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Abstract

In this article we present a new empirical
Bernstein inequality for bounded martingale
difference sequences. This inequality refines
the one by Freedman [1975] and is then used
in order to bound the average risk of the hy-
potheses during an online learning process.
We show theoretical and empirical evidences
of the tightness of our result compared with
the state of the art bound provided by Cesa-
Bianchi and Gentile [2008].

1 INTRODUCTION

The motivation behind this work comes from the wish
to analyze the risk of the models (or hypotheses) pro-
duced by an online learning algorithm. Such an algo-
rithm works incrementally on a sequence of indepen-
dent and identically distributed (i.i.d.) random vari-
ables. At each step, it receives an example that is
used in order to update the current model parame-
ters. Once this update is done, the performance of the
new hypothesis is measured by evaluating its loss on
the next example of the sequence and so on. By aver-
aging these losses, one can define a statistic R̂n called
empirical instantaneous risk. The risk of a model is
simply the expectation of its loss on a new unseen
example given the sequence of data used in its con-
struction. In their recent works, Cesa-Bianchi et al.
[2004] and Cesa-Bianchi and Gentile [2008] show how
the statistic R̂n can be used for selecting a hypoth-
esis with a low risk. The key tool in their analyses
is the use of concentration inequalities for martingales
(Azuma-Hoeffding, Bernstein). Indeed, the dependen-
cies existing between the hypotheses that are inherent
to online learning processes prevent the use of standard
concentration inequalities that require independence.

Bernstein (second-order) inequalities are known to be
tighter than their first-order counterparts. However,

the variance is in general unknown and need to be
upper bounded. Recent works in the batch setting
have proposed an empirical (data-dependent) version
of the Bernstein inequality [Maurer and Pontil, 2009,
Peel et al., 2010] where an estimator of the variance
is used as upper bound. However, these inequalities
are not applicable to the online learning setting. In
this paper, we propose a new Bernstein inequality for
bounded martingale difference sequences (Theorem 2)
that takes advantage of the statistic V̂n, an instanta-
neous estimator of the variance. This inequality is then
used in order to refine the tail bound by Cesa-Bianchi
and Gentile [2008]. Briefly, we show that under the
same assumptions they make, the average risk of the
hypotheses produced by an online learning algorithm
is bounded with high probability by

R̂n +
1

n

√

βn ln

(

2

δ

)

+
2

3n
ln

(

2

δ

)

,

where βn is a function of V̂n we will detail later. This
bound can be applied to any online algorithm and
as an example we show how to use it to characterize
the average risk of the hypotheses produced by Pega-
sos [Shalev-Shwartz et al., 2011], a stochastic method
for solving the SVM optimization problem.

We want to emphasize that the scope of our new em-
pirical Bernstein inequality for martingales goes far
beyond any application to online learning processes.

The paper is organized as follows. In Section 2 we re-
call a few fundamental notions about martingales and
the classical concentration inequalities associated with
this kind of random processes. Section 3 presents the
main result of this paper, a concentration inequality
that takes advantage of a second order empirical in-
formation in the martingale setting. This one is then
applied in Section 4 to get a bound on the mean gener-
alization error made by the hypotheses learned during
an online learning process. This bound substantially
improves the results mentionned above. We end this
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paper with Section 5, a direct consequence of the pre-
vious inequalities that let us bound the mean risk of
the weight vectors generated during a run of the Pe-
gasos algorithm.

2 PRELIMINARIES

This section briefly reminds basic notions about the
martingale theory and the classical concentration in-
equalities associated with this kind of stochastic pro-
cesses.

2.1 Martingale and Martingale Difference

Sequence

Definition 1 (Martingale). A sequence {Mn : 0 ≤
n <∞} of random variables is said to be a martingale
with respect to the sequence of random variables {Xn :
1 ≤ n < ∞} if the sequence {M0, . . . ,Mn} has two
basic properties. The first one is that for each n ≥ 1
there is a function fn : R

n → R such that Mn =
fn(X1, X2, . . . , Xn). The second property is that the
sequence {Mn} satisfies for all n ≥ 1 :

E [|Mn|] <∞ (1)

E [Mn |X1, . . . , Xn−1] = Mn−1. (2)

Given this definition of a martingale, we now define a
martingale difference sequence.

