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Abstract

By introducing the busy beaver competition of Turing machines, in 1962, Rado
defined noncomputable functions on positive integers. The study of these functions and
variants leads to many mathematical challenges. This article takes up the following one:
How can a small Turing machine manage to produce very big numbers? It provides the
following answer: mostly by simulating Collatz-like functions, that are generalizations
of the famous 3x+1 function. These functions, like the 3x+1 function, lead to new
unsolved problems in number theory.
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1 Introduction

1.1 A well defined noncomputable function

It is easy to define a noncomputable function on nonnegative integers. Indeed, given a
programming language, you produce a systematic list of the programs for functions, and, by
diagonalization, you define a function whose output, on input n, is different from the output
of the nth program. This simple definition raises many problems: Which programming
language? How to list the programs? How to choose the output?

In 1962, Rado [38] gave a practical solution by defining the busy beaver game, also called
now the busy beaver competition. Consider all Turing machines on one infinite tape, with n
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states (plus a special halting state), and two symbols (1, and the blank symbol 0), and launch
all of them on a blank tape. Define S(n) as the maximum number of computation steps made
by such a machine before it stops, and define Σ(n) as the maximum number of symbols 1 left
on the tape by a machine when it stops. Then functions S and Σ are noncomputable, and,
moreover, grow faster than any computable function, that is, for any computable function f ,
there exists an integer N such that, for any n ≥ N , S(n) > Σ(n) > f(n).

More than fifty years later, no better choice has been found for a practical noncomputable
function. Only variants of Rado’s definition have been proposed. So, in 1988, Brady [5]
defined similar functions S(n,m) and Σ(n,m) for n × m Turing machines, that is Turing
machines with n states and m symbols. He also introduced analogous functions for two-
dimensional Turing machines and “turNing machines”, later resumed and expanded by Tim
Hutton [13]. Bátfai [1, 2] relaxed the rule about head moving, by allowing the head to stand
still.

In this article, we will consider functions S(n,m) and Σ(n,m). Recall that S(n) = S(n, 2)
and Σ(n) = Σ(n, 2).

1.2 Computing the values of noncomputable functions

The busy beaver functions S and Σ are explicitely defined, and it is possible to compute
S(n,m) and Σ(n,m) for small n and m. In the first article on busy beavers, Rado [38] gave
Σ(2) = 2 and Σ(3) ≥ 6. These results show that two problems are at stake:

• Problem 1: To give lower bounds on S(n,m) and Σ(n,m) by finding Turing machines
with high scores.

• Problem 2: To compute S(n,m) and Σ(n,m) by proving that no Turing machines do
better than the best known ones.

Problem 1 can be tackled either by hand search, as did, for example, Green [11] and Lynn
[26], or by computer search, using acceleration techniques of computation and, for example,
simulated annealing, as did T. and S. Ligocki [21].

Solving Problem 2 requires more work to be done: clever enumeration of n ×m Turing
machines, simulation of computation with acceleration techniques, proofs of non-halting for
the machines that do not halt.

Currently, the following results are known (see Michel [32, 33] for a historical survey):

• S(2) = 6 and Σ(2) = 4 (Rado [38]),

• S(3) = 21 and Σ(3) = 6 (Lin and Rado [25]),

• S(4) = 107 and Σ(4) = 13 (Brady [3, 4], Machlin and Stout [27]),

• S(5) ≥ 47, 176, 870 and Σ(5) ≥ 4098 (Marxen and Buntrock [29]),

• S(6) > 7.4× 1036534 and Σ(6) > 3.5× 1018267 (P. Kropitz in 2010),

• S(2, 3) = 38 and Σ(2, 3) = 9 (Lafitte and Papazian [16]),

• S(3, 3) > 1.1× 1017 and Σ(3, 3) ≥ 347, 676, 383 (T. and S. Ligocki in 2007),
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• S(4, 3) > 1.0× 1014072 and Σ(4, 3) > 1.3× 107036 (T. and S. Ligocki in 2008),

• S(2, 4) ≥ 3, 932, 964 and Σ(2, 4) ≥ 2050 (T. and S. Ligocki in 2005),

• S(3, 4) > 5.2× 1013036 and Σ(3, 4) > 3.7× 106518 (T. and S. Ligocki in 2007),

• S(2, 5) > 1.9× 10704 and Σ(2, 5) > 1.7× 10352 (T. and S. Ligocki in 2007),

• S(2, 6) > 2.4× 109866 and Σ(2, 6) > 1.9× 104933 (T. and S. Ligocki in 2008).

In order to achieve these results, many computational and mathematical challenges had
to be taken up.

A. Computational challenges.

A1. To generate all n×m Turing machines, or rather, to treat all cases without having
to generate all n×m Turing machines.

A2. To simulate the computation of a machine by using acceleration techniques (see
Marxen and Buntrock [29], Marxen [28]).

A3. To gave automatic proofs that non-halting machines do not halt (see Brady [4],
Marxen and Buntrock [29], Machlin and Stout [27], Hertel [12], Lafitte and Pa-
pazian [16]).

B. Mathematical challenges.

B1. To prove by hand that a non-halting machine that resists the computational proof
does not halt.

B2. To understand how the Turing machines that reach high scores manage to do it.

1.3 Facing open problems in number theory

Let us come back to mathematical challenge B1. For example, the computational study of
5× 2 Turing machines by Marxen and Buntrock [29], Skelet [10] and Hertel [12] left holdouts
that needed to be analyzed by hand. Marxen and Buntrock [29] gave an unsettled 5 × 2
Turing machine, named #4, that turned out to never halt, by an intricate analysis.

Actually, the halting problem for Turing machines launched on a blank tape is m-complete,
and this implies that this problem is as hard as the problem of the provability of a mathemat-
ical statement in a logical theory such as ZFC (Zermelo Fraenkel set theory with axiom of
choice). So, when Turing machines with more and more states and symbols are studied, po-
tentially all theorems of mathematics will be met. When more and more non-halting Turing
machines are studied to be proved non-halting, one has to expect to face hard open problems
in mathematics, that is problems that current mathematical knowledge can’t settle.

Consider now mathematical challenge B2, which is the very subject of this article.
From 1983 to 1989, several 5 × 2 Turing machines with high scores were discovered by

Uwe Schult, by George Uhing, and by Heiner Marxen and Jürgen Buntrock. Michel [30, 31]
analyzed some of these machines and found that their behavior is Collatz-like, which implies
that the halting problems on general inputs for these machines are open problems in number
theory (see Table 1).
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From 2005 and 2007, many 3 × 3, 2 × 4 and 2 × 5 Turing machines with high scores
were discovered, mainly by two teams: the French one of Grégory Lafitte and Christophe
Papazian, and the father-and-son collaboration of Terry and Shawn Ligocki. Collatz-like
behavior of these champions seems to be the rule (see Tables 3, 4 and 5).

However, the behaviors of 6 × 2 Turing machines display some variety. Many machines
were discovered, from 1990 to 2010, by Heiner Marxen and Jürgen Buntrock, by Terry and
Shawn Ligocki and by Pavel Kropitz. The analyses of some of these machines, by Robert
Munafo, Clive Tooth, Shawn Ligocki and the author, show that the behaviors can be Collatz-
like, exponential Collatz-like, loosely Collatz-like, or definitely not Collatz-like. Almost all of
them raise open problems (see Table 2).

Note: The Turing machines listed in Tables 1–5 are those for which an analysis is known
by the author. The machines without references for the study of behavior were analyzed by
the author [32, 34]. Many other machines are waiting for their analyses.

1.4 Collatz functions, Collatz-like functions and other functions

The 3x+1 function, or Collatz function, is the function T on positive integers defined by

T (n) =

{

n/2 if n is even
(3n+ 1)/2 if n is odd

This function is famous because, when it is iterated on a positive integer, it seems to lead to
the loop 2, 1, 2, 1, . . .. Is it always true? This is an open problem. See Lagarias [17, 18, 19, 20]
for more information.

It is natural to generalize the definition of the 3x+1 function by replacing n even, n odd
by n ≡ 0, . . . , d− 1 (mod d), and by replacing n/2, (3n+1)/2 by an+ b for rational numbers
a, b. Unfortunately, no name for such functions is currently taken for granted. Formal
definitions were given by Rawsthorne [39], who proposed Collatz-type iteration functions, by
Buttsworth and Matthews [6], who proposed generalized Collatz mappings, by Kaščák [14],
who proposed one-state linear operator algorithms (OLOA), and by Kohl [15], who proposed
residue-class-wise affine functions (RCWA). Without giving a formal definition, Lagarias [17]
proposed periodically linear functions, and Wagon [41] proposed Collatz-like functions.

We will choose the following definitions.

Definition 1.1 A mapping f : Z → Z is a generalized Collatz mapping if there exists an
integer d ≥ 2 such that the following three equivalent conditions are satisfied:

(i) (see [42, p.14]) There exist rational numbers q0, . . . , qd−1, r0, . . . , rd−1, such that, for
all i, 0 ≤ i ≤ d− 1, we have qid ∈ Z, qii + ri ∈ Z, and, for all n ∈ Z, f(n) = qin+ ri
if n ≡ i (mod d).

(ii) (see [6]) There exist integers m0, . . . ,md−1, p0, . . . , pd−1, such that, for all i, 0 ≤ i ≤
d− 1, we have pi ≡ imi (mod d) and, for all n ∈ Z, f(n) = (min− pi)/d if n ≡ i (mod
d).

(iii) There exist integers a0, . . . , ad−1, b0, . . . , bd−1, such that we have, for all i, 0 ≤ i ≤ d−1,
for all n ∈ Z, f(dn+ i) = ain+ bi.
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These definitions are easily seen to be equivalent: we have ai = mi = qid and bi =
(imi − pi)/d = qii+ ri.

The definitions above concern total functions, but, in this article, we always deal with
partial functions and functions with parameters, so we introduce the following definitions.

Definition 1.2 A partial function f : Z → Z is a generalized Collatz function, or a pure
Collatz-like function (without parameter) if, in the previous definition, f(dn + i) can be
undefined for one or many i, 0 ≤ i ≤ d− 1.

Definition 1.3 A partial function f : Z × Z → Z × Z is a pure Collatz-like function with
parameter if there exist an integer d ≥ 2, integers a0, . . . , ad−1, b0, . . . , bd−1, a set S of
integers and a function p : {0, . . . , d− 1} × S → S such that, for all i, 0 ≤ i ≤ d− 1, for all
n ∈ Z, for all s ∈ S, f(dn+ i, s) = (ain+ bi, p(i, s)) or is undefined.

Definition 1.4 If, in the definitions above, ai = a for all i, 0 ≤ i ≤ d− 1, we say that f is
pure Collatz-like of type d → a.

We also need to define a new type of function, as follows.

