any
vertex-subset P , let d(P) be the average degree of the subgraph induced by P
(recall that we denote d(V) by d). Finally, let αmin be the size of a smallest
maximal independent set (minimum independent dominating set) in G. Then:

(1) q∗ ≤ αmin∆; (2) q∗

q ≤ ∆
ϑ(Q) ; (3) q ≥ n − ∆

γ ; (4) q∗ ≤ ∆
γ ; (5) q∗ ≤

√

dn
γ ;

(6) q∗ ≤ d(Q∗)+2
γ − 1.

Proof: Let S be a smallest maximal independent set in G, denote by Q∗ a quasi-
independent set of maximum size, and set S′ = Q∗ ∩ S. By the maximality of
S, q∗ − |S′| ≤ δS(Q∗) ≤ (|S| − |S′|)∆; hence q∗ ≤ |S|∆ = αmin∆ and item 1 is
proved.

We now prove item 2. By the definition of Q, it is ϑ(Q) > 0 and:

ϑ(Q)(n− q) ≤ δV (Q) =
∑

v∈Q

δ(v) − 2|E[Q]| ≤ ∆q (1)

By a similar argument, it holds that ϑ(Q)(q∗−|Q∗∩Q|) ≤ δQ\(Q∗∩Q)(Q
∗\(Q∗∩

Q)) ≤ ∆(q − |Q∗ ∩Q|), and hence:

q∗

q
≤ q∗ − |Q∗ ∩Q|

q − |Q∗ ∩Q| ≤
∆

ϑ(Q)
(2)

By the definition of Q, we have also that:

γ
q(q + 1)

2
< |E[Q]|+ ϑ(Q) ≤ γ

q(q − 1)

2
+ ϑ(Q)⇒ ϑ(Q) > γq (3)

4

Combining (1) and (3) we get γq(n− q) ≤ ∆q ⇒ q ≥ n− ∆
γ , that proves item 3,

while combining (2) and (3) we get immediately q∗ ≤ ∆
γ , proving so item 4.

Assuming that Q∗ is non-trivial, we get γq(q+1)
2 < m = dn

2 ⇒
γq2

2 < dn
2 ⇔

q∗ ≤
√

dn
γ , that proves item 5, and also that γq(q+1)

2 < |E[Q∪v]| ≤ |E[Q]|+q =

d(Q)q
2 + q ⇔ γ(q + 1) < d(Q) + 2 ⇒ q∗ < d(Q∗)+2

γ − 1 that proves item 6 and
completes the proof of the lemma.

3 Complexity results for max quasi-independent

set in various graph-classes

The following proposition claims that all three variants of max quasi inpend-

ent set dealt in this paper are closely interrelated.

Proposition 1 f -QIS, γ-QIS and k-QIS are polynomially equivalent with re-
spect to their exact solution.

Proof: (i) We first show that γ-QIS� f -QIS. This is trivial since the condition
for sparsity formed as expression of γ is, as noted before, just one particular
case of a sparsity specification defined by f(q) = γq(q − 1)/2.

(ii) We now show that f -QIS� k-QIS: indeed, consider an instance I = (G, f)
of the f -QIS problem, and let Q∗(I) be any of its optimal solutions; denote its
size by q∗(I). Let |E[Q∗(I)]| = k′ ≤ f(q∗(I)) be the number of the edges in
this optimal; clearly, Q∗(I) should be also an optimal solution for the instance
(G, k′) of the k-QIS problem, i.e., some instance (G, i) with 0 ≤ i ≤ m. Thus,
q∗(I) has to be the size of one of the optimal solutions Q∗(G, i) of the family of
instances {(G, i) : 0 ≤ i ≤ m}, and more specifically of such an optimal Q∗(G, i)
that satisfies argmaxi{q∗(G, i) : |E[Q∗(G, i)]| ≤ f(q∗(G, i))}. Since there are
at most m of k-QIS instances to solve, the claim follows.

(iii) Now it remains to show that k-QIS� γ-QIS. In a similar manner as
before, consider some instance I = (G, k) of the k-QIS, and let Q∗(I) be any
of its optimal solutions; denote its size by q∗(I). Let |E[Q∗(I)]| = k′ ≤ k be
the number of edges in this optimal; clearly, Q∗(I) must also be an optimal

solution for some instance (G, γ(q∗(I), k′)) with γ(q∗(I), k′) = 2k′

q∗(I)(q∗(I)−1) of

the γ-QIS problem; notice that 0 ≤ k′ ≤ k ≤ m and, w.l.o.g., 2 ≤ q∗(I) ≤ n.
Thus, q∗(I) has to be the size of one of the optimal solutions Q∗(G, γ(i, j)) of
the family of instances of γ-QIS, {(G, γ(i, j)) : γ(i, j) = 2i

j(j−1) , 0 ≤ i ≤ k, 2 ≤
j ≤ n}, and more specifically of such an optimal Q∗(G, γ(i, j)) that satisfies
argmax0≤i≤m,2≤j≤n{q∗(G, γ(i, j)) : |E[Q∗(G, γ(i, j))]| ≤ k}. Since there are at
most nm instances of the γ-QIS to solve, the claim follows.

Combining all the above derives the proposition’s claim.

We now tackle max quasi-independent set in bipartite graphs. The
following result characterizes its complexity.