Definition 2 (Martingale difference sequence). We
say that a sequence of random variables {Yn : 0 ≤ n <
∞} is a martingale difference sequence (mds) if the
sequence {Yn} satisfies the following properties for all
n ≥ 1 :

E [|Yn|] <∞ (3)

E [Yn |Y1, . . . , Yn−1] = 0. (4)

By construction, this implies that if the sequence
{Mn} is a martingale then the sequence {Yn = Mn −
Mn−1} is a martingale difference sequence. We now
introduce two well-known concentration inequalities
about the sum of the increments of a mds that we
will use in the next sections.

2.2 Azuma-Hoeffding Inequality

The Azuma-Hoeffding inequality [Hoeffding, 1963,
Azuma, 1967] gives a result about the concentration
of the values of a martingale with bounded increments
around his initial value M0.

Theorem 1 (Azuma-Hoeffding inequality). Let {Mn}
be a martingale and define {Yn = Mn − Mn−1} the

associated martingale difference sequence such that
|Yi| ≤ ci for all 1 ≤ i ≤ n. Then, for all ǫ > 0

P

[

n
∑

i=1

Yi = Mn −M0 ≥ ǫ

]

≤ exp

(

− ǫ2

2
∑n

i=1
ci2

)

.

(5)

This result makes it possible to extend the Hoeffd-
ing inequality [Hoeffding, 1963] to the case where the
random variables of interest are not necessarily inde-
pendent.

Corollary 1. Let X1, . . . , Xn be a sequence of ran-
dom variables such that for all 1 ≤ i ≤ n we have
|E [Xi |X1, . . . , Xi−1]−Xi| ≤ ci. Set Sn =

∑n
i=1

Xi,
then for all ǫ > 0

P

[

n
∑

i=1

E [Xi |X1, . . . , Xi−1]− Sn ≥ ǫ

]

≤ exp

(

− ǫ2

2
∑n

i=1
ci2

)

. (6)

Proof. A direct application of Theorem 1 to the
martingale difference sequence {Yn} such that Yi =
E [Xi |X1, . . . , Xi−1]−Xi gives the result.

2.3 Bernstein Inequality for Martingales

The inequality we recall in the following lemma is
a consequence of the Bernstein inequality for mar-
tingales given in Freedman [1975]. This lemma ex-
tends the classical Bernstein inequality [Bennett, 1962]
which requires independence between the random vari-
ables Xi under consideration. This limitation is over-
come by looking at the martingale difference sequence
{Yn = E [Xn|X1, . . . , Xn−1]−Xn}.
Lemma 1 (Bernstein inequality for martingales).
Suppose X1, . . . , Xn is a sequence of random variables
such that 0 ≤ Xi ≤ 1. Define the martingale difference
sequence {Yn = E [Xn|X1, . . . , Xn−1] −Xn} and note
Kn the sum of the conditional variances

Kn =

n
∑

t=1

V [Xn|X1, . . . , Xn−1]. (7)

Let Sn =
∑n

i=1
Xi, then for all ǫ, v ≥ 0,

P

[

n
∑

i=1

E [Xn|X1, . . . , Xn−1]− Sn ≥ ǫ,Kn ≤ k

]

≤ exp

(

− ǫ2

2k + 2ǫ/3

)

. (8)

As we shall see, this lemma is central in our analysis as
it was in the work by Cesa-Bianchi and Gentile [2008].
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3 EMPIRICAL BERNSTEIN

INEQUALITY FOR

MARTINGALES

Second order Bernstein inequalities are known to be
tighter than their first order counterparts thanks to
the variance term. However, in practice, this term of-
ten can not be evaluated and it is common to upper
bound it by the expectation (making the assumption
that the random variables under interest are bounded
by 1) in order to compute the whole inequality. We
propose another approach based on the use of an in-
stantaneous estimator of the variance instead of the
usual approach. By doing so, we hope to get a tighter
inequality without any a priori assumption on the un-
derlying distribution of the random variables. This
section presents the main result of the paper, a refined
version of Bernstein inequality for martingales recalled
above where the sum of conditional variances is up-
per bounded using an instantaneous estimator. We
first introduce the inequality reversal lemma, which al-
lows us to transform tail inequalities into upper bounds
(or confidence intervals). This lemma has been used
by Peel et al. [2010] to prove their empirical Bernstein
inequality for U-Statistics.