Definition 1.5 A partial function f : Z → Z is an exponential Collatz-like function if there
exist integers d, p ≥ 2, integers a0, . . . , ad−1, b0, . . . , bd−1, c0, . . . , cd−1, such that, for all i,
0 ≤ i ≤ d−1, all n ∈ Z, f(dn+ i) = (aip

n+bi)/ci or is undefined. In this definition, integers
p, ai, bi, ci are chosen such that (aip

n + bi)/ci is an integer for all n ∈ Z.

Currently, no study of this type of function is known. Note that iterates f(n), f2(n), . . .
grow much faster than for pure Collatz-like functions.

1.5 From Collatz-like functions to high scores

The Turing machines studied in this article have behaviors modeled on iterations of functions,
where halting configurations correspond to undefined values of functions.

In Section 3, we present a 3× 3 Turing machine M1 whose behavior is pure Collatz-like,
of type 8 → 14. In Section 4, we present a 2 × 4 Turing machine M2 whose behavior is
pure Collatz-like with parameter, of type 3 → 5. In Section 5, we present a 2 × 5 Turing
machine M3 whose behavior is pure Collatz-like with parameter, of type 2 → 3. Thus, the
halting problem for machines M1, M2 and M3 depends on an open problem about iterating
Collatz-like functions.

In Section 6, we present a 6×2 Turing machine M4 whose behavior is exponential Collatz-
like.

In Section 7, we present a 6× 2 Turing machine M5 whose behavior depends on iterating
a partial function g5(n, p). Without being Collatz-like, this function seems to share some
properties with Collatz-like functions.

In Section 8, we present a 6 × 2 Turing machine M6 whose behavior looks like a loosely
Collatz-like behavior with parameter, of type 2 → 5. The novelty is that a potentially infinite
set of rules seems to be necessary to describe the behavior of the machine on inputs 00x,
x ∈ {0, 1}∗. A string x ∈ {0, 1}∗ ending with symbol 1 can be taken as the binary writing of
a number p, read in the opposite direction, so x = R(bin(p)), where bin(p) is the usual binary
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writing of p, and R(w) is the reverse of string w, that is R(w1 . . . wn) = wn . . . w1. In Table
2 we write “R(bin(p))” to indicate the machines with a behavior involving an infinite set of
rules. Of course, only a finite subset of these rules are used when the machine is launched
on a blank tape.

In Section 9, we present a 6 × 2 Turing machine M7 whose behavior on the blank tape
depends on configurations C(n) all of them provably leading to a halting configuration. We
present such a machine to show how a Turing machine can take a long time to stop without
calling for Collatz-like functions.

2 Preliminaries

A Turing machine involved in the busy beaver competition is defined as follows. It has a
tape made of cells, infinite in both directions. Each cell contains a symbol, and a head can
read and write a symbol on a cell. The Turing machine can be in a finite number of states.
A computation of the Turing machine is a sequence of steps. In a step of computation,
according to the current state and the symbol read by the head on the current cell, the head
writes a symbol on the cell, moves to the next cell on the right side or on the left side, and
the machine enters a new state.

Formally, a Turing machine M = (Q,Γ, δ) has a finite set of states Q = {A,B, . . .}, a
finite set of symbols Γ = {0, 1, . . .}, and a transition function (or next move function) δ,
which is a mapping

δ : Q× Γ → (Γ× {L,R} ×Q) ∪ {(1, R,H)}.

If δ(q, a) = (b,D, q′), then the Turing machine, when it is in state q reading symbol a on the
current cell, writes symbol b instead of a on this cell, moves one cell left if D = L, one cell
right if D = R, and comes in state q′. The transition function is usually given by a transition
table.

There a special state A, called the initial state, and a special symbol 0, called the blank
symbol. In the busy beaver competition, at the beginning of a computation, the Turing
machine is in state A, and the tape is blank, that is all the cells of the tape contain the
blank symbol. There is another state H , the halting state, not in the set Q of states. When
a Turing machine comes in this state, the computation stops. We impose that, at the last
step, the machine writes 1, moves right, and comes in state H .

A word is a finite string of symbols. The set of words with symbols in the set Γ is denoted
by Γ∗. The number of symbols in a word x ∈ Γ∗ is called the length of x and is denoted
by |x|. The empty word is the word of length zero, denoted by λ. If x ∈ Γ∗, and n ≥ 0,
xn is the word xx . . . x, where x is repeated n times, that is, formally: x0 = λ, x1 = x and
xn+1 = xnx. An infinite to the left string of 0 is denoted by ω0, and an infinite to the right
string of 0 is denoted by 0ω.

A configuration is a way to encode the symbols on the tape, the state, and the cell
currently read by the head. The Turing machine is in configuration ω0x(Sa)y0ω, with S ∈
Q ∪ {H}, a ∈ Γ, x, y ∈ Γ∗, if the word xay is written on the tape, the state is S, and the
head is reading symbol a. Since, at the beginning of the computation, the state is A and the
tape is blank, the initial configuration is ω0(A0)0ω. If the state is H , the configuration is
halting. We also consider configurations x(Sa)y with finite length. If the computation from
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Machine Behavior Study of behavior
January 1983 Pure Collatz-like (4 → 9) Robinson,
Uwe Schult without parameter cited in [9].
σ = 501 7 rules Michel [30]

s = 134,467 7 transitions
December 1984 Pure Collatz-like (3 → 8)
George Uhing with parameter Michel [30]

σ = 1915 5 rules
s = 2,133,492 9 transitions
February 1986 Pure Collatz-like (8 → 15)
George Uhing without parameter

σ = 1471 5 rules
s = 2,358,064 11 transitions
August 1989 Pure Collatz-like (3 → 5)

Marxen, Buntrock without parameter Michel [30]
σ = 4098 3 rules

s = 11,798,826 15 transitions
September 1989 Pure Collatz-like (3 → 5)

Marxen, Buntrock without parameter Michel [30]
σ = 4097 3 rules

s = 23,554,764 15 transitions
September 1989 Pure Collatz-like (3 → 5)

Marxen, Buntrock without parameter Michel [31]
σ = 4098 3 rules

s = 47,176,870 15 transitions

Table 1: Study of behavior of 5× 2 machines
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Machine Behavior Study of behavior
September 1997 Pure Collatz-like (4 → 10)

Marxen and Buntrock without parameter Munafo [36]
5 rules

s > 8.6× 1015 21 transitions
October 2000 R(bin(p)) (2 → 3)

Marxen and Buntrock
(machine o) 9 rules

s > 6.1× 10119 337 transitions
October 2000 All C(n) stop

Marxen and Buntrock Munafo [37]
(machine q) 4 rules Section 9

s > 6.1× 10925 5 transitions
March 2001 R(bin(p)) (2 → 3)

Marxen and Buntrock Tooth [40]
20 rules

s > 3.0× 101730 4911 transitions
November 2007 R(bin(p)) (2 → 5)
T. and S. Ligocki Section 8

12 rules
s > 8.9× 101762 3346 transitions
December 2007 R(bin(p)) (4 → 6)
T. and S. Ligocki

18 rules
s > 2.5× 102879 11026 transitions

May 2010 Unclassifiable
Pavel Kropitz S. Ligocki [24]

6 rules Section 7
s > 3.8× 1021132 22158 transitions

June 2010 Exponential Collatz-like
Pavel Kropitz without parameter Section 6

4 rules
s > 7.4× 1036534 5 transitions

Table 2: Study of behavior of 6× 2 machines
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Machine Behavior Study of behavior
December 2004 Pure Collatz-like (2 → 5)

Brady with parameter
5 rules

s = 92,649,163 11 transitions
July 2005 Pure Collatz-like (2 → 5)
Souris with parameter

σ = 36089 5 rules
s = 310,341,163 12 transitions

July 2005 Pure Collatz-like (3 → 7)
Souris with parameter

7 rules
s = 544,884,219 12 transitions
August 2005 Pure collatz-like (4 → 7)

Lafitte and Papazian with parameter
8 rules

s > 4.9× 109 21 transitions
September 2005 Pure Collatz-like (4 → 7)

Lafitte and Papazian with parameter
7 rules

s > 9.8× 1011 24 transitions
April 2006 Pure Collatz-like (2 → 5)

Lafitte and Papazian with parameter
5 rules

s > 4.1× 1012 16 transitions
August 2006 Pure Collatz-like (2 → 5)

T. and S. Ligocki with parameter S. Ligocki [23]
4 rules

s > 4.3× 1015 20 transitions
November 2007 Pure Collatz-like (8 → 14)
T. and S. Ligocki without parameter Section 3

9 rules
s > 1.1× 1017 34 transitions

Table 3: Study of behavior of 3× 3 machines
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Machine Behavior Study of behavior
1988 Pure Collatz-like (3 → 5)
Brady with parameter

6 rules
s = 7195 7 transitions

February 2005 Pure Collatz-like (3 → 5)
T. and S. Ligocki with parameter Section 4

7 rules
s = 3,932,964 14 transitions

Table 4: Study of behavior of 2× 4 machines

Machine Behavior Study of behavior
October 2005 Pure Collatz-like (2 → 5)

Lafitte, Papazian with parameter
7 rules

s > 9.1× 1011 15 transitions
December 2005 Pure Collatz-like (2 → 5)
Lafitte, Papazian with parameter

5 rules
s > 9.2× 1011 14 transitions
May 2006 Pure Collatz-like (3 → 4)

Lafitte, Papazian with parameter
7 rules

s > 3.7× 1012 45 transitions
June 2006 Pure Collatz-like (2 → 3)

Lafitte, Papazian with parameter
9 rules

s > 1.4× 1013 36 transitions
August 2006 Pure Collatz-like (2 → 5)

T. and S. Ligocki with parameter S. Ligocki [22]
9 rules

s > 7.0× 1021 30 transitions
November 2007 Pure Collatz-like (2 → 3)
T. and S. Ligocki with parameter Section 5

17 rules
s > 1.9× 10704 2002 transitions

Table 5: Study of behavior of 2× 5 machines
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M1 0 1 2
A 1RB 2LA 1LC
B 0LA 2RB 1LB
C 1RH 1RA 1RC

Table 6: Machine M1 discovered in November 2007 by T. and S. Ligocki

configuration C1 to configuration C2 takes t steps, we write C1 ⊢ (t) C2, and t is said to be
the time taken by the machine to go from C1 to C2. If C2 is a halting configuration, we also
write C1 ⊢ (t) END. We write C1 ⊢ ( ) C2 if the time is not specified. If C1 and C2 are
configurations with finite length, then they refer to the same part of the tape. For example,
(A0)0 ⊢ (1) 1(B0) if δ(A, 0) = (1, R,B).