5

Theorem 1 max quasi-independent set is NP-hard on bipartite graphs.

Proof: We first prove that k-QIS is NP-hard. Our reduction goes from the r-
sparsest subgraph problem, which consists of seeking, given a graph G(V, E)
and an integer 1 < r < n, a subset H ⊂ V of size r such that G[H] has a
minimum number of edges, among all induced subgraphs of size r. In the deci-
sion version of r-sparsest subgraph, we are given G(V, E) and two positive
integers r and l and we ask if there a subset H ⊂ V of size r such that G[H]
has at most l edges. The r-sparsest subgraph problem is NP-complete for
bipartite graphs by a reduction from the r-densest subgraph problem. The
decision version of this later problem asks for a subset H ⊂ V of size r such
that G[H] has at least l edges, and it is known to be NP-complete for bipartite
graphs [4]

Consider the decision version of k-QIS: given G and two positive integers t
and k, is there Q ⊆ V such that |Q| ≥ t and G[Q] has at most k edges? It
is straightforward to see that given an instance I = (G, r, l) of (the decision
version of) r-sparsest subgraph, the instance I ′ = (G, t = r, k = l) of k-QIS
is a “yes”-instance if I is a “yes”-instance too. On the other hand, if I ′ has
a solution, say Q∗ with |Q∗| > r, one can easily get a solution for I, just by
eliminating any |Q∗| − r vertices from Q∗ (recall that k-QIS is hereditary).

Putting together Proposition 1 and the above result, the NP-hardness of γ-
and f -QIS is directly derived.

There are several hereditary graph classes the definitions of which imply
direct conditions on their sparsity, independently of the measure used; take for
instance complete graphs, split graphs or trees. Such proprieties, together with
heredity, can be exploited in order to polynomially solve the k-QIS (in fact, by
Proposition 1, any of the three variants of max quasi-independent set). In
the sequel, we present a polynomial algorithm for k-QIS, that works on split
graphs.

Let S = (I, C, E) be a split graph, where I is an independent set, C is a
clique, and E is the set of edges between I and C plus the edges of the clique
C. The following lemma holds.

Lemma 3 There is an optimal k-QIS on a split graph S = (I, C, E) such that
it contains the independent set I.

Proof: Let I ′∪C′, I ′ ⊂ I, C′ ⊆ C, be the set of vertices selected by an optimal
solution. If we remove a vertex c ∈ C′ from this optimal we remove at least
|C′| − 1 edges. If we add a vertex i ∈ I \ I ′ we add at most |C′| − 1 edges.
Hence, the number of edges in S[(C′ \ {c}) ∪ (I ′ ∪ {i})] is reduced and the new
solution is again feasible and optimal. Thus, we can create an optimal solution
that includes the set I.

Based upon Lemma 3, the following theorem holds:

Theorem 2 max quasi-independent set is polynomial on split graphs.

6

The optimal solution Q∗ to k-QIS on a split graph S = (I, C, E) can be
found in polynomial time. Indeed, by Lemma 3, Q∗ can be initialized to I.
Next, we consider the vertices of the clique C in increasing order with respect
to their degree, that is in increasing order with respect to the number of edges
between any vertex c ∈ C to its neighbors in I. Using this order, we add vertices
to Q∗ until the number of edges of S[Q∗] becomes greater than k. The proof
for this greedy selection is straightforward.

4 Exact solution of max quasi-independent set

In this section we give an exact algorithm for f -QIS with non-trivial worst-case
running time. Let us note that to our knowledge, no algorithm that optimally
solves max quasi-independent set with running time better than O∗(2n) is
known. Also, as we will see in the sequel, the scope of the results of this section
is even larger than the max quasi-independent set case. Indeed, the method
described in what follows concerns a broad class of optimization problems, those
that “match vertex branching”, defined in Definition 1, below.

4.1 Problems that match vertex branching

The intuition behind the exact solution method for max quasi-independent

set, lies in the possibility of organizing the solution space of the problem in a
tree-like manner. So we need first to formally characterize the class of optimiza-
tion graph-problems for which such an organization is possible. This is done in
Definition 1.

Definition 1 We say that a graph problem Π matches vertex branching, if for
any graph instance G(V, E), for any v ∈ V , there exist some sets of parameters
Si, some subsets v ∈ Hi ⊂ V and two functions f1, f2 bounded above by some
polynomial of n, such that

optΠ(G,S3) ≤ max {f1(optΠ(G[V \H1],S1)), f2(optΠ(G[V \H2],S2))}

where optΠ(G,S) denotes the value of the optimal solution of Π for G with
parameter set S.

Notice that, with appropriate choice for f1, f2, it is possible to replace max by
min, or to make a single reduction.

Several problems whose aim is to find a specific subset in a given graph may
be generalized as a problem that matches vertex branching. For example, for the
Maximum Weighted Independent Set: Given a graph G(V, E) and a weight
function w : V → R, we search for an independent set S maximizing

∑

v∈S w(v),
we have opt(G, w) ≤ max {opt(G[V \ v], w), opt(G[V \N [v]], w) + w(v)}. Ob-
viously, this remains true for the non-weighted version, i.e., whenever w = 1.