Lemma 2 (Inequality reversal lemma). Let X be a
random variable and a, b>0, c, d≥0 such that

∀ε > 0, PX [|X| ≥ ε] ≤ a exp

{

− bε2

c+ dε

}

, (9)

then, with probability at least 1− δ

|X| ≤
√

c

b
ln

a

δ
+

d

b
ln

a

δ
. (10)

Proof. Solving for ε such that the right hand side of (9)
is equal to δ gives:

ε =
1

2b

(

d ln
a

δ
+

√

d2 ln2
a

δ
+ 4bc ln

a

δ

)

.

Using
√
a+ b ≤ √a +

√
b gives an upper bound on ε

and provides the result.

We use the notation f{Zt} in order to indicate a func-
tion determined by the sequence of random variables
{Zt} = {Z1, . . . , Zt} i.e. the expression of f{Zt} is
fixed by the sequence {Zt}. The next theorem is the
main result of this paper.

Theorem 2 (Empirical Bernstein inequality for mar-
tingales). Let Z1, . . . , Zn be a sequence of random vari-
ables following the same probability distribution D such
that Zt+1, Zt+2 are conditionally independent given
{Zt}, for all 1 ≤ t ≤ n. Suppose {f{Zt}}nt=1 is a family

of functions which take their values in [0, 1], then for
all 0 < δ ≤ 1 we have with probability at least 1− δ

1

n

n
∑

t=1

E
[

f{Zt}(Zt+1) |Z1, . . . , Zt

]

≤ 1

n

n
∑

i=1

f{Zt}(Zt+1) +
1

n

√

βn ln

(

2

δ

)

+
2

3n
ln

(

2

δ

)

,

(11)

where

βn = nV̂n +

√

n

2
ln

(

2

δ

)

, (12)

and

V̂n =
1

2n

n
∑

t=1

(

f{Zt}(Zt+1)− f{Zt}(Zt+2)
)2
. (13)

In a nutshell, the message carried by this theorem
is that it is possible to use an instantaneous vari-
ance estimator to quantify the deviation of the sum
1

n

∑n
i=1

f{Zt}(Zt+1) from its expected value. In order
to prove the previous concentration inequality, we need
an intermediate result about the conditional variance
estimator introduced in Equation (13). In essence, the
following lemma allows us to quantify the deviation
of this estimator from the sum Vn of the conditional
variances:

Vn =

n
∑

t=1

V
[

f{Zt}(Z) |Z1, . . . , Zt

]

. (14)

Lemma 3. Let Z1, . . . , Zn be a sequence of random
variables following the same probability distribution
D such that Zt+1, Zt+2 are conditionally independent
given {Zt}, for all 1 ≤ t ≤ n. Suppose {f{Zt}}nt=1 is
a family of functions which take their values in [0, 1],
then for all 0 < δ ≤ 1,

P

[

Vn ≥ nV̂n +

√

n

2
ln

(

1

δ

)

]

≤ δ . (15)

Proof. We begin this proof by defining the sequence of
random variables {Mn} such that for all 1 ≤ t ≤ n,

Mt =
1

2

(

f{Zt}(Zt+1)− f{Zt}(Zt+2)
)2
,

and the associated martingale difference sequence

{An = E [Mn |Z1, . . . , Zn]−Mn} .

Using the fact that the Zt follow the same distribution
and that Zt+1, Zt+2 are conditionally independent we
get that

E [Mt |Z1, . . . , Zt] = V
[

f{Zt}(Z) |Z1, . . . , Zt

]

.
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It follows that

1

n

n
∑

t=1

At =
1

n

n
∑

t=1

V
[

f{Zt}(Z) |Z1, . . . , Zt

]

− V̂n

=
1

n
Vn − V̂n.

Noting that Mt ∈ [0, 1

2
] because f takes its values in

[0, 1] entails E [Mt |Z1, . . . , Zt] ∈ [0, 1

2
] and further-

more each term of the sequence {An} is bounded:

−1

2
≤ At ≤

1

2
.