A Turing machine M computes a partial function fM : Γ∗ → Γ∗ as follows. let x =
x1 . . . xn ∈ Γ∗. Then x becomes an input for M by considering the computation of M on
initial configuration ω0(Ax1)x2 . . . xn0

ω. If M never stops on this configuration, then fM (x)
is undefined. If M stops, in configuration ω0y(Ha)z0ω, with a ∈ Γ, y, z ∈ Γ∗, then the
output fM (x) is defined from this configuration by a suitable convention. The halting set is
{x ∈ Γ∗ : fM (x) is defined}. The halting problem for machine M is the problem consisting
in determining the halting set. Note that the Turing machines with two symbols 0 and 1
are powerful enough to compute any computable function, and their halting sets can be any
computably enumerable (also called recursively enumerable) set.

A Turing machine with n states and m symbols is called a n × m machine. The set of
n×m machines is denoted by TM(n,m). With our definition of the transition function, there
are (2nm + 1)nm machines in the set TM(n,m). In the busy beaver competition, for fixed
numbers of states n and symbols m, all the (2nm+ 1)nm Turing machines in TM(n,m) are
launched on the blank tape. Some of them never stop. Those which stop are called busy
beaver. Each busy beaver takes some time to stop, and leaves some non-blank symbols on
the tape, so busy beavers are involved in two competitions: to take the longest time before
stopping, and to leave the greatest number of non-blank symbols on the tape when stopping.
The time taken by Turing machine M to stop is denoted by s(M), and the number of non-
blank symbols left by M when it stops is denoted by σ(M). The busy beaver functions are
defined by

S(n,m) = max{s(M) : M is a busy beaver with n states and m symbols}

Σ(n,m) = max{σ(M) : M is a busy beaver with n states and m symbols}

Rado [38] initially defined functions S(n) = S(n, 2) and Σ(n) = Σ(n, 2) for Turing machines
with n states and two symbols.

3 Pure Collatz-like behavior

Let M1 be the 3× 3 Turing machine defined by Table 6
We have s(M1) = 119,112,334,170,342,540 and σ(M1) = 374,676,383.
This machine is the current champion for the busy beaver competition for 3×3 machines.

It was discovered in November 2007 by Terry and Shawn Ligocki, who wrote (email on
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November, 9th) that they enumerated all the 3 × 3 machines and applied the techniques of
acceleration and proof systems originally developed by Marxen and Buntrock.

The following theorem gives the rules that enable Turing machine M1 to reach a halting
configuration from a blank tape.

Theorem 3.1 Let C(n) = ω0(A0)2n0ω. Then
(a) ω0(A0)0ω ⊢ (3) C(1),

and, for all k ≥ 0,
(b) C(8k + 1) ⊢ (112k2 + 116k + 13) C(14k + 3),
(c) C(8k + 2) ⊢ (112k2 + 144k + 38) C(14k + 7),
(d) C(8k + 3) ⊢ (112k2 + 172k + 54) C(14k + 8),
(e) C(8k + 4) ⊢ (112k2 + 200k + 74) C(14k + 9),
(f) C(8k + 5) ⊢ (112k2 + 228k + 97) ω01(H1)214k+90ω,
(g) C(8k + 6) ⊢ (112k2 + 256k + 139) C(14k + 14),
(h) C(8k + 7) ⊢ (112k2 + 284k + 169) C(14k + 15),
(i) C(8k + 8) ⊢ (112k2 + 312k + 203) C(14k + 16).

Proof. A direct inspection of the transition table gives
(1) 0(A0)0 ⊢ (3) (A0)20,
(2) 03(A0)25 ⊢ (53) (B1)18,
(3) 0(A1) ⊢ (1) (A0)2,
(4) 1(A1) ⊢ (1) (A1)2,
(5) 02(A1) ⊢ (3) 1(H1)2,
(6) 12(A1) ⊢ (4) (A1)22,
(7) 22(A1) ⊢ (8) (A1)22,
(8) 2(B1)02 ⊢ (7) 11(A1)0,
(9) (B1)1 ⊢ (1) 2(B1),
(10) (B1)2 ⊢ (1) 2(B2),
(11) 03(B2) ⊢ (14) 13(B1),
(12) 1(B2) ⊢ (1) (B1)1,
(13) 2(B2) ⊢ (1) (B2)1.

From this point, k will be an integer, k ≥ 0.

Iterating, respectively, (4), (7), (9) and (13) gives
(14) 1k(A1) ⊢ (k) (A1)2k,
(15) 22k(A1) ⊢ (8k) (A1)22k,
(16) (B1)1k ⊢ (k) 2k(B1),
(17) 2k(B2) ⊢ (k) (B2)1k.

Using consecutively (16), (10), (17) and (12), we get
(18) 1(B1)1k2 ⊢ (2k + 3) (B1)1k+2.

Using (16), (10), (17) and (11), we get
(19) 03(B1)1k2 ⊢ (2k + 16) 13(B1)1k+1.

Using (19) and three times (18), we get
(20) 03(B1)1k24 ⊢ (8k + 43) (B1)1k+7.

For any n ≥ 0, by induction on k, using (20), we get
(21) 03k(B1)1n24k ⊢ (28k2 + (8n+ 15)k) (B1)17k+n.
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By taking n = 8 in (21), we get
(22) 03k(B1)1824k ⊢ (28k2 + 79k) (B1)17k+8.

Using (8), (14) and (15), we get
(23) 22k+1(B1)02 ⊢ (8k + 9) (A1)22k+20.

We are now ready to prove the results of the theorem.
Using (2), (22) and (16), we get

(24) 03k+3(A0)24k+5 ⊢ (28k2 + 86k + 61) 27k+8(B1).

Using (24), (23) and (5) we get
(25) 06k+4(A0)28k+502 ⊢ (112k2 + 228k + 97) 1(H1)214k+90.

Using (24), (23) and (3) we get
06k+7(A0)28k+902 ⊢ (112k2 + 340k + 241) (A0)214k+170,

and this result is still true for k = −1, so we have
(26) 06k+1(A0)28k+102 ⊢ (112k2 + 116k + 13) (A0)214k+30.

Using (2), (22), (19) and (16) we get
(27) 03k+6(A0)24k+6 ⊢ (28k2 + 100k + 94) 1327k+9(B1).

Using (27), (23), (14) and (3) we get
(28) 06k+7(A0)28k+602 ⊢ (112k2 + 256k + 139) (A0)214k+140.

Using (27), (23), (6), (14) and (3) we get
06k+10(A0)28k+1002 ⊢ (112k2 + 368k + 294) (A0)214k+210,

and this result is still true for k = −1, so we have
(29) 06k+4(A0)28k+202 ⊢ (112k2 + 144k + 38) (A0)214k+70.

Using (2), (22), (19), (18), (16), (8) and (14) we get
(30) 03k+6(A0)24k+702 ⊢ (28k2 + 114k + 126) 1227k+10(A1)220.

Using (30), (15), (14) and (3) we get
(31) 06k+7(A0)28k+702 ⊢ (112k2 + 284k + 169) (A0)214k+150.

Using (30), (15), (6), (4) and (3) we get
06k+10(A0)28k+1102 ⊢ (112k2 + 396k + 338) (A0)214k+220,

and this result is still true for k = −1, so we have
(32) 06k+4(A0)28k+302 ⊢ (112k2 + 172k + 54) (A0)214k+80.

Using (2), (22), (19), (18), (18), (16), (8) and (14) we get
(33) 03k+6(A0)24k+802 ⊢ (28k2 + 128k + 153) 127k+12(A1)220.

Using (33), (15), (4) and (3) we get
(34) 06k+7(A0)28k+802 ⊢ (112k2 + 312k + 203) (A0)214k+160.

Using (33), (15), (6) and (3) we get
06k+10(A0)28k+1202 ⊢ (112k2 + 424k + 386) (A0)214k+230,

and this result is still true for k = −1, so we have
(35) 06k+4(A0)28k+402 ⊢ (112k2 + 200k + 74) (A0)214k+90.

The results (1), (26), (29), (32), (35), (25), (28), (31) and (34) give, respectively, the
results (a)–(i) of the theorem. �

Using the rules of this theorem, we have, in 34 transitions,

ω0(A0)0ω ⊢ (3) C(1) ⊢ (13) C(3) ⊢ ( ) · · · ⊢ ( ) ω01(H1)2374,676,3810ω.
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M2 0 1 2 3
A 1RB 2LA 1RA 1RA
B 1LB 1LA 3RB 1RH

Table 7: Machine M2 discovered in February 2005 by T. and S. Ligocki

Let g1 be the pure Collatz-like function defined by: for k ≥ 0,

g1(8k + 1) = 14k + 3,
g1(8k + 2) = 14k + 7,
g1(8k + 3) = 14k + 8,
g1(8k + 4) = 14k + 9,
g1(8k + 5) undefined,
g1(8k + 6) = 14k + 14,
g1(8k + 7) = 14k + 15,
g1(8k + 8) = 14k + 16.

Then g331 (1) is undefined.
The theorem gives immediately the following proposition.

Proposition 3.2 The behavior of Turing machine M1, on inputs 02n, n ≥ 1, depends on
the behavior of iterated gk1 (n), k ≥ 1.

Since the behavior of iterated gk1 (n) is an open problem in mathematics, the halting
problem for Turing machine M1 is so.

Let h1(n) = min{k : gk1 (n) is undefined}. We have seen that h1(1) = 33. We also have
h1(144) = 41, h1(270) = 51.

4 Collatz-like with parameter: first example

Let M2 be the 2× 4 Turing machine defined by Table 7.
We have s(M2) = 3,932,964 and σ(M2) = 2050.
This machine is the current champion for the busy beaver competition for 2 × 4 ma-

chines. It was discovered in February 2005 by Terry and Shawn Ligocki, who wrote (email
on February, 13th) that they found this machine using simulated annealing.

The following theorem gives the rules that enable Turing machine M2 to reach a halting
configuration from a blank tape.

Theorem 4.1 Let
C(n, 1) = ω0(A0)2n10ω,
C(n, 2) = ω0(A0)2n110ω.

Then
(a) ω0(A0)0ω ⊢ (6) C(1, 2),

and, for all k ≥ 0,
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(b) C(3k, 1) ⊢ (15k2 + 9k + 3) C(5k + 1, 1),
(c) C(3k + 1, 1) ⊢ (15k2 + 24k + 13) ω0135k+21(H1)0ω,
(d) C(3k + 2, 1) ⊢ (15k2 + 29k + 17) C(5k + 4, 2),
(e) C(3k, 2) ⊢ (15k2 + 11k + 3) C(5k + 1, 2),
(f) C(3k + 1, 2) ⊢ (15k2 + 21k + 7) C(5k + 3, 1),
(g) C(3k + 2, 2) ⊢ (15k2 + 36k + 23) ω0135k+41(H1)0ω.