Also the f -QIS can be reformulated as a problem that matches vertex
branching, in the following manner: Given a graph G(V, E), two constants w0, q0

7

and a weight function w : V → R, we search for a maximal size vertex subset
Q ⊆ V whose induced graph G[Q] = (Q, R) verifies |R| + w0 +

∑

v∈Q w(v) ≤
f(|Q| + q0). Let w+ ≡ w + 1 on N(v) = {u : {u, v} ∈ E} and w+ ≡ w else-
where. Then, it is opt(G, w0, q0, w) ≤ max{opt(G[V \v], w0, q0, w), 1+opt(G[V \
v], w0 +w(v), q0 +1, w+)}, and the formulation is completed by setting initially
q0 = w0 = 0, w ≡ 0.

Informally, w0 and q0 stand, respectively, for the number of edges and of
vertices that are already in the solution, while w(v) represents the number of
edges that will be added, if one decides to keep v.

Notice that, as it can be shown by straightforward recurrence, any problem
that matches vertex branching can be solved within time O(2n × poly(n, k)),
where |Si| < k. Obviously, this is useless for problems where a specific subgraph
is sought, since they can be solved in O∗(2n).

However, an exact algorithm for f -QIS based upon vertex branching would
be interesting if its running time T (n) could be shown to be in 2φ(∆)n with φ
some increasing function bounded above by 1 for any ∆. Intuitively, a possibility
for such an improvement lies in finding an efficient vertex branching rule for
fast reduction of the remaining graph’s degree, and showing fast (polynomial)
algorithms for computing a maximum f -QIS problem in bounded degree graphs.

4.2 Bottom-up Algorithms

We give below a general scheme, using vertex branching for finding a maximum
f -QIS in a graph G. Recall that by Proposition 1 such a method can be used
for computing an optimal solution for any of the three variants of the max

quasi-independent set problem, with a polynomial overhead. This scheme,
parameterized by a graph G, some integer function f , two integers q0 and w0,
and some vertex weight function w, can be written as follows:

procedure exactrec(G(V, E), f , q0, w0, w)
in, not in: integer;

if (V = ∅) then

if (w0 ≤ f(q0)) then

return q0

else

return −∞
endif;

endif;

pick v ∈ V (G) such that δV (v) = max;
not in ← exactrec(G[V \ v], f , q0, w0, w);
for all u neighbors of v

w(u)← w(u) + 1
endfor;

in ← exactrec(G[V \ v], f , q0 + 1, w0 + w(v), w);
return max{ in, not in};

end exactrec;

8

procedure f QIS(G(V, E): graph, f : integer function)
return exactrec(G, f , 0, 0, 0);

endf QIS

As noted at the end of the previous subsection, the running time for an exact
method based upon the above scheme can be improved if the f -QIS problem is
shown polynomial on graphs of bounded small degree graphs.

Lemma 4 Assume that some problem that matches vertex branching can be
computed on graphs whose average degree is at most d − 1, d ∈ N, within time
O∗(2αdn) for a given αd ≥ 1/2. Then, it can be computed on graphs whose
average degree is at least d − 1 within time O∗(2αdn+βd(m−(d−1)n/2)), where

βd = 2(1−αd)
d+1 .

Proof: Let T (m, n) be the running time of the algorithm on graphs of order n
with m edges. We first need to prove that T increases with m (this is trivial)
and with n. Indeed:

∂(αdn + βd(m− (d− 1)n/2))

∂n
= αd −

d− 1

2
βd =

2dαd − d + 1

d + 1
≥ 1

d + 1
> 0

We now proceed by induction on m, n. Trivially, the hypothesis of the statement
holds for m0 = (d− 1)n/2. Suppose that it is true for any pair n′ < n, m′ < m.
Since the graph has average degree greater than d− 1, there exists some vertex
of degree d or more. When branching on it, we get:

T (m, n) ≤ 2T (m− d, n− 1) ≤ 21+αd(n−1)+βd(m−(d−1)n/2)−(d+1)/2

≤ 21−αd−(d+1)/2×2(1−αd)/(d+1) × 2αdn+βd(m−(d−1)n/2)

≤ 2αdn+βd(m−(d−1)n/2)

that completes the proof.

As a straightforward consequence of the above lemma, the following propo-
sition holds:

Proposition 2 Assume that some problem that matches vertex branching can
be computed on graphs with average degree at most d−1, d ∈ N, in time O∗(2αdn)
for a given αd ≥ 0.5. Then, it may be computed on graphs whose average degree
is at most d within time O∗(2αd+1n), where αd+1 = dαd+1

d+1 .

Direct consequence of Proposition 2, is the following theorem:

Theorem 3 Any problem that is polynomial on totally disconnected graphs and
matches vertex branching can be solved on graphs of average degree at most d
with running time O∗(2dn/(d+1)).

9

Proof: One can run some exact algorithm for max independent set (for
instance, the one in (F.V. Fomin and K. Hoie. Pathwidth of cubic graphs and
exact algorithms, Information Processing Letters, 97(5): 191-196, 2006), that
has complexity bounded by O∗(20.288n)). Let S∗ the computed solution. Branch
on any vertex belonging to its complementary, V \ S∗; the remaining graph is
totally disconnected, so it can be solved in polynomial time.

Thus, the total running time will be in O∗(20.288n+2n−α(G)) ⊂ O∗(2
d

d+1n).