Consequently {An} is a bounded martingale difference
sequence on which we can apply the Azuma-Hoeffding
inequality (Theorem 1) to obtain

P

[

1

n
Vn − V̂n ≥ ǫ

]

≤ exp

(

−2ǫ2

n

)

.

We conclude the proof by using Lemma 2.

Thanks to this first result, we can now prove Theo-
rem 2.

Proof. (Theorem 2) Define the sequence of random
variables {Mn} such that

Mi = f{Zi}(Z),

and the associated martingale difference sequence

{An = E [Mn |Z1, . . . , Zn]−Mn}.

Remark that for βn as in Equation (12) and s fixed

P

[

n
∑

t=1

At ≥ s

]

=P

[

n
∑

t=1

At ≥ s, Vn ≥ βn

]

+P

[

n
∑

t=1

At ≥ s, Vn < βn

]

.

We need to upper bound the two parts of the right
hand side of the previous equation in order to get
the desired bound on the left hand side. Remark
that P [

∑n
t=1

At ≥ s, Vn ≥ βn] ≤ P [Vn ≥ βn]. We use
Lemma 3 to bound P [Vn ≥ βn] and obtain

P

[

n
∑

t=1

At ≥ s, Vn ≥ βn

]

≤ δ

2
. (16)

Then, by using the Bernstein inequality for martin-
gales (Lemma 1) on the martingale difference sequence
{An} we have

P

[

n
∑

t=1

At ≥ s, Vn < b

]

≤ exp

(

− s2

2b+ 2s/3

)

, (17)

which we can write alternatively

P

[

n
∑

t=1

At ≥
√

b ln

(

2

δ

)

+
2

3
ln

(

2

δ

)

, Vn < b

]

≤ δ

2
,

(18)
thanks to Lemma 2. We conclude the proof by setting
b = βn in (18) and

s =

√

βn ln

(

2

δ

)

+
2

3
ln

(

2

δ

)

,

in Equation (16).

In the upcoming section, we use Theorem 2 in an on-
line learning setting. More precisely, we employ our
result with the intention of characterizing the mean of
the risks

1

n

n−1
∑

t=0

R(ht)

associated with the hypotheses learned during such a
process.

4 APPLICATION TO ONLINE

LEARNING

Before stating the main theorem of this section, we
recall the online learning setting and define a new in-
stantaneous estimator of the conditional variance well
suited for an online learning procedure.

4.1 Online Learning and Instantaneous

Conditional Variance Estimator

There is no formal definition of an online learn-
ing process, even in reference works as Littlestone
et al. [1995] or Shalev-Shwartz [2007]. One gener-
ally defines it as follows. Consider a dataset Zn =
{zi}ni=1

= {(xi, yi)}ni=1
of independent and identically

distributed random variables with respect to an un-
known probability distribution D on the product space
X × Y. An online learning algorithm working with
the set Zn produces a set {h0, . . . , hn} of hypotheses
where each ht : X → Ỹ aims at predicting the class of
a new example x drawn from D. From an initial hy-
pothesis h0 and the first datum (x1, y1) the algorithm
produces a new hypothesis h1. This new hypothesis is
a function of the random variable z1 = (x1, y1) (and
the hypothesis h0). It then uses the next example
(x2, y2) and the hypothesis h1 to generate a second
hypothesis h2 and so on. At the end of the learn-
ing process, the algorithm outputs the set {h0, . . . , hn}
where each hypothesis ht is constructed using the pre-
vious hypothesis ht−1 and the example (xt, yt). Thus
each hypothesis ht depends on the sequence of random
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variables {z1, . . . , zt}. We use a bounded loss function
ℓ : Ỹ×Y → R

+ in order to evaluate the performance of
an hypothesis. The risk of the hypothesis ht, denoted
by R(ht) = E [ℓ(ht(X), Y ) | z1, . . . , zt], is simply the
expectation of the loss function ℓ conditionally to the
random variables {z1, . . . , zt}. Obviously, this quan-
tity is unknown since D is unknown. In this article, we

assume that the loss function is such that ℓ ∈ [0, 1]Ỹ×Y .
It is important to notice that this assumption does not
limit the scope of the results presented hereafter.