Proof. A direct inspection of the transition table gives
(1) 02(A0)0 ⊢ (6) (A0)211,
(2) 1(A0)0 ⊢ (3) (A1)11,
(3) (A0)2 ⊢ (1) 1(B2),
(4) 0(A1) ⊢ (1) (A0)2,
(5) 1(A1) ⊢ (1) (A1)2,
(6) 3(A1) ⊢ (2) 1(A2),
(7) (A2)0 ⊢ (1) 1(A0),
(8) (A2)1 ⊢ (1) 1(A1),
(9) (A2)2 ⊢ (1) 1(A2),
(10) (B2)0 ⊢ (3) 1(H1),
(11) (B2)1 ⊢ (4) (A1)2,
(12) (B2)2 ⊢ (1) 3(B2).

Iterating, respectively, (5), (9) and (12) gives
(13) 1k(A1) ⊢ (k) (A1)2k,
(14) (A2)2k ⊢ (k) 1k(A2),
(15) (B2)2k ⊢ (k) 3k(B2).

Using (2), (13) and (4) we get
01k+1(A0)0 ⊢ (k + 4) (A0)2k+111,

and this result is still true for k = −1, so we have
(16) 01k(A0)0 ⊢ (k + 3) (A0)2k11.

Using (2), (13), (6), (14), (8), (13) and (4) we get
(17) 0131k+1(A0)0 ⊢ (3k + 10) (A0)2k+41.

Using (2), (13), (6), (14), (8), (13), (6), (14), (8), (13) and (4) we get
(18) 01331k+1(A0)0 ⊢ (5k + 19) (A0)2k+6.

Using (3), (15) and (10) we get
(19) (A0)2k+10 ⊢ (k + 4) 13k1(H1).

Using (3), (15), (11), (6), (9) and (7) we get
(20) (A0)2k+210 ⊢ (k + 10) 13k13(A0).

Using (3), (15), (11), (6), (9), (8), (13), (6), (14) and (7) we get
(21) (A0)2k+3110 ⊢ (k + 20) 13k15(A0).

Using (2), (13), (6), (14), (8), (13), (6), (14), (8), (13), (6), (14) and (7) we get
(22) 331k+1(A0)02 ⊢ (6k + 24) 1k+6(A0).

By induction on k, from (22), we get
(23) 33k1n+1(A0)02k ⊢ (15k2 + 6nk + 9k) 15k+n+1(A0),

so we have, for n = 2 and n = 4
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(24) 33k13(A0)02k ⊢ (15k2 + 21k) 15k+3(A0),
(25) 33k15(A0)02k ⊢ (15k2 + 33k) 15k+5(A0).

We are now ready to prove the theorem.
Using (20), (24) and (17) we get

0(A0)23k+3102k+2 ⊢ (15k2 + 39k + 27) (A0)25k+61,
and the result is still true for k = −1, so we have

(26) 0(A0)23k102k ⊢ (15k2 + 9k + 3) (A0)25k+11.

Using (20), (24), (18) and (19) we get
0(A0)23k+4102k+3 ⊢ (15k2 + 54k + 52) 135k+71(H1),

and the result is still true for k = −1, so we have
(27) 0(A0)23k+1102k+1 ⊢ (15k2 + 24k + 13) 135k+21(H1).

Using (20), (24) and (16) we get
(28) 0(A0)23k+2102k+2 ⊢ (15k2 + 29k + 17) (A0)25k+411.

Using (21), (25) and (16) we get
0(A0)23k+31102k+2 ⊢ (15k2 + 41k + 29) (A0)25k+611,

and the result is still true for k = −1, so we have
(29) 0(A0)23k1102k ⊢ (15k2 + 11k + 3) (A0)25k+111.

Using (21), (25) and (17) we get
0(A0)23k+41102k+2 ⊢ (15k2 + 51k + 43) (A0)25k+81,

and the result is still true for k = −1, so we have
(30) 0(A0)23k+11102k ⊢ (15k2 + 21k + 7) (A0)25k+31.

Using (21), (25), (18) and (19) we get
0(A0)23k+51102k+3 ⊢ (15k2 + 66k + 74) 135k+91(H1),

and the result is still true for k = −1, so we have
(31) 0(A0)23k+21102k+1 ⊢ (15k2 + 36k + 23) 135k+41(H1).

The theorem comes from results (1) and (26)–(31). �

Using the rules of this theorem, we have, in 14 transitions,

ω0(A0)0ω ⊢ (6) C(1, 2) ⊢ (7) C(3, 1) ⊢ ( ) · · · ⊢ ( ) ω01320471(H1)0ω.

Let g2 be the pure Collatz-like function with parameter defined by: for k ≥ 0,

g2(3k, 1) = (5k + 1, 1),
g2(3k + 1, 1) undefined,
g2(3k + 2, 1) = (5k + 4, 2),

g2(3k, 2) = (5k + 1, 2),
g2(3k + 1, 2) = (5k + 3, 1),
g2(3k + 2, 2) undefined.

Then g132 (1, 2) is undefined.
The theorem gives immediately the following proposition.

Proposition 4.2 The behavior of Turing machine M2, on inputs 02n1i, n ≥ 1, i ∈ {1, 2}
depends on the behavior of iterated gk2 (n, i), k ≥ 1.
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M3 0 1 2 3 4
A 1RB 2LA 1RA 2LB 2LA
B 0LA 2RB 3RB 4RA 1RH

Table 8: Machine M3 discovered in November 2007 by T. and S. Ligocki

Since the behavior of iterated gk2 (n, i) is an open problem in mathematics, the halting
problem for Turing machine M2 is so.

Let h2(n, i) = min{k : gk2 (n, i) is undefined}. We have seen that h2(1, 2) = 13. We also
have h2(137, 1) = 16, h2(210, 2) = 20.

5 Collatz-like with parameter: second example

Let M3 be the 2× 5 Turing machine defined by Table 8.
We have s(M3) > 1.9× 10704 and σ(M3) > 1.7× 10352.
This machine is the current champion for the busy beaver competition for 2×5 machines.

It was discovered in November 2007 by Terry and Shawn Ligocki, who wrote (email on
November, 9th) that, as they did for 3 × 3 machine M1, they enumerated all the 2 × 5
machines and applied the techniques of acceleration and proof systems originally developed
by Marxen and Buntrock.

The following theorem gives the rules that enable Turing machine M3 to reach a halting
configuration from a blank tape.

Theorem 5.1 Let
C(n, 1) = ω013n(B0)0ω,
C(n, 2) = ω023n(B0)0ω,
C(n, 3) = ω03n(B0)0ω,
C(n, 4) = ω04113n(B0)0ω,
C(n, 5) = ω04123n(B0)0ω,
C(n, 6) = ω0413n(B0)0ω,
C(n, 7) = ω0423n(B0)0ω,
C(n, 8) = ω043n(B0)0ω.

Then
(a) ω0(A0)0ω ⊢ (1) C(0, 1),

and, for all k ≥ 0,
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(b) C(2k, 1) ⊢ (3k2 + 8k + 4) C(3k + 1, 1),
(c) C(2k, 2) ⊢ (3k2 + 14k + 9) C(3k + 2, 1),
(d) C(2k, 3) ⊢ (3k2 + 8k + 2) C(3k, 1),
(e) C(2k, 4) ⊢ (3k2 + 8k + 8) C(3k + 3, 1),
(f) C(2k, 5) ⊢ (3k2 + 14k + 13) C(3k + 4, 1),
(g) C(2k, 6) ⊢ (3k2 + 8k + 6) C(3k + 2, 1),
(h) C(2k, 7) ⊢ (3k2 + 14k + 11) C(3k + 3, 1),
(i) C(2k, 8) ⊢ (3k2 + 8k + 4) C(3k + 1, 1),
(j) C(2k + 1, 1) ⊢ (3k2 + 8k + 4) C(3k + 1, 2),
(k) C(2k + 1, 2) ⊢ (3k2 + 8k + 4) C(3k + 2, 3),
(l) C(2k + 1, 3) ⊢ (3k2 + 8k + 22) C(3k + 1, 4),
(m) C(2k + 1, 4) ⊢ (3k2 + 8k + 4) C(3k + 1, 5),
(n) C(2k + 1, 5) ⊢ (3k2 + 8k + 4) C(3k + 2, 6),
(o) C(2k + 1, 6) ⊢ (3k2 + 8k + 4) C(3k + 1, 7),
(p) C(2k + 1, 7) ⊢ (3k2 + 8k + 4) C(3k + 2, 8),
(q) C(2k + 1, 8) ⊢ (3k2 + 5k + 3) ω01(H2)23k0ω.

Proof. A direct inspection of the transition table gives
(1) (A0)0 ⊢ (1) 1(B0),
(2) 0(A0)0 ⊢ (17) 41(A0),
(3) (A0)2 ⊢ (1) 1(B2),
(4) 0(A1) ⊢ (1) (A0)2,
(5) 1(A1) ⊢ (1) (A1)2,
(6) 4(A1) ⊢ (1) (A4)2,
(7) (A2)02 ⊢ (2) 12(B0),
(8) (A2)2 ⊢ (1) 1(A2),
(9) 1(B0) ⊢ (1) (A1)0,
(10) 32(B0)0 ⊢ (5) 412(B0),
(11) (B2)0 ⊢ (1) 3(B0),
(12) (B2)2 ⊢ (1) 3(B2),
(13) 0(A4) ⊢ (1) (A0)2,
(14) 1(A4) ⊢ (1) (A1)2,
(15) 2(A4) ⊢ (1) (A2)2,
(16) 023(A4) ⊢ (3) (A0)022,
(17) 13(A4) ⊢ (4) 23(B2),
(18) 23(A4) ⊢ (4) 33(B2),
(19) 32(A4) ⊢ (4) 41(A2),
(20) 43(A4) ⊢ (3) 1(H2)2,
(21) 04(A4) ⊢ (2) (A0)22.

Iterating, respectively, (5), (8) and (12) gives
(22) 1k(A1) ⊢ (k) (A1)2k,
(23) (A2)2k ⊢ (k) 1k(A2),
(24) (B2)2k ⊢ (k) 3k(B2).

Using (9), (22), (6), (19), (23) and (7) we get
3241k+1(B0)0 ⊢ (2k + 9) 41k+4(B0),

and the result is still true for k = −1, so we have
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(25) 3241k(B0)0 ⊢ (2k + 7) 41k+3(B0).

For any n ≥ 0, by induction on k, using (25), we get
(26) 32k41n(B0)0k ⊢ (3k2 + (2n+ 4)k) 413k+n(B0),

so we have, for n = 2 in (26),
(27) 32k412(B0)0k ⊢ (3k2 + 8k) 413k+2(B0).