Notice that this bound is tight for some problems that fit Definition 1. If
the problem has the worst possible recurrence, then:

opt(G, w) = max {f1(opt(G \ {v}, w1)), f2(opt(G \ {v}, w2))}

For instance, this is the case of maximum quasi-independent set. If we either
make a greedy choice for the branching, i.e., if we always branch on a vertex
of maximal degree, or we select an independent set of maximal size, then there

exists an instance where the running time is at least 2
d

d+1n. To see this, consider
for any δ ≤ d the graph Gδ that is composed of n/(d + 1) cliques of size δ + 1.
T (G1) = 2n/(d+1). The algorithm removes one vertex in each connected compo-
nent; we so have T (Gδ) = 2n/(d+1)T (Gδ−1) and finally T (Gd) = 2dn/(d+1). On
the other hand, α(Gd) = n/(d + 1) (one vertex per clique).

Unfortunately, there is little hope for generalizing this corollary, since, unless
P = NP no problem is polynomial on graphs of average degree bounded above
by some d > 0, unless it belongs to P (just add some independent set to decrease
d). Furthermore, restricting the instance set to graphs without isolated vertices,
or even to connected graphs, does not help much, since the greedy branching
may disconnect the graph as well. On the other hand, some improved results
can be obtained for graphs of bounded maximum degree.

Many problems that match vertex branching are in fact well-known to be
polynomial on graphs of maximum degree 2, for instance max independent

set (or equivalently max clique and min vertex cover). For some difficult
problems like max quasi-independent set this remains true, but it is not
straightforward. The corresponding result is stated in Subsection 4.3 (Proposi-
tion 8).

Proposition 3 Any problem that is polynomial on graphs of maximum degree
2 and matches vertex branching can be solved on graphs of average degree d with
running time O∗(2dn/6). This bound is tight for d = 3 and a greedy choice of
the branching.

Proof: If there is no vertex of degree 3 or more, the problem can be solved
in polynomial time. Otherwise, when branching on some vertex of maximum
degree, we remove at least 3 edges from the graph, that means T (m) ≤ 2T (m−
3), that leads to T (m) = O∗(2m/3) = O∗(2dn/6).

To show the tightness, consider a graph composed of n/6 copies of K3,3. In
any connected component, the algorithm greedily branches on three vertices, so

10

K1

L1 L2 L3

K2 K3 K’1

L’1 L’2 L’3

K’2 K’3

a1,4 a2,4 a3,4

Figure 1: Tightness example for ∆ = 4.

T (n) = 2n/2.

Proposition 4 Any problem that is polynomial on graphs of maximum degree
2 and matches vertex branching can be solved on graphs of average degree that

rounds up to d ≤ 2 with running time O∗(2
d−1
d+1 n). If the average degree is d,

this bound is tight for a greedy choice of the branching.

Proof: In a notation like the one introduced in Proposition 2, this means
that we claim αd+1 = (d − 1)/(d + 1). As a consequence of Proposition 3
with d ∈ {2, 3} , we see that any problem which is polynomial on graphs of
maximum degree 2 and matches vertex branching can be solved on graphs of
average degree 2 (resp., 3) within time O∗(2n/3) (resp., O∗(2n/2)). Thus, our
hypothesis is verified for d = 2 and 3.

Now assume that the statement holds for d− 1. Then, according to Propo-

sition 2, αd+1 =
d d−2

d +1

d+1 = d−1
d+1 , and the result yields by recurrence.

In order to prove tightness, we form the graph G′
δ in the following way

(Figure 1):

• G′
3 is composed of 2n

3(d+1) copies of K3,3. T (G′
3) = 22n(d+1).

• Partition each pair of copies of K3,3 into three subsets of size 4, namely
A1, A2, A3. For any i add a vertex ai,4 adjacent to all the vertices in Ai.
That is G′

4.

• For any δ ≤ d−1, form G′
δ+1 by adding a vertex ai,d+1 adjacent to all the

vertices in Ai ∪ {ai,4, ..., ai,d}.

The algorithm removes three vertices from each connected component, so we
have T (G′

δ) = 2n/(d+1)T (G′
δ−1) and finally T (G′

d) = 2(d−1)n/(d+1).

We now study the performance of bottom-up algorithms for problems that
match vertex branching, on graphs of bounded maximum degree. We first deal
with the case of graphs of maximum degree 3, followed by the general case of
graphs with bounded maximum degree.

11

Proposition 5 Any problem that matches vertex branching and is polynomial
on graphs of maximum degree 2 can be solved on graphs of maximum degree 3
within time O∗(23n/8).

Proof: Notice that the bound claimed is lower than the O∗(
√

2
n
) on graphs

of average degree 3 or less from Proposition 4. In our analysis, we use the
following result, established by Reed in (B. Reed. Paths, stars and the number
three. Combinatorial Probabilistic Computing, 5: 277-295, 1996): On graphs
of minimum degree 3, the size of min dominating set is not greater than
3n/8. We consider separately each connected component that contains at least
a vertex of degree 3. Notice that the graph we consider may have vertices of
degree 2 or less, so we complete the graph by adding edges between them until
they all have degree at least 3. No vertex that was already at the beginning of
the process of degree 3 shall receive a new neighbor this way.

Then, we run an exact algorithm to find a min dominating set on the
modified graph. This subset, namely D, has a size at most 3n/8. D is perhaps
not a dominating set in G, but it is adjacent to all vertices of degree 3. That
means, once we have branched on any v ∈ D, the remaining graph contains only
vertices of degree 2 or less.