A common wish in online learning is to characterize
the mean risk

1

n

n−1
∑

t=0

R(ht) =
1

n

n−1
∑

t=0

E [ℓ(ht(X), Y ) | z1, . . . , zt], (19)

associated with the hypotheses produced by an algo-
rithm using an online estimator R̂n such that

R̂n = R̂n(Zn) =
1

n

n−1
∑

t=0

ℓ(ht(xt+1), yt+1). (20)

The hypothesis hn is discarded for purely technical
reasons. The quantity R̂n is often referred to as the
average instantaneous risk. It is central in many online
learning analysis (see by example Cesa-Bianchi et al.
[2004]). Each term of the previous sum is an estimator
of the risk R(ht) associated with the hypothesis ht

(conditionally to the examples z1, . . . , zt) :

E [ℓ(ht(xt+1), yt+1) | z1, . . . , zt] = R(ht).

The term instantaneous comes from the fact that R̂n

only relies on the example (xt+1, yt+1) appearing at
iteration t + 1 in order to evaluate the risk of ht. A
state of the art result due to Cesa-Bianchi and Gentile
[2008] links R̂n to 1

n

∑n−1

t=0
R(ht):

Proposition 1. Let h0, . . . , hn−1 be the set of hy-
potheses generated by an online learning algorithm us-

ing the bounded loss function ℓ ∈ [0, 1]Ỹ×Y . Then, for
all 0 < δ ≤ 1, we have with probability at least 1− δ

1

n

n−1
∑

t=0

R(ht) ≤ R̂n + 2

√

√

√

√

R̂n

n
ln

(

nR̂n + 3

δ

)

+
36

n
ln

(

nR̂n + 3

δ

)

. (21)

Remark 1. The Gibbs classifier [McAllester, 1999] is a
stochastic classifier obtained by selecting randomly a
hypothesis among a set of hypotheses, given a proba-
bility distribution on these hypotheses. 1

n

∑n−1

t=0
R(ht)

can thus be seen as the risk of the Gibbs classifier for
an uniform distribution on the set {h0, . . . , hn−1}.

The key of the result exposed in the previous propo-
sition lies in the use of a second order concentra-
tion inequality for martingales (proposed by Freedman
[1975]) which introduces the sum Vn of the conditional
variances of the loss of each hypothesis:

Vn =

n−1
∑

t=0

V [ℓ(ht(xt+1), yt+1) | z1, . . . , zt] .

As Rn, this quantity can not be computed since the
distribution D is unknown. Cesa-Bianchi and Gentile
[2008] proposed to upper bound this sum using a strat-
ification process in order to get their inequality. In this
section we improve the previous bound by employing
Theorem 2 together with an online estimator V̂n of the
sum Vn, which allows for a better control of the for-
mer. The average empirical instantaneous variance V̂n

is simply defined as

V̂n =
1

2(n− 1)

n−2
∑

t=0

(

ℓ(ht(xt+1), yt+1)

− ℓ(ht(xt+2), yt+2)
)2
. (22)

Again, we discard the hypotheses hn−1 et hn from this
quantity for technical reasons. Each term of this sum is
an estimator of the conditional variance of ℓ(ht(x), y):

E

[

(

ℓ(ht(xt+1), yt+1)− ℓ(ht(xt+2), yt+2)
)2 | z1, . . . , zt

]

= 2V [ℓ(ht(x), y) | z1, . . . , zt] . (23)

V̂n may be easily computed during an online learning
process and plays a central role in the theorem we
present here.

4.2 Empirical Bernstein Inequalities for

Online Learning

In the following theorem, we use Theorem 2 and the
instantaneous estimators R̂n et V̂n in order to bound
1

n

∑n−1

t=0
R(ht), the mean of the risks of the hypotheses

learned by an online algorithm.