Using (10), (27), (9), (22) and (6), we get
(28) 32k+2(B0)0k+1 ⊢ (3k2 + 11k + 8) (A4)23k+20.

Using (3), (24) and (11) we get
(A0)2k+10 ⊢ (k + 2) 13k+1(B0),

and the result is still true for k = −1, so we have
(29) (A0)2k0 ⊢ (k + 1) 13k(B0).

Using (15), (23), (7), (9) and (22), we get
(30) 2(A4)2k02 ⊢ (2k + 7) (A1)2k+20.

We are now ready to prove the theorem.

Using (28), (14), (4) and (29) we get
0132k+2(B0)0k+1 ⊢ (3k2 + 14k + 15) 133k+4(B0),

and the result is still true for k = −1, so we have
(31) 0132k(B0)0k ⊢ (3k2 + 8k + 4) 133k+1(B0).

Using (28), (30), (4) and (29) we get
0232k+2(B0)0k+2 ⊢ (3k2 + 20k + 26) 133k+5(B0),

and the result is still true for k = −1, so we have
(32) 0232k(B0)0k+1 ⊢ (3k2 + 14k + 9) 133k+2(B0).

Using (28), (13) and (29) we get
032k+2(B0)0k+1 ⊢ (3k2 + 14k + 13) 133k+3(B0),

and the result is still true for k = −1, so we have
(33) 032k(B0)0k ⊢ (3k2 + 8k + 2) 133k(B0).

Using (28), (14), (5), (6), (13) and (29) we get
041132k+2(B0)0k+1 ⊢ (3k2 + 14k + 19) 133k+6(B0),

and the result is still true for k = −1, so we have
(34) 041132k(B0)0k ⊢ (3k2 + 8k + 8) 133k+3(B0).

Using (28), (30), (5), (6), (13) and (29) we get
041232k+2(B0)0k+2 ⊢ (3k2 + 20k + 30) 133k+7(B0),

and the result is still true for k = −1, so we have
(35) 041232k(B0)0k+1 ⊢ (3k2 + 14k + 13) 133k+4(B0).

Using (28), (14), (6), (13) and (29) we get
04132k+2(B0)0k+1 ⊢ (3k2 + 14k + 17) 133k+5(B0),

and the result is still true for k = −1, so we have
(36) 04132k(B0)0k ⊢ (3k2 + 8k + 6) 133k+2(B0).

Using (28), (30), (6), (13) and (29) we get
04232k+2(B0)0k+2 ⊢ (3k2 + 20k + 28) 133k+6(B0),

and the result is still true for k = −1, so we have
(37) 04232k(B0)0k+1 ⊢ (3k2 + 14k + 11) 133k+3(B0).

Using (28), (21) and (29) we get
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0432k+2(B0)0k+1 ⊢ (3k2 + 14k + 15) 133k+4(B0),
and the result is still true for k = −1, so we have

(38) 0432k(B0)0k ⊢ (3k2 + 8k + 4) 133k+1(B0).

Using (28), (17), (24) and (11) we get
132k+3(B0)0k+1 ⊢ (3k2 + 14k + 15) 233k+4(B0),

and the result is still true for k = −1, so we have
(39) 132k+1(B0)0k ⊢ (3k2 + 8k + 4) 233k+1(B0).

Using (28), (18), (24) and (11) we get
232k+3(B0)0k+1 ⊢ (3k2 + 14k + 15) 33k+5(B0),

and the result is still true for k = −1, so we have
(40) 232k+1(B0)0k ⊢ (3k2 + 8k + 4) 33k+2(B0).

Using (28), (16), (2) and (29) we get
0332k+3(B0)0k+1 ⊢ (3k2 + 14k + 33) 41233k+4(B0),

and the result is still true for k = −1, so we have
(41) 0332k+1(B0)0k ⊢ (3k2 + 8k + 22) 41233k+1(B0).

Using (39) we get
(42) 041132k+1(B0)0k ⊢ (3k2 + 8k + 4) 041233k+1(B0).

Using (40) we get
(43) 041232k+1(B0)0k ⊢ (3k2 + 8k + 4) 04133k+2(B0).

Using (39) we get
(44) 04132k+1(B0)0k ⊢ (3k2 + 8k + 4) 04233k+1(B0).

Using (40) we get
(45) 04232k+1(B0)0k ⊢ (3k2 + 8k + 4) 0433k+2(B0).

Using (28) and (20) we get
432k+3(B0)0k+1 ⊢ (3k2 + 11k + 11) 1(H2)23k+30,

and the result is still true for k = −1, so we have
(46) 432k+1(B0)0k ⊢ (3k2 + 5k + 3) 1(H2)23k0.

Results (1) and (31)–(46) give results (a)–(p) of the theorem. �

Using the rules of this theorem, we have, in 2002 transitions,

ω0(A0)0ω ⊢ (1) C(0, 1) ⊢ (4) C(1, 1) ⊢ ( ) · · · ⊢ ( ) END.

Let g3 be the pure Collatz-like function with parameter defined by: for k ≥ 0,

g3(2k, 1) = (3k + 1, 1) g3(2k + 1, 1) = (3k + 1, 2)
g3(2k, 2) = (3k + 2, 1) g3(2k + 1, 2) = (3k + 2, 3)
g3(2k, 3) = (3k, 1) g3(2k + 1, 3) = (3k + 1, 4)
g3(2k, 4) = (3k + 3, 1) g3(2k + 1, 4) = (3k + 1, 5)
g3(2k, 5) = (3k + 4, 1) g3(2k + 1, 5) = (3k + 2, 6)
g3(2k, 6) = (3k + 2, 1) g3(2k + 1, 6) = (3k + 1, 7)
g3(2k, 7) = (3k + 3, 1) g3(2k + 1, 7) = (3k + 2, 8)
g3(2k, 8) = (3k + 1, 1) g3(2k + 1, 8) undefined

Then g20013 (0, 1) is undefined.
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M4 0 1
A 1RB 1LE
B 1RC 1RF
C 1LD 0RB
D 1RE 0LC
E 1LA 0RD
F 1RH 1RC

Table 9: Machine M4 discovered in June 2010 by P. Kropitz

Proposition 5.2 The behavior of Turing machine M3, on inputs 02n, n ≥ 1, depends on
the behavior of iterated gk3 (n, 1), k ≥ 1.

Proof. We have ω0(A0)2n0ω ⊢ (n+ 1) ω013n(B0)0ω = C(n, 1). �

Since the behavior of iterated gk3 (n, 1) is an open problem in mathematics, the halting
problem for Turing machine M3 is so.

Note that the way by which a high score is obtained is particularly clear for machine M3.
The parameter p, 1 ≤ p ≤ 8, can be seen as a state. If n is odd, g3(n, p) = (n′, p + 1), the
state goes from p to p+ 1, and the computation stops when state 8 is reached. If n is even,
g3(n, p) = (n′, 1), and the state goes back to 1.

6 Exponential Collatz-like

Let M4 be the 6× 2 Turing machine defined by Table 9.
We have s(M4) > 7.4× 1036534 and σ(M4) > 3.5× 1018267.
This machine is the current champion for the busy beaver competition for 6×2 machines.

It was discovered in June 2010 by Pavel Kropitz.
The following theorem gives the rules observed by Turing machine M4.

Theorem 6.1 Let C(n) = ω0(A0)1n0ω. Then
(a) C(0) ⊢ (29) C(9),
(b) C(2) ⊢ (36) C(11),
(c) C(3) ⊢ (48) C(13),

and, for all k ≥ 0,
(d) C(3k + 1) ⊢ (3k + 3) ω0111(011)k(H0)0ω,
(e) C(9k + 5) ⊢ ((4802× 16k+1 + 6370× 4k+1 + 2280k− 25362)/270) C((98 × 4k − 11)/3),
(f) C(9k + 6) ⊢ ((125× 16k+2 − 575× 4k+2 + 228k − 2226)/27) C((50 × 4k+1 − 59)/3),
(g) C(9k + 8) ⊢ ((4802× 16k+1 + 6370× 4k+1 + 2280k− 11592)/270) C((98 × 4k + 1)/3),
(h) C(9k + 9) ⊢ ((125× 16k+2 + 325× 4k+2 + 228k − 2289)/27) C((50 × 4k+1 − 11)/3),
(i) C(9k + 11) ⊢ ((4802× 16k+2 − 11270× 4k+2 + 2280k− 22452)/270) C((98 × 4k+1 − 59)/3),
(j) C(9k + 12) ⊢ ((125× 16k+2 + 325× 4k+2 + 228k − 912)/27) C((50 × 4k+1 + 1)/3).

Note that the behavior of this Turing machine on the blank tape involves only items (a),
(d), (h) and (j).
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Proof. A direct inspection of the transition table gives
(1) 03(A0)06 ⊢ (29) (A0)19,
(2) 04(A0)1205 ⊢ (36) (A0)111,
(3) 04(A0)1306 ⊢ (48) (A0)113,
(4) (A0)1 ⊢ (1) 1(B1),
(5) 01(E0) ⊢ (2) (E0)11,
(6) 0(E0) ⊢ (1) (A0)1,
(7) 11(E0) ⊢ (2) (E1)11,
(8) 01(C0) ⊢ (2) (C0)01,
(9) 11(C0) ⊢ (2) (C1)01,
(10) 0(C0) ⊢ (2) 1(E1),
(11) (E1)01 ⊢ (2) 01(E1),
(12) (E1)00 ⊢ (2) 01(E0),
(13) (E1)1 ⊢ (2) (C0)0,
(14) (B1)13 ⊢ (3) 110(B1),
(15) (B1)00 ⊢ (2) 11(H0),
(16) (B1)10 ⊢ (6) 01(C1),
(17) (B1)1100 ⊢ (12) (01)2(C1),
(18) (C1)01 ⊢ (2) 01(C1),
(19) (C1)00 ⊢ (2) 01(C0),
(20) (C1)1606 ⊢ (44) 01(E1)110,
(21) (C1)18011 ⊢ (113) 1(01)5(E1)18.

Iterating, respectively, (5), (8), (11), (14) and (18) gives
(22) (01)k(E0) ⊢ (2k) (E0)12k,
(23) (01)k(C0) ⊢ (2k) (C0)(01)k,
(24) (E1)(01)k ⊢ (2k) (01)k(E1),
(25) (B1)13k ⊢ (3k) (110)k(B1),
(26) (C1)(01)k ⊢ (2k) (01)k(C1).

Using (19), (23), (10) and (24), we get
(27) 0(01)k(C1)00 ⊢ (4k + 8) 1(01)k+1(E1).

Using (12), (22) and (6), we get
(28) 0(01)k(E1)00 ⊢ (2k + 5) (A0)12k+3.

Using (12), (22) and (7), we get
(29) 11(01)k(E1)00 ⊢ (2k + 6) (E1)12k+4.