Of course there is an additive factor to our running time, that is the com-
plexity of solving min dominating set on a graph where any vertex but a finite
number have degree 3. Using algorithm by Fomin & Hoie, we see that can be
found in O∗(20.265n) ⊂ O∗(23n/8).

A rather immediate corollary is that any problem that matches vertex branch-
ing and is polynomial on graphs of maximum degree 2 can be solved on graphs
of maximum degree ∆ with running time O∗(2n(1−(5/8)∆−2)). Unfortunately, for
∆ ≥ 4, result from Proposition 4 overlap this one.

In case we can only make the weaker hypothesis that the problem is poly-
nomial on totally disconnected graphs (in fact, we need a somewhat stronger
hypothesis, namely, polynomiality on collection of bounded cliques), it is still
possible to improve the O∗(23n/4) result from Theorem 3, if we know that our
graph has maximum degree 3 instead of average degree 3 or less:

Proposition 6 Any problem that matches vertex branching and is polynomial
on collections of cliques of bounded cardinality can be solved on graphs of max-
imum degree 3 within time O∗(22n/3).

Proof: If G(V, E) contains a collection of 4-cliques, namely K, we first consider
G′(V ′, E′) = G[V \K]. We can find in polynomial time a 3-coloring of G′. One
of the three colors is an independent set S of size at least |V ′|/3. Any possible
subset of V ′ \ S can be tested within time O∗(22|V ′|/3) ⊂ O∗(22n/3), and the
remaining graph is a collection of cliques of size 1 or 4.

Proposition 7 Any problem that matches vertex branching and is polynomial
on graphs of maximum degree 2 can be solved on graphs of average degree d ≤ 3
with running time O∗(221n/46).

12

Proof: If ∆ ≤ 3, the proposition is a consequence of Proposition 5. Otherwise
we perform a sequence of branchings, at each time choosing a vertex of maximal
degree, until our graph have maximum degree 3. Then, we consider the size of
the remaining graph:

(i) If n′ < 20n/23, we greedily branch on vertices of degree 3 until the graph
has maximum degree 2.

(ii) Otherwise, we compute a min dominating set as described on Proposi-
tion 5 and branch on any vertex of it.

We form the finite sequence {n∆, n∆−1, ..., n4}, where ni is the number of
vertices of degree i we branch on during first step of our algorithm. Fix
σ =

∑

i≥4 ni. Since i is the degree at the time we branch, not in the initial
graph, the number of deleted edges is

∑

i≥4 ini ≥ 4σ.
If hypothesis (i) holds, our algorithm is within time O∗(2x), where x ≤

σ + m−4σ
3 ≤ n

2 − 1
3 × 3n

23 = 21n
46 .

On the other hand, if hypothesis (ii) is true, the time of the algorithm is

within O∗(2x′

), and x′ ≤ σ + 3(n−σ)
8 ≤ 3n

8 + 5
8 × 3n

23 = 21n
46 , that completes the

proof.

Thus, the following theorem holds:

Theorem 4 Any problem that matches vertex branching and is polynomial on
graphs of maximum degree 2 can be solved on graphs of average degree bounded

above by d within time O∗(2
d−27/23

d+1 n), for any d ≥ 3.

Proof: The case d = 3 is nothing but Proposition 7. Assume that it is true for
all values of average degree less than or equal to d−1. Then, thanks to Proposi-
tion 2, we can compute a solution when the average degree is less than or equal

to d, within time O∗(2αd+1n), where αd+1 = dαd+1
d+1 =

d d−1−27/23
d +1

d+1 = d−27/23
d+1 .

By induction, this is true for any d.

4.3 Applying the bottom-up scheme for exact solution of

the f-QIS problem

Next proposition establishes the possibility to use a vertex branching method
directly derived from the bottom-up scheme, for finding an optimal f -QIS within
the time stated in Theorem 4.

Proposition 8 max quasi-independent set is polynomial on graphs of max-
imum degree 2 or less.

Proof: Let ∆ be the maximum degree of the graph we consider. If ∆ =
0, we add vertices with minimum weight in a greedy manner, until condition
w0 +

∑

v∈Q w(v) ≤ f(|Q| + q0) gets violated, and find the optimal. If some
vertex v has degree 1, let u be its only neighbor.

13

• If δ(u) = 1, and, say, w(u) ≥ w(v), we can assume u belongs to the
solution only if v does. Thus, we may remove edge {u, v} and increase
w(u) by one. Of course this is symmetric between v and u.

• If δ(u) = 2 and w(u) ≥ w(v), we can a fortiori remove the edge and
increase w(u) by 1.

• Otherwise, δ(u) = 2 and w(u) ≤ w(v) − 1. Since w(u) might increase by
at most 1 (if the second neighbor of u belongs to the sought optimal), we
can safely remove {u, v} and increase w(v) by 1.

One can also consider the case where no vertex has degree 1, meaning that G
is a set of cycles (at least one) and isolated vertices. Let {ai}i≤k be one of
these cycle. If there exists some i where w(ai) ≤ w(ai+1) − 1, then we can
remove {ai, ai+1} and add 1 to w(ai+1). On the other hand, if for any i holds
that w(ai) = w(ai+1), then all vertices in the cycle are identical, some we can
decide arbitrarily to remove {a1, a2} and increase w(a1) by 1. In any case, the
cycle will become a path, and thus we can remove all its edges by successively
disconnecting leaves, as explained above.

From the discussion made in this Section, the following result is immediate.

Theorem 5 Optimal max quasi-independent set-solutions in graphs of av-

erage degree ≤ d can be found in time O∗(2
d−27/23

d+1 n).

For instance, max quasi-independent set on graphs of average degree 3
can be solved in time O∗(2

21
46n), while in graphs of average degree 4, the corre-

sponding time is O∗(2
13
23 n).

5 Approximation algorithms

5.1 Approximation of γ-QIS

5.1.1 When γ is bounded from below by a fixed constant.

In this case, things are rather optimistic, since the following result holds.

Theorem 6 Consider the γ-QIS problem when γ is bounded below by a positive
constant c. For any fixed k ≤ ∆, a solution of size at least k/∆ the optimal can
be computed within polynomial time.

Proof: Assume, w.l.o.g., that ∆ > 2 and the graph of the instance is not a
collection of cliques (otherwise, the optimum can be found in polynomial time).

Under these assumptions, there is always a ∆-coloring of the graph and it
can be found in polynomial time. Let S be a color class of the greatest size
s; recall that s ≥ n/∆. If s ≥ k/c, then S will be a γ-QIS with the desired

property, since by Lemma 2 we get q∗

s ≤
∆/γ
k/c ≤

∆/c
k/c = ∆

k , where q∗ is the size

of the optimal Q∗.

14

Otherwise, we can enumerate all subsets of size ks or less within polynomial
time, since S has bounded finite size and k is fixed by definition. If q∗ < ks,
we come with the optimal; else, by Lemma 1 we know that there exists a γ-QIS
Q ⊂ Q∗ of size q = ks. For that set, we have q∗

q ≤ n
ks ≤ n

k(n/∆) = ∆
k , and the

result yields.

Corollary 1 If γ is bounded below by some positive constant, then γ-QIS is
polynomial for graphs with bounded degree.

5.1.2 A greedy algorithm.

In this subsection, a greedy algorithm for computing a γ-QIS is discussed; the
solution is initialized to some independent set S, and at each step a vertex of
minimum degree to the current solution is being inserted; the insertions keep
on, until the largest solution, respecting the sparsity specification, is reached.

procedure γ QIS (G(V, E): graph, 0 ≤ γ ≤ 1: real, S ⊆ V : some independent set)
Q← S;
Q′ ← S;
while (|Q′| ≤ |V |)

pick v ∈ V \Q′ such that δQ′(v) = min (break ties arbitrarily)
Q′ ← Q′ ∪ {v};
if (|E[Q′]| ≤ γ

(|Q′|
2

)

) and (|Q| ≤ |Q′|)
Q← Q′;

endif;

endwhile;

return(Q);
end γ QIS

Obviously, γ QIS always returns a solution, if S is set to some γ-QIS (any
independent set in G, for instance the empty set, would do).

As it has already been mentioned, the non-hereditary character of γ−QIS is
reflected to the algorithm by the fact that it may some Q′ produced during the
execution of the algorithm be infeasible while after some later vertex-insertions
it may become feasible. This non-hereditary character of the problem is a major
difficulty for a more refined analysis of algorithm γ QIS. The following lemma
gives a lower bound on the size of the solutions returned by this algorithm.

Lemma 5 Let q be the size of the γ-QIS returned by the algorithm, where S has
been initialized to some independent vertex set. It holds that q > α−1√

1−γ
where α

is the size of Q during the last step of the algorithm’s execution before the first
edges insertion.

Proof: Let |E[Q]| be the number of edges in the solution Q. By the definition
of algorithm γ QIS, if S is initialized to an independent set, the first α vertices
inserted into the solution form a maximal independent set. Then q = α + κ, for

15

some κ, 0 ≤ κ ≤ n − α, i.e., after the insertion into the solution of the first α
vertices which are independent of each other, v1, . . . , vκ have been inserted. Let
δQi(vi) be the degree of vi to the solution at the moment of its insertion, that
is to Qi. Then, |E[Q]| = ∑κ

i=1 δQi(vi).
Notice that δQ1(v1) ≤ α and ∀i, 2 ≤ i ≤ κ, δQi(vi) ≤ α + i − 1; hence, it

holds that |E[Q]| ≤∑κ
i=1[α + (i− 1)] = κα + κ(κ−1)

2 .
Assume, w.l.o.g., that the solution computed is not a the whole graph (in

which case it is trivially optimal). Then, by the definition of γ QIS, for any
other candidate solution Q′ containing Q and having size α + κ + l for some
l ≥ 1, we have:

γ
(α + κ + l)(α + κ + l − 1)

2
< |E[Q′]| =

κ+l
∑

i=1

δQi(vi) ≤
κ+l
∑

i=1

[α + (i− 1)] = (κ + l)α +
(κ + l)(κ + l− 1)

2

γ
(α− 1 + κ + l)(α + κ + l)

2
< (κ + l)α +

(κ + l)(κ + l − 1)

2
(4)

Setting a = α− 1, k = κ + l, inequality (4) is written:

γ(a + k)(a + k + 1) < 2k(a + 1) + k(k − 1) ⇔ (1− γ)k2 + [2(1− γ)a + 1− γ]k − γa(a + 1) > 0

⇔ (1− γ)k2 + (1− γ)(2a + 1)k − γa(a + 1) > 0 (5)

Solving inequality (5) with respect to k, we get, after some easy algebra:

k > −a− 1

2
+

√

(1− γ)2(2a + 1)2 + 4(1− γ)γa(a + 1)

2(1− γ)
= −a− 1

2
+

√

4a2 + 4a + 1− γ

2
√

1− γ

> −a− 1

2
+

√

4a2 + 4a
√

1− γ + 1− γ

2
√

1− γ
= −a− 1

2
+

(2a +
√

1− γ)

2
√

1− γ
= −a +

a√
1− γ

(6)

Righthand-side inequality in (6) yields finally

κ + l + α > α− (α− 1) +
α− 1√
1− γ

⇔ q = κ + α > 1− l +
α− 1√
1− γ

(7)

with the last inequality in (7) holding also for l = 1; hence, q > α−1√
1−γ
⇒ q ≥

⌈

α−1√
1−γ

⌉

, that completes the proof.

Combining Lemma 5 and item 1 of Lemma 2, we finally get:

Theorem 7 For the γ-QIS problem it is possible to find in polynomial time a
solution of size q achieving approximation ratio q∗

q ≤ ∆αmin

α−1

√
1− γ where q∗ is

the size of an optimal quasi-independent set and αmin the size of a minimum
independent dominating set of the input graph. This ratio tends to ∆

√
1− γ.

Algorithm γ QIS has been run on 20 randomly generated graphs of each
size (10, 20 and 30 vertices; edges in an instance have been generated with a
probability p, 0.1 < p < 0.5). Optimal solutions have been computed with

16

the exact method of Section 4. The following table gives a summary of the
experimental results obtained. It contains for every value of γ, the worst, best
and average ratios and the percentage of optima returned by the algorithm.

γ value Worst ratio Best ratio Average ratio % of optimal solutions
0.2d(G) 0.667 1 0.947 66.667%
0.4d(G) 0.7 1 0.969 75%
0.6d(G) 0.75 1 0.983 83.333%
0.8d(G) 0.905 1 0.996 93.333%

1/n 0.667 1 0.96 75%
1/
√

n 0.778 1 0.98 85%
log(n)/n 0.778 1 0.973 76.667%

One may remark that the more the density of the sought subgraph comes
close to the density of the instance, the best the quality of the returned solution
is.

5.1.3 Moderately exponential approximation for γ-QIS.

We finish the approximation section for γ-QIS by showing how it can be ap-
proximated within any constant ratio by exponential algorithms with running
time better than that of an exact computation.

Theorem 8 For any k ≥ 1, it is possible to compute a γ-QIS of size at least
1/k of the optimal, within time O∗(2(log2(k+1)−k/(k+1) log2 k)n).

Proof: We enumerate every subset of size at most n/(k+1) or at least kn/(k+
1), within time:

∑

i≤n/(k+1)

[

(

n
i

)

+
(

n
n−i

)

]

≤ n
(

n
n/(k+1)

)

≤ n2 nn

(kn/(k+1))kn/(k+1)(n/(k+1))n/(k+1) ≤
n2

(

k+1
kk/(k+1)

)n
.

We return the minimal one which is a γ-QIS. If for the size of the optimal q∗

it holds that q∗ ≥ kn/(k + 1) or q∗ ≤ n/(k + 1), we come with the optimal.
Otherwise, by Lemma 1, we find a quasi-independent set Q of size q ≥ n/(k+1),

that means q∗

q ≤
kn/(k+1)
n/(k+1) ≤ k and the proof is completed.

The following result exhibits a further link between γ-QIS and max inde-

pendent set.

Theorem 9 Given some algorithm that computes an exact solution for max

independent set on G within time O∗(cn), for some constant c, a γ-QIS of
size at least 1 + γn/2 can be computed within time O∗(cn).

Proof: Suppose, w.l.o.g., that γ/2 < 1, (otherwise the optimal is trivial). Con-
sider an optimal γ-QIS Q∗ of size q∗. We denote by α∗(G) the size of a maximum

17

independent set in G. Applying Turán’s Theorem (see, for example (C. Berge.
Graphs and hypergraphs. North Holland, Amsterdam, 1973) to G[Q∗], we get:

α∗(G[Q∗]) ≥ (q∗)2

|E[Q∗]|+ q∗
≥ q∗

γ(q∗ − 1)/2 + 1
≥ 2

γ + (2− γ)/q∗
(8)

Hence, by (8), using the optimal solution returned by the algorithm as a γ-QIS,

guarantees the ratio q∗

α∗(G) ≤
q∗

α∗(G[Q∗]) ≤
γq∗+2−γ

2 ≤ γn
2 + 1, that completes the

proof.

5.2 Approximation of k-QIS

In this section we deal with polynomial approximation of k-QIS. We propose a
greedy algorithm for that purpose, based upon the same idea as γ QIS presented
above; however, k-QIS being a hereditary problem, the algorithm stops as soon
as it finds the first vertex whose insertion violates the condition on the number
of edges allowed in the solution.

Procedure k QIS(G(V, E): Graph, k: integer≥ 0, S: some independent set)
Q← S;
while (|E(Q)| ≤ k)

pick v ∈ V \Q such that δQ(v) = min (break ties arbitrarily)
Q← Q ∪ {v};

endwhile

return(Q \ {v});
end k QIS

Theorem 10 For the k-QIS problem it is possible to find in polynomial time a

solution of size q achieving approximation ratio q∗

q ≤
α∗θ(S)+kθ(Q)

αθ(Q)+k ≤ max
{

α∗

α , θ(Q)
}

,

where q∗ is the size of the optimal, α∗ is the size of a maximum independent set
in G and α the size of some independent set.

Proof: Let Q be the solution computed by the algorithm; as in the proof of
Lemma 5, we note by q its size, and write q = α + x, with α the size of Q
at the last step before the first edge insertions performed by the algorithm;
we can suppose, w.l.o.g., that this set is already computed before starting the
algorithm. Let θ(S) = maxv∈V \S{δS(v)}. Clearly, for each of the remaining
x vertices, at most θ(S) edges are inserted into the QIS; thus, with Qi be the
solution after the i-th from the x vertices insertions that brought some edges
in, we have:

k =

x
∑

i=1

δQi(vi) ≤ θ(S)x⇒ k ≤ θ(S)(q − α)⇔ q ≥ k

θ(S)
+ α (9)

Let Q∗ be an optimal solution with |Q∗| = q∗ and consider the graph G[Q∗] =
(Q∗, E′). Obviously, |E′| ≤ k. The set Q∗ can be seen as the union of two sets S∗

18

and T , where S∗ is a maximum independent set of G[Q∗] and T = Q∗ \ S∗. On
the other hand, E′ is the union of the set E′

T of edges within the set T and of
the set E′

S∗,T of edges between S∗ and T . Obviously, |E′
S∗,T | ≤ k. Moreover,

since the graph (Q∗, E′
S∗,T) is bipartite and connected (the set S∗ is maximal

for inclusion in both G[Q∗] and (Q∗, E′
S∗,T)), the fact that |E′

S∗,T | ≤ k implies
|T | ≤ k. So, q∗ ≤ |S∗|+ k ≤ α∗ + k, where α∗ is the size of a maximum inde-
pendent set in the graph G. Combining this bound with (9), we finally get the
result.

Recall that the best approximation ratio (as function of ∆) known for max

independent set is (∆ + 2)/3 and is guaranteed by the natural greedy max

independent set-algorithm [6].
Suppose first that θ(Q) ≥ 3. Then, by item 2 of Lemma 2, the approximation

ratio of algorithm k QIS is bounded from above by ∆/3. Assume now that
θ(Q) ≤ 3. Then, by Theorem 10, the approximation ratio of the algorithm is

bounded above by max
{

α∗

α , 6
}

≤ α∗

α ≤ ∆+2
3 , and the following holds.

Corollary 2 k-QIS is approximable in polynomial time within ratio (∆ + 2)/3.

Another set of tests have been implemented in order to experimentally observe
the behavior of performance of algorithm k QIS presented for several values of
k. As for the case of γ-QIS, we have used the exact method of Section 4 to
compute optimal solutions of the test instances. Instances have been generated
randomly, following a probability p, 0.1 < p < 0.5, for an edge to be present in
the instance graph. The tests indicate that the algorithm performs fairly well
in small instances. A summary of the obtained results is given in the following
table.

k value Worst ratio Best ratio Average ratio % of optimal solutions
2
√

m 0.93 1 0.99 90%√
n 0.83 1 0.98 80%

log(m) 0.83 1 0.98 80%
log(n) 0.83 1 0.97 75%
m/2 0.96 1 0.99 92.5%
m/3 0.96 1 0.99 95%
n/2 0.90 1 0.99 90%
n/3 0.90 1 0.99 87.5%

References

[1] J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detec-
tion. In Proceedings of LATIN 2002, LNCS 2286, Springer-Verlag, 598-612.

[2] Y. Asahiro, K. Iwama, H. Tamaki and T. Tokuyama. Greedily finding a
dense subgraph. Journal of Algorithms 34(2): 203-221, 2000.

19

[3] V. Boginski, S. Butenko and P. Pardalos. Mining market data: a network
approach. Computers and Operations Research (2005). Available online at
http://www.sciencedirect.com/.

[4] D.G. Corneil, and Y. Perl. Clustering and domination in perfect graphs.
Discrete Applied Mathematics 9: 27-39, 1984.

[5] U. Feige, G. Kortsarz and D. Peleg. The dense k-subgraph problem. Algo-
rithmica 29(3): 410-421, 2001.

[6] M.M. Halldórsson and J. Radhakrishnan. Greed is good: approximating
independent sets in sparse and bounded-degree graphs. In Proceedings of
STOC 1994, 439-448.

[7] L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray. A.W. From
molecular to modular cell biology. Nature, 402: C47-C52, 1999.

[8] D.S. Hochbaum and O. Goldschmidt. k-edge subgraph problems. Discrete
Applied Mathematics, 74(2): 159-169, 1997.

[9] M.S. Krishnamoorthy and N. Deo. Node-deletion NP-complete problems,
SIAM J. Comput., 8: 619-625, 1979.

[10] M. Yannakakis and J. Lewis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences
20(2): 219-230, 1980.

[11] V. Zissimopoulos. Private communication.

[12] D. Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In Proceedings of STOC 2006, 681-690.

20