Theorem 3 (Empirical Bernstein inequality for on-
line learning). Let h0, . . . , hn−1 be the set of hypothe-
ses generated from the sample Zn = {zi}ni=1 =
{(xi, yi)}ni=1 of i.i.d. random variables by an on-
line learning algorithm using the bounded loss function

ℓ ∈ [0, 1]Ỹ×Y . Then, for all 0 < δ ≤ 1 we have with
probability at least 1− δ:

1

n

n−1
∑

t=0

R(ht) ≤ R̂n +
1

n

√

βn ln

(

2

δ

)

+
2

3n
ln

(

2

δ

)

,

(24)
where

βn = (n− 1)V̂n +

√

n− 1

2
ln

(

2

δ

)

. (25)
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Proof. (Theorem 3) The proof is direct. Consider the
set Zn = {zi}ni=1 = {(xi, yi)}ni=1 of i.i.d. random vari-
ables and the family of functions {ℓ(hi(·), ·)}ni=0 where
each function ℓ(ht(·), ·) only depends on the variables
z1, . . . , zt by definition of ht. Noting that zt+1, zt+2

are independent with respect to z1, . . . , zt (by defini-
tion of Zn), we simply apply Theorem 2 and adjust
the indexes to obtain the result.

We now want to emphasize the comparison with the
bound by Cesa-Bianchi and Gentile [2008] (Equa-
tion (21)). Our result firstly improves the constants
involved in the bound which is very appreciable when
the bound is computed with a small number of hy-
potheses (when n is small, the last term in the bound
can not be neglected). In order to analyze the be-
havior of our result when we have a sufficient number
of hypotheses to omit the last term, we have to pay
attention to

1

n

√

βn ln

(

2

δ

)

≤

√

ln
(

2

δ

)

V̂n

n
+

(

ln
(

2

δ

)

n

)3/4

, (26)

where we used the fact that
√
a+ b ≤ √a+

√
b to get

the upper bound. Thus, omitting the constant terms,
our bound tends to R̂n at least in

O





√

V̂n

n
+

1

n3/4
+

1

n



 ,

when the one by Cesa-Bianchi and Gentile [2008] tends
to R̂n in

O





√

R̂n
ln(nR̂n)

n
+

ln(nR̂n)

n



 .

In order to study the difference between the two rates
of convergence, we need to compare the two terms V̂n

and R̂n.

V̂n =
1

2(n− 1)

n−2
∑

t=0

(

ℓ(ht(xt+1), yt+1)

− ℓ(ht(xt+2), yt+2)
)2

≤ 1

2(n− 1)

(

n−2
∑

t=0

ℓ(ht(xt+1), yt+1)
2

+
n−2
∑

t=0

ℓ(ht(xt+2), yt+2)
2

)

≤ 1

2(n− 1)

(

n−2
∑

t=0

ℓ(ht(xt+1), yt+1)

+

n−2
∑

t=0

ℓ(ht(xt+2), yt+2)

)

.

The last inequality is obtained by using ℓ ∈ [0, 1]Ỹ×Y .
Suppose that the error made by each hypothesis ht on
the example zt+2 is not too different from the error
made by the same hypothesis on zt+1:

ℓ(ht(xt+2), yt+2) ≈ ℓ(ht(xt+1), yt+1).

In this case, the previous right hand side is almost

1

(n− 1)

n−2
∑

t=0

ℓ(ht(xt+1), yt+1) ≈ R̂n

thus it follows that V̂n ≤ R̂n. A setting studied
by Cesa-Bianchi and Gentile [2008] is when the em-
pirical cumulative risk nR̂n is in O(1) i.e. nR̂n is
bounded. Their result thus reaches an asymptotic be-
havior in O( 1n ) (the terms involving ln(nR̂n) vanishes

as a constant). With the assumption that V̂n is in O(1)
as well, our bound shows a rate of convergence slightly
worse in O( 1

n3/4 ). However, as soon as the cumulative

risk nR̂n increases with n, the bound by Cesa-Bianchi
and Gentile [2008] converges at the rate O(

√

lnn/n)

whereas ours reaches a O(
√

1/n) rate.

Case of a Convex Loss Function When an online
algorithm uses a convex loss function ℓ, we can use
Theorem 3 in order to characterize the risk associated
with the mean hypothesis h̄:

h̄ =
1

n

n−1
∑

t=0

ht. (27)

When the decision space Ỹ associated with the clas-
sifiers ht : X → Ỹ is convex then the hypothesis h̄
belongs to the same function class as each of the ht,
h̄ : X → Ỹ. The mean hypothesis is thus a deter-
ministic classifier, by opposition to the Gibbs classifier
defined earlier, which shares the same bound on its
risk.