Using (13), (23), (10) and (24), we get
(30) 0(01)k(E1)1 ⊢ (4k + 4) 1(01)k(E1)0.

Using (13), (23), (9) and (26), we get
(31) 11(01)k(E1)1 ⊢ (4k + 6) (01)k+1(C1)0.

Using (20), (30), (11), (31) and (18), we get
(32) 10(01)k(C1)1606 ⊢ (8k + 70) (01)k+4(C1)16.

By induction on n, using (32), we get
(33) (10)n(01)k(C1)1606n ⊢ (16n2 + 8kn+ 54n) (01)4n+k(C1)16.

Using (30) and (11), we get
(34) 00(01)k(E1)11 ⊢ (4k + 6) (01)k+2(E1).
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By induction on n, using (34), we get
(35) 02n(01)k(E1)12n ⊢ (4n2 + 4kn+ 2n) (01)2n+k(E1).

Using (20), (31), (18), (21), (31), (18) and (33), we get
(36) 11(01)k(C1)1606k+29 ⊢ (16k2 + 178k + 481) 0(01)4k+15(C1)16.

Using (20), (35) and (28), we get
(37) 011(01)k(C1)1608 ⊢ (22k + 201) (A0)12k+25.

Using (20), (35), (31), (18), (32) and (36), we get
(38) (110)30(01)k(C1)1606k+101 ⊢ (16k2 + 514k + 4045) 0(01)4k+55(C1)16.

By induction on k, using (38) we get
(39) (110)3k0(01)n(C1)160a ⊢ (T ) 0(01)b(C1)16,

with a = (2(3n+55)4k−6n−27k−110)/3, b = ((3n+55)4k−55)/3, and T = 16(3n+55)2

135 16k−
218(3n+55)

27 4k − 5
9k − 16(3n+55)2

135 + 218(3n+55)
27 .

Using (4), (25), (17), (27), (29), (31), (18), (21), (31), (18) and (33), we get
(40) (A0)13k+9029 ⊢ (3k + 484) 1(110)k0(01)15(C1)16.

Using (40), (39), (32) and (37), we get
(41) 011(A0)19k+90a ⊢ (T ) (A0)1b,

with a = (50× 4k+1− 11)/3− 9k− 20, b = (50× 4k+1− 11)/3, and T = (125× 16k+2+325×
4k+2 + 228k − 2289)/27.

Using (40), (39), (20), (35), (31), (18) and (37), we get
(42) 012(A0)19k+120a ⊢ (T ) (A0)1b,

with a = (50× 4k+1 + 1)/3− 9k − 24, b = (50× 4k+1 + 1)/3, and T = (125× 16k+2 + 325×
4k+2 + 228k − 912)/27.

Using (4), (25) and (15), we get
(43) (A0)13k+100 ⊢ (3k + 3) 111(011)k(H0).

Results (1), (43), (41) and (42) are results (a), (d), (h) and (j) of the theorem. They are
sufficient to analyze the behavior of the Turing machine on a blank tape. The following gives
its behavior from configurations ω0(A0)1n0ω, where n = 9k +m, m ∈ {5, 6, 8, 11}.

Using (4), (25), (16), (27), (29), (31), (18), (32) and (36), we get
(44) (A0)13k+14088 ⊢ (3k + 3076) 1(110)k0(01)47(C1)16.

Using (44), (39), (32) and (37), we get
011(A0)19k+140a ⊢ (T ) (A0)1b,

with b = (98×4k+1−11)/3 and T = (4802×16k+2+6370×4k+2+2280(k+1)−25362)/270,
and this result is still true for k = −1, since

011(A0)15013 ⊢ (285) (A0)129,
so we get

(45) 011(A0)19k+50a ⊢ (T ) (A0)1b,

with b = (98× 4k − 11)/3 and T = (4802× 16k+1 + 6370× 4k+1 + 2280k − 25362)/270.

Using (20), (35), (31), (18), (32), (36) and (37), we get
(46) 0101(110)20(01)k(C1)1606k+103 ⊢ (16k2 + 570k + 4886) (A0)18k+127.

Using (40), (39) and (46), we get
010(A0)19k+150a ⊢ (T ) (A0)1b,
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with b = (50× 4k+2 − 59)/3 and T = (125× 16k+3 − 575× 4k+3 + 228(k + 1)− 2226)/27,
and this result is still true for k = −1, since

010(A0)16031 ⊢ (762) (A0)147,
so we get

(47) 010(A0)19k+60a ⊢ (T ) (A0)1b,

with b = (50× 4k+1 − 59)/3 and T = (125× 16k+2 − 575× 4k+2 + 228k − 2226)/27.

Using (20), (30), (11), (31), (18) and (37), we get
(48) 01211100(01)k(C1)16014 ⊢ (30k + 407) (A0)12k+37.

Using (44), (39) and (48), we get
012(A0)19k+170a ⊢ (T ) (A0)1b,

with b = (98× 4k+1+1)/3 and T = (4802× 16k+2+6370× 4k+2+2280(k+1)− 11592)/270,
and this result is still true for k = −1, since

012(A0)18013 ⊢ (336) (A0)133,
so we get

(49) 012(A0)19k+80a ⊢ (T ) (A0)1b,

with b = (98× 4k + 1)/3 and T = (4802× 16k+1 + 6370× 4k+1 + 2280k− 11592)/270.

Using (44), (39) and (46), we get
010(A0)19k+200a ⊢ (T ) (A0)1b,

with b = (98×4k+2−59)/3 and T = (4802×16k+3−11270×4k+3+2280(k+1)−22452)/270,
and this result is still true for k = −1, since

010(A0)111090 ⊢ (3802) (A0)1111,
so we get

(50) 010(A0)19k+110a ⊢ (T ) (A0)1b,

with b = (98× 4k+1 − 59)/3 and T = (4802× 16k+2 − 11270× 4k+2 + 2280k− 22452)/270.

Results (45), (47), (49) and (50) are results (e), (f), (g) and (i) of the theorem.
Results (1), (2) and (3) give special cases (a), (b) and (c) of the theorem. �

Using the rules of this theorem, we have,

ω0(A0)0ω ⊢ (29) C(9) ⊢ (1293) C(63) ⊢ (19, 884, 896, 677)

C(273063) ⊢ (T1) C((50 × 430340 + 1)/3) ⊢ (T2)
ω0111(011)K(H0)0ω,

with T1 = (125 × 1630341 + 325 × 430341 + 6916380)/27, T2 = (50 × 430340 + 7)/3, K =
(50× 430340 − 2)/9.

The total time is s(M4) = (125× 1630341 +1750× 430340 +15)/27+ 19, 885, 154, 163, and
the final number of symbols 1 is σ(M4) = (25× 430341 + 23)/9.

Let g4 be the exponential Collatz-like function defined by: for k ≥ 0,
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M5 0 1
A 1RB 0LD
B 1RC 0RF
C 1LC 1LA
D 0LE 1RH
E 1LA 0RB
F 0RC 0RE

Table 10: Machine M5 discovered in May 2010 by P. Kropitz

g4(0) = 9,
g4(2) = 11,
g4(3) = 13,

g4(3k + 1) undefined,
g4(9k + 5) = (98× 4k − 11)/3,
g4(9k + 6) = (50× 4k+1 − 59)/3,
g4(9k + 8) = (98× 4k + 1)/3,
g4(9k + 9) = (50× 4k+1 − 11)/3,
g4(9k + 11) = (98× 4k+1 − 59)/3,
g4(9k + 12) = (50× 4k+1 + 1)/3.

Then g54(0) is undefined.
The theorem gives immediately the following proposition.

Proposition 6.2 The behavior of Turing machine M4, on inputs 01n, n ≥ 0, depends on
the behavior of iterated gk4 (n), k ≥ 1.

Since the behavior of iterated gk4 (n) is an open problem in mathematics, the halting
problem for Turing machine M4 is so.

Let h4(n) = min{k : gk4 (n) is undefined}. We have seen that h4(0) = 5. We also have

h4(2) = 8, and C(2) ⊢ (T ) END with T > 1010
1010

18641000

. We also have h4(36) = 15.

7 Unclassifiable machine

Let M5 be the 6× 2 Turing machine defined by Table 10.
We have s(M5) > 3.8× 1021132 and σ(M5) > 3.1× 1010566.
This machine was discovered in May 2010 by Pavel Kropitz. It was the champion for the

busy beaver competition for 6× 2 machines from May to June 2010.
The following theorem is adapted from an analysis of S. Ligocki [24]. It gives the rules

that enable Turing machine M5 to reach a halting configuration from a blank tape.

Theorem 7.1 Let C(k, n) = ω010n1(C1)13k0ω. Then
(a) ω0(A0)0ω ⊢ (47) C(2, 5),

and, for all k ≥ 0,
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(b) C(k, 0) ⊢ (3) ω01(H0)13k+10ω,
(c) C(k, 1) ⊢ (3k + 37) C(2, 3k + 2),
(d) C(k, 2) ⊢ (12k + 44) C(k + 2, 4),
(e) C(k, 3) ⊢ (3k + 57) C(2, 3k + 8),
(f) C(k, n+ 4) ⊢ (27k2 + 105k + 112) C(3k + 5, n).

Proof. A direct inspection of the transition table gives
(1) 04(A0)09 ⊢ (47) 1051(C1)16,
(2) 0(C0) ⊢ (1) (C0)1,
(3) 1(C0) ⊢ (1) (C1)1,
(4) (B1)00 ⊢ (2) 02(C0),
(5) (B1)01 ⊢ (4) 01(B1),
(6) (B1)10 ⊢ (4) 01(B1),
(7) (B1)103 ⊢ (14) 103(B1),
(8) (B1)1202 ⊢ (7) 021(B1)1,
(9) (B1)13 ⊢ (3) 03(B1),
(10) 0(C1) ⊢ (2) 1(B1),
(11) 11(C1) ⊢ (3) 1(H0)1,
(12) 031(C1) ⊢ (10) (C1)14,
(13) 031021(C1) ⊢ (8) 1(B1)021021,
(14) 101(C1) ⊢ (8) 1(B1)12.

Iterating, respectively, (2) and (9) gives
(15) 0k(C0) ⊢ (k) (C0)1k,
(16) (B1)13k ⊢ (3k) 03k(B1).

Using (4), (15) and (3), we get
(17) 10k(B1)00 ⊢ (k + 5) (C1)1k+3.

Using (16), (17) and (10), we get
(18) 01(B1)13k00 ⊢ (6k + 7) 1(B1)13k+3.

By induction on k, using (18), we get
(19) 0k1(B1)02k ⊢ (3k2 + 4k) 1(B1)13k.

Using (12), (10), (16), (6), (19), (16) and (17), we get
(20) 041(C1)13k06k+11 ⊢ (27k2 + 105k+ 112) 1(C1)19k+15.

Using (14), (16), (8), (7) and (17), we get
(21) 101(C1)13k07 ⊢ (3k + 37) 103k+21(C1)16.

Using (13), (17), (10), (9), (6), (5), (16), (17), (10), (16) and (17), we get
(22) 041021(C1)13k04 ⊢ (12k + 44) 1041(C1)13k+6.

Using (12), (12), (10), (16), (8), (6), (17), (10), (9) and (17), we get
(23) 041031(C1)13k07 ⊢ (3k + 57) 103k+81(C1)16.

Results (1), (11), (21), (22), (23) and (20) give results (a)–(f) of the theorem. �

Using the rules of this theorem, we have, in 22158 transitions,

ω0(A0)0ω ⊢ (47) C(2, 5) ⊢ (430) C(11, 1) ⊢ ( ) · · · ⊢ ( ) END.

Let g5 be the partial function defined by: for k, n ≥ 0,
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g5(k, 0) undefined,
g5(k, 1) = (2, 3k + 2),
g5(k, 2) = (k + 2, 4),
g5(k, 3) = (2, 3k + 8),

g5(k, n+ 4) = (3k + 5, n).

Then g221575 (2, 5) is undefined.

Proposition 7.2 The behavior of Turing machine M5, on inputs 013n+3, n ≥ 0, depends
on the behavior of iterated gk5 (n, p), k ≥ 1, n, p ≥ 0.

Proof. We have ω0(A0)13n+30ω ⊢ (3n+ 30) ω013n+21(C1)160ω = C(2, 3n+ 2). �

Since the behavior of iterated gk5 (n, p) is an open problem in mathematics, the halting
problem for Turing machine M5 is so.

The following proposition shows that some configurations take a long time to halt.

Proposition 7.3 C(9, 1) ⊢ (T ) END with T > 1010
1010

103520

.

Proof. By induction on n, using Theorem 7.1 (f), it is easy to prove that, if n ≥ 0, 0 ≤ r ≤ 3,
we have

C(2, 4n+ r) ⊢ (tn) C(un, r),

with un = (3n+2 − 5)/2 and tn = (3 × 9n+3 − 80× 3n+3 + 584n− 27)/32.
By induction on k, it is easy to prove that, if k ≥ 2, we have

32
k−1

≡ 2k+1 + 1 (mod 2k+2)

so the multiplicative order of 3 modulo 2k+2 is 2k for k ≥ 1. Thus we can prove that, for
k ≥ 1, n,m ≥ 0, we have

n ≡ m (mod 2k) ⇐⇒ un ≡ um (mod 2k+1).

Now, suppose that, for a ∈ {1, 3}, n, n′ ≥ 1, q, q′ ≥ 1, 0 ≤ r, r′ ≤ 3, we have

C(n, a) ⊢ (3n+ 27 + 10a) C(2, 3n+ 3a− 1) = C(2, 4q + r) ⊢ (tq) C(uq, r),

and

C(n′, a) ⊢ (3n′ + 27 + 10a) C(2, 3n′ + 3a− 1) = C(2, 4q′ + r′) ⊢ (tq′) C(uq′ , r
′),

and let k ≥ 2 such that n ≡ n′ (mod 2k+1). Then it is easy to prove that r = r′ and
uq ≡ uq′ (mod 2k). So the behavior of configurations C(n, a) is mirrored by the behavior of
configurations C(n′, a) with n′ ≤ 2k for suitable k.

In the following computation on C(9, 1):

C(9, 1) ⊢ ( ) C(2, 4× 7 + 1) ⊢ (t7)
C(9839, 1) ⊢ ( ) C(2, 4× 7379 + 3) ⊢ (t7379)
C(u7379, 3) ⊢ ( ) C(2, 4× q3 + r3) ⊢ (tq3)
C(uq3 , r3) ⊢ ( ) C(2, 4× q4 + r4) ⊢ (tq4)
C(uq4 , r4) ⊢ ( ) C(2, 4× q5 + r5) ⊢ (tq5)
C(uq5 , r5) ⊢ ( ) C(2, 4× q6 + r6) ⊢ (tq6)
C(uq6 , r6) ⊢ (3) END

27



M6 0 1
A 1RB 0RF
B 0LB 1LC
C 1LD 0RC
D 1LE 1RH
E 1LF 0LD
F 1RA 0LE

Table 11: Machine M6 discovered in November 2007 by T. and S. Ligocki

we know that r6 = 0 because we have

uq1 = u7 ≡ 47 (mod 64), (3× 47) + 2 = (4× 35) + 3, q′2 = 35, r2 = 3,
uq2 ≡ uq′2

≡ 23 (mod 32), (3× 23) + 8 = (4× 19) + 1, q′3 = 19, r3 = 1,
uq3 ≡ uq′3

≡ 7 (mod 16), (3× 7) + 2 = (4 × 5) + 3, q′4 = 5, r4 = 3,
uq4 ≡ uq′4

≡ 3 (mod 8), (3× 3) + 8 = (4 × 4) + 1, q′5 = 4, r5 = 1,
uq5 ≡ uq′5

≡ 2 (mod 4), (3× 2) + 2 = (4 × 2) + 0, q′6 = 2, r6 = 0.

It is easy to see that, if a ∈ {1, 3}, n ≥ 0, if

C(n, a) ⊢ (3n+ 27 + 10a) C(2, 3n+ 3a− 1) = C(2, 4q + r) ⊢ (tq) C(uq, r),

then q ≥ (3n− 1)/4 and uq > (33/4)n > 2n.
And we also have n ≥ 5 ⇒ tn > 68× 9n, so, if C(9, 1) ⊢ (T ) END, we have

T > tq6 > 9q6 > 93uq5/4 > 5uq5 ,

and uq5 > 2uq4 , uq4 > 2uq3 , uq3 > 2uq2 = 2u7379 , so T > 52
22

u7379

.

Using u7379 > 103521, and, for x ≥ 1, 210
x

> 1010
x−.53

, 210
10x

> 1010
10x−.03

, 210
1010

x

>

1010
1010

x−.03

and 510
1010

10x

> 1010
1010

10x−.03

, we are done. �

8 An infinite set of rules

Let M6 be the 6× 2 Turing machine defined by Table 11.
We have s(M6) > 8.9× 101762 and σ(M6) > 2.5× 10881.
This machine was discovered in November 2007 by Terry and Shawn Ligocki. It was the

champion for the busy beaver competition for 6 × 2 machines from November to December
2007.

The following theorem gives the rules that enable Turing machine M6 to reach a halting
configuration from a blank tape.

Recall that bin(p) is the usual binary writing of number p, and R(w1 . . . wn) = wn . . . w1.

Theorem 8.1 Let C(n, p) = ω0(F0)(10)nR(bin(p))0ω, so that C(k, 4m+ 1) = C(k + 1,m).
Then

(a) ω0(A0)0ω ⊢ (6) C(0, 15),
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and, for all k,m ≥ 0,
(b) C(k, 4m+ 3) ⊢ (4k + 6) C(k + 2,m),
(c) C(2k, 4m) ⊢ (30k2 + 20k + 15) C(5k + 2, 2m+ 1),
(d) C(2k + 1, 4m) ⊢ (30k2 + 40k + 25) C(5k + 2, 32m+ 20),
(e) C(k, 8m+ 2) ⊢ (8k + 20) C(k + 3, 2m+ 1),
(f) C(2k, 16m+ 6) ⊢ (30k2 + 40k + 23) C(5k + 2, 32m+ 20),
(g) C(2k + 1, 16m+ 6) ⊢ (30k2 + 80k + 63) C(5k + 7, 2m+ 1),
(h) C(k, 32m+ 14) ⊢ (4k + 18) C(k + 3, 2m+ 1),
(i) C(2k, 128m+ 94) ⊢ (30k2 + 40k + 39) C(5k + 2, 256m+ 84),
(j) C(2k + 1, 128m+ 94) ⊢ (30k2 + 80k + 79) C(5k + 9,m),
(k) C(k, 256m+ 190) ⊢ (4k + 34) C(k + 5,m),
(l) C(k, 512m+ 30) ⊢ (2k + 43) ω0(10)k1(H0)(10)2(01)2R(bin(m))0ω.

Proof. A direct inspection of the transition table gives
(1) 04(A0)0 ⊢ (6) (F0)140,
(2) 0(F0)00 ⊢ (9) (F0)13,
(3) (F0)10 ⊢ (2) 10(F0),
(4) (F0)11 ⊢ (4) (F1)10,
(5) (F0)01 ⊢ (4) 10(C1),
(6) 10(E1) ⊢ (2) (E1)10,
(7) 1(E1) ⊢ (2) 1(H0),
(8) 03(E1) ⊢ (3) (F0)110,
(9) 00(F1) ⊢ (2) (F0)10,
(10) 10(F1) ⊢ (2) (F1)10,
(11) 1(F1) ⊢ (1) (E1)0,
(12) (C1)1 ⊢ (1) 0(C1),
(13) (C1)0 ⊢ (1) 0(C0),
(14) 03(C0) ⊢ (3) (F0)13,
(15) 100(C0) ⊢ (3) (F1)13.

Iterating, respectively, (3), (10), (6) and (12) gives
(16) (F0)(10)k ⊢ (2k) (10)k(F0),
(17) (10)k(F1) ⊢ (2k) (F1)(10)k,
(18) (10)k(E1) ⊢ (2k) (E1)(10)k,
(19) (C1)1k ⊢ (k) 0k(C1).

Using (5), (19) and (13), we get
(20) (F0)01k+10 ⊢ (k + 5) 10k+2(C0).

Using (16), (4), (17) and (9), we get
(21) 02(F0)(10)k11 ⊢ (4k + 6) (F0)(10)k+2.

Using (16), (20), (15), (17), (9) and (21), we get
(22) 04(F0)(10)k010 ⊢ (8k + 20) (F0)(10)k+31.

Using (22) and (21), we get
(23) 06(F0)(10)k(01)2 ⊢ (12k + 38) (F0)(10)k+5.

By induction on n, using (23), we get
(24) 06n(F0)(10)k(01)2n ⊢ (30n2 + 12kn+ 8n) (F0)(10)5n+k.
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Using (24), with k = 2, we get
(25) 06k(F0)(10)2(01)2k ⊢ (30k2 + 32k) (F0)(10)5k+2.

Using (16), (2), (4), (11), (18), (8) and (21), we get
(26) 05(F0)(10)k+102 ⊢ (4k + 25) (F0)(10)2(01)k00101.

Using (26) and (25), we get
(27) 06k+5(F0)(10)2k+102 ⊢ (30k2 + 40k + 25) (F0)(10)5k+200101.

Using (25) and (22), we get
(28) 06k+4(F0)(10)2(01)2k+10 ⊢ (30k2 + 72k + 36) (F0)(10)5k+51.

Using (26) and (28), we get
06k+9(F0)(10)2k+202 ⊢ (30k2 + 80k + 65) (F0)(10)5k+71,

and the result is still true for k = −1, so we have
(29) 06k+3(F0)(10)2k02 ⊢ (30k2 + 20k + 15) (F0)(10)5k+21.

Using (16), (20), (14), (4), (11), (18), (8) and (21), we get
(30) 05(F0)(10)k0120 ⊢ (4k + 23) (F0)(10)2(01)k00101.

Using (30) and (25), we get
(31) 06k+5(F0)(10)2k0120 ⊢ (30k2 + 40k + 23) (F0)(10)5k+200101.

Using (30) and (28), we get
(32) 06k+9(F0)(10)2k+10120 ⊢ (30k2 + 80k + 63) (F0)(10)5k+71.

Using (16), (20), (14), (4), (17) and (9), we get
(33) 02(F0)(10)k0130 ⊢ (4k + 18) (F0)(10)k+31.

Using (16), (20), (14), (4), (9) and (16), we get
(34) (F0)(10)k0140 ⊢ (2k + 21) (10)k1(10)2(F0)1.

Using (34), (4), (17), (11), (18), (8) and (21), we get
(35) 05(F0)(10)k01401 ⊢ (4k + 39) (F0)(10)2(01)k00(10)3.

Using (35) and (25), we get
(36) 06k+5(F0)(10)2k01401 ⊢ (30k2 + 40k + 39) (F0)(10)5k+202(10)3.

Using (35), (25) and (22), we get
(37) 06k+9(F0)(10)2k+101401 ⊢ (30k2 + 80k + 79) (F0)(10)5k+9.

Using (16), (20), (14), (4), (9) and (16), we get
(38) (F0)(01)k0150 ⊢ (2k + 22) (10)k+3(F0)1.

Using (38), (4), (17) and (9), we get
(39) 02(F0)(10)k01501 ⊢ (4k + 34) (F0)(10)k+5.

Using (34), (3), (2), (4), (11), (18) and (7), we get
(40) (F0)(10)k01404 ⊢ (2k + 43) (10)k1(H0)(10)2(01)2.

Results (1), (21), (29), (27), (22), (31), (32), (33), (36), (37), (39) and (40) give results
(a)–(l) of the theorem. �

Note that the rules (a)–(l) are written in their order of occurrence in the computation of
Turing machine M6 on the blank tape.

Using the rules of this theorem, we have, in 3346 transitions,

ω0(A0)0ω ⊢ (6) C(0, 15) ⊢ (6) C(2, 3) ⊢ ( ) · · · ⊢ ( ) END.
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M7 0 1
A 1RB 0LB
B 0RC 1LB
C 1RD 0LA
D 1LE 1LF
E 1LA 0LD
F 1RH 1LE

Table 12: Machine M7 discovered in October 2000 by Marxen and Buntrock

We have
ω0(A0)0R(bin(p))0ω ⊢ (6) ω0(F0)140R(bin(p))0ω

= C(0, 32p+ 15) ⊢ (6) C(2, 8p+ 3) ⊢ (14) C(4, 2p),

so the behavior of Turing machine M6 on inputs 00x, x ∈ {0, 1}∗, depends on the behavior
of configurations C(n, p), and the halting problem for Turing machine M6 depends on this
behavior.

9 Configurations provably stopping

Let M7 be the 6× 2 Turing machine defined by Table 12.
We have s(M7) > 6.1× 10925 and σ(M7) > 6.4× 10462.
This machine was discovered in October 2000 by Heiner Marxen and Jürgen Buntrock.

It was the champion for the busy beaver competition for 6× 2 machines from October 2000
to March 2001.

The following theorem was initially obtained by Munafo [37]. It gives the rules observed
by Turing machine M7.

Theorem 9.1 Let C(n) = ω01n(B0)0ω. Then
(a) ω0(A0)0ω ⊢ (1) C(1),

and, for all k ≥ 0,
(b) C(3k) ⊢ (54× 4k+1 − 27× 2k+3 + 26k + 86) C(9× 2k+1 − 8),
(c) C(3k + 1) ⊢ (2048× (4k − 1)/3− 3× 2k+7 + 26k + 792) C(2k+5 − 8),
(d) C(3k + 2) ⊢ (3k + 8) ω01(H1)(011)k01010ω.

Proof. A direct inspection of the transition table gives
(1) 11(B0)00 ⊢ (6) (D1)0101,
(2) 00(B0)01 ⊢ (8) (B0)14,
(3) 11(B0)01 ⊢ (6) (B1)013,
(4) (B0)1 ⊢ (3) 1(B0),
(5) 0(B1) ⊢ (1) (B0)1,
(6) 1(B1) ⊢ (1) (B1)1,
(7) 0(D1) ⊢ (2) 1(H1),
(8) 031(D1) ⊢ (6) (B0)14,
(9) 0412(D1) ⊢ (8) (B0)13012,
(10) 13(D1) ⊢ (3) (D1)011.
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Iterating, respectively, (4), (6) and (10) gives
(11) (B0)1k ⊢ (3k) 1k(B0),
(12) 1k(B1) ⊢ (k) (B1)1k,
(13) 13k(D1) ⊢ (3k) (D1)(011)k.

Using (3), (12), (5) and (11), we get
01k+2(B0)01 ⊢ (4k + 10) 1k+1(B0)013,

and the result is still true for k = −1, so we have
(14) 01k+1(B0)01 ⊢ (4k + 6) 1k(B0)013.

By induction on k, using (14), we get
(15) 0k1k(B0)01 ⊢ (2k2 + 4k) (B0)012k+1.

Using (1), (13) and (7), we get
(16) 013k+2(B0)02 ⊢ (3k + 8) 1(H1)(011)k0101.

Using (1), (13) and (9), we get
0413k+4(B0)02 ⊢ (3k + 14) (B0)13(011)k+10101,

and the result is still true for k = −1, so we have
(17) 0413k+1(B0)02 ⊢ (3k + 11) (B0)13(011)k0101.

Using (1), (13) and (8), we get
(18) 0313k+3(B0)02 ⊢ (3k + 12) (B0)14(011)k0101.

Using (11), (15) and (2), we get
(19) 0k+2(B0)1k01 ⊢ (2k2 + 7k + 8) (B0)12k+4.

By induction on k, using (19), we get

(20) 02
k(n+5)−5−n−3k(B0)1n(011)k ⊢ (T ) (B0)12

k(n+5)−5,

with T = 2(n+ 5)2(4k − 1)/3− 13(n+ 5)(2k − 1) + 23k.

Using (20), for n = 3 and n = 4, we get respectively

(21) 02
k+3

−3k−8(B0)13(011)k ⊢ (128(4k − 1)/3− 13× 2k+3 + 23k + 104) (B0)12
k+3

−5,

(22) 09×2k−3k−9(B0)14(011)k ⊢ (54× 4k − 117× 2k + 23k + 63) (B0)19×2k−5.

Using (11), (15), (2), (11), (15), (2) and (11), we get
(23) 03k+8(B0)1k0101 ⊢ (10k2 + 65k + 112) 14k+12(B0).

Using (17), (21) and (23), we get

(24) 02
k+5

−3k−1113k+1(B0)02 ⊢ (2048× (4k − 1)/3− 3× 2k+7 + 26k + 792) 12
k+5

−8(B0).

Using (18), (22) and (23), we get

09×2k+2
−3k−1313k+3(B0)02 ⊢ (54× 4k+2 − 27× 2k+4 + 26k + 112) 19×2k+2

−8(B0),
and the result is still true for k = −1, so we have

(25) 09×2k+1
−3k−1013k(B0)02 ⊢ (54× 4k+1 − 27× 2k+3 + 26k + 86) 19×2k+1

−8(B0).

Results (25), (24) and (16) give results (b)–(d) of the theorem. �

Using the rules of this theorem, we have

ω0(A0)0ω ⊢ (1) C(1) ⊢ (408) C(24) ⊢ (14100774)

C(4600) ⊢ (T ) C(21538 − 8) ⊢ (21538 − 2) ω01(H1)(011)p01010ω,

with T = 2048× (41533 − 1)/3− 3× 21540 + 40650 and p = (21538 − 10)/3.
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So the total time is s(M7) = 2048× (41533 − 1)/3− 11× 21538 + 14141831, and the final
number of symbols 1 is σ(M7) = 2× (21538 − 10)/3 + 4.

Note that

C(6k + 1) ⊢ ( ) C(3m) ⊢ ( ) C(6p+ 4) ⊢ ( ) C(3q + 2) ⊢ ( ) END,

with m = (22k+5−8)/3, p = 3×2m−2, q = (22p+6−10)/3. So all configurations C(n) lead to
a halting configuration. Those taking the most time are C(6k + 1). For example, C(7) ⊢ (t)

END with t > 103.9×1012. More generally, C(6k+ 1) ⊢ (t(k)) END with t(k) > 1010
10(3k+2)/5

.

10 Conclusion

We discuss two questions as a conclusion to this article.

A. How simulating Collatz-like functions allows Turing machines to achieve high scores?
Lagarias [17] noted that the successive iterates of the 3x+1 function T have an irregular

behavior. For example, 7 iterations of function T on n = 26 lead to the value 1, but 70
iterations are necessary on n = 27. It seems that many Collatz-like functions have the same
irregular behavior. Iterating them on small numbers may produce very long runs before
stopping.

Adding parameters may increase the number of iterations by allowing the iterated values
to range the set of parameters before stopping. The pure Collatz-like function with parameter
g3(n, p) presented in Section 5 is particularly illustrative.

Another way to high scores is given by exponential Collatz-like functions such as function
g4 in Section 6. Only five iterations are performed on a blank tape, but exponential growth
ensures a high score.

Irregular behavior is a condition for a Collatz-like function to be eligible to the busy
beaver competition. Another condition is, of course, being computable by a very small
Turing machine.

B. Are some universal devices more natural than others?
Conway [7] proved that there is no algorithm that, given as inputs a Collatz-like function g

and two integers n, p, outputs an answer yes or no to the question: Does there exist a positive
integer k such that gk(n) = p? Conway [7, 8] also proved that Collatz-like functions can be
used to simulate all computable (also called recursive) functions. These properties can be
summed up by writing that Collatz-like functions provide a universal model of computation
with a m-complete decision problem.

Many universal models of computation are known: Turing machines, tag-systems, cellular
automata, Diophantine equations, etc. (see [35]). Of course, any universal model can simulate
and be simulated by any other universal model. But it is Collatz-like functions, and not
another model, that appear naturally in this study. Their unexpectedