The max quasi-independent set problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

The max quasi-independent set problem

Résumé

In this paper, we deal with the problem of finding quasi-independent sets in graphs. This problem is formally defined in three versions, which are shown to be polynomially equivalent. The one that looks most general, namely, f-QIS, consists of, given a graph and a non-decreasing function f, finding a maximum size subset Q of the vertices of the graph, such that the number of edges in the induced subgraph is less than or equal to f(|Q|). For this problem, we show an exact solution method that runs within time $O^*{\frac{d-27/23}{d+1}u})$ on graphs of average degree bounded by d. For the most specifically defined -QIS and k-QIS problems, several results on complexity and approximation are shown, and greedy algorithms are proposed, analyzed and tested.
Fichier principal
Vignette du fichier
cahier_292.pdf (557.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00880207 , version 1 (05-11-2013)

Identifiants

  • HAL Id : hal-00880207 , version 1

Citer

Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, Vangelis Paschos, et al.. The max quasi-independent set problem. 2010. ⟨hal-00880207⟩
128 Consultations
160 Téléchargements

Partager

More