Corollary 2. Let h0, . . . , hn−1 be the set of all the
hypotheses generated by an online learning algorithm

using the convex loss function ℓ such that ℓ ∈ [0, 1]Ỹ×Y .
Then, for all 0 < δ ≤ 1 with probability at least 1− δ

R(h̄) ≤ R̂n +
1

n

√

βn ln

(

2

δ

)

+
2

3n
ln

(

2

δ

)

, (28)

where

βn = (n− 1)V̂n +

√

n− 1

2
ln

(

2

δ

)

.

Proof. Using Jensen’s inequality and linearity of the
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expectation, it is easy to show that

R(h̄) = E

[

ℓ(
1

n

n−1
∑

t=0

ht(X), Y )

]

≤ 1

n

n−1
∑

t=0

E [ℓ(ht(X), Y )]

=
1

n

n−1
∑

t=0

R(ht).

To conclude the proof, we just need to combine this
result with Theorem 3.

5 BOUNDING THE AVERAGE

RISK OF PEGASOS

In this section, we use the previous corollary in order
to derive a bound on the mean risk of the hypotheses
generated by the Pegasos [Shalev-Shwartz et al., 2011]
algorithm.

5.1 Pegasos

Pegasos is an algorithm designed to solve the primal
SVM problem. Recall that given a sample Zn =
{zi}ni=1 = {(xi, yi)}ni=1 the SVM objective function is
given by:

F (w) :=
λ

2
‖w‖2

2
+

1

n

n
∑

i=1

ℓhinge(w,xi, yi), (29)

where ℓhinge(w,x, y) = max{0, 1 − y〈w,x〉}. Pegasos
works in an online fashion by doing a stochastic sub-
gradient descent on the SVM objective function. At
time t, Pegasos randomly selects an example Zit =
(xii , yit) and aims at minimizing the approximation

f(wt, Zit) =
λ

2

∥

∥w
t
∥

∥

2

2
+ ℓhinge(w

t,xit , yit),

of the SVM objective function. It considers the follow-
ing sub-gradient, taken at point w

t, of the previous
function which is given by

∇t = ∇w
t f(wt, Zit) = λwt − 1[yit 〈wt,xit 〉<1]yitxit ,

and it updates the current weight vector w
t to w

t+1

by w
t+1 ← w

t−ηt∇t using a step ηt = 1/(λt). So, we
get at each iteration the vector

w
t+1 ←

(

1− 1

t

)

w
t + ηt1[yit 〈wt,xit 〉<1]yitxit .

A projection step (optional) that we detail in the se-
quel ends up the iteration t. Pegasos stops when t = T ,

Algorithm 1 Pegasos

Require: {(xi, yi)}ni=1, λ ≥ 0 and T ≥ 0
Ensure: w

T+1

w
0 ← 0

for t← 0 to T do

Pick randomly it ∈ {1, . . . , n}
Define ηt =

1

λt
if yit〈wt,xit〉 < 1 then

w
t+1 ← (1− ηtλ)w

t + ηtyitxit

else

w
t+1 ← (1− ηtλ)w

t

end if

w
t+1 = min

[

1, 1/
√
λ

‖wt+1‖
2

]

w
t+1

end for

where T is a number of iteration given as a parame-
ter. Thus Pegasos can be seen as an online algorithm
working with the sequence of examples Zi1 , . . . , ZiT

constructed by picking randomly at each iteration an
example from Zn. Algorithm 1 sums up the different
steps of Pegasos.

5.2 Bounding the Mean Risk of the

Hypotheses Generated by Pegasos

In order to apply Theorem 3 we need the loss func-
tion to be bounded. It can be shown that w

∗ =
argmin

w
F (w) satisfies ‖w∗‖

2
≤ 1/

√
λ. Thus, we can

limit the search space to the ball of radius 1/
√
λ by

incorporating a projection step as mentioned above

w
t+1 = min

[

1,
1/
√
λ

‖wt+1‖
2

]

w
t+1.

With the assumption that ‖x‖
2
≤ M , we can bound

the hinge loss function:

ℓhinge(w,x, y) ≤ 1 + ‖x‖
2
‖w‖

2
≤ 1 +

M√
λ
= C.

Thereby, the loss function used by Pegasos can be ad-
justed to satisfy the assumption of Theorem 3 and we
can use it to prove the following corollary.

Corollary 3. Let w
0, . . . ,wT be the sequence of

weight vectors generated by the Pegasos algorithm from
a sample Zn where ‖xi‖2 ≤ M , 1 ≤ i ≤ n. Then for
all 0 < δ ≤ 1, we have with probability at least 1− δ,

1

n

n−1
∑

t=0

R(wt) ≤ R̂n +
C

n

√

β̃n ln

(

2

δ

)

+
2C

3n
ln

(

2

δ

)

,

where

β̃n =
(n− 1)V̂n

C2
+

√

n− 1

2
ln

(

2

δ

)

. (30)



Empirical Bernstein Inequality for Martingales : Application to Online Learning

100 101 102 103 104 10510-1

100

101

102

103

104 λ = 0.01

Cesa-Bianchi (2008) bound

Empirical Bernstein bound (this work)

100 101 102 103 104 10510-1

100

101

102

103

104 λ = 0.1

Cesa-Bianchi (2008) bound

Empirical Bernstein bound (this work)

100 101 102 103 104 10510-1

100

101

102

103 λ = 1.0

Cesa-Bianchi (2008) bound

Empirical Bernstein bound (this work)

100 101 102 103 104 10510-1

100

101

102

103 λ = 10.0

Cesa-Bianchi (2008) bound

Empirical Bernstein bound (this work)

Figure 1: Comparison of the Bounds From Proposition 1 and Corollary 3 Computed for the Pegasos Algorithm
on a Toy Linearly Separable Dataset.

5.3 Proof of Concept

In this section we want to highlight experimentally
the performance of our empirical Bernstein inequal-
ity applied to online learning. In order to do that,
we compare the bound provided by Corollary 3 for
the Pegasos algorithm to the one exposed in Propo-
sition 1. We use a linearly separable toy dataset and
compare the convergence of the empirical risk to the
mean risk of the hypotheses w

0, . . . ,wT . We gener-
ate random vectors xi ∈ [−1, 1]2 to which we assign
the class yi = sign(〈w∗,xi〉) ∈ {+1,−1} for a vector
w

∗ ∈ [−1, 1]2 also randomly generated. We work with
a learning sample containing 200000 points and report
in Figure 1 the values of the right hand sides appear-
ing in Proposition 1 [Cesa-Bianchi and Gentile, 2008]
and in Corollary 3 computed with a confidence of 95%
(δ = 0.05). We ran the experiment 20 times for many
values of the parameter λ and averaged the results.
We can see that our inequality is far tighter than the
one by Cesa-Bianchi and Gentile [2008] during the first
iterations, as it was sounded in the theoretical com-
parison done in Section 3. The gap between the two
inequalities tightens when the number of hypotheses
considered increases but remains in our favor.

6 CONCLUSION AND OUTLOOKS

In this article, we present a new empirical Bernstein
concentration inequality for martingales. We applied
this result to the online learning setting in order to
bound the mean risk of the hypotheses learned during
such learning processes. Because we introduce of a new
instantaneous variance estimator, our inequality is well
suited for the online learning setting and improves the
state of the art. This improvement is mainly noticeable
when the number of hypotheses considered is small as
shown in the empirical section of this work.

There are many outlooks opened by this work. First of
all, we can think about a new online learning algorithm
that aims at minimizing our empirical Bernstein bound
as it is done in the batch setting [Variance Penalizing
AdaBoost, Shivaswamy and Jebara, 2011, by exam-
ple]. Then, it will be of interest to derive new kind of
bounds for online algorithms taking advantage of our
result (by example on the excess risk as it is done in
the work by Kakade and Tewari [2009]). The last per-
spective that we want to mention is the comparison of
our bound with the very recent PAC-Bayes-Empirical-
Bernstein Inequality by Tolstikhin and Seldin [2013].
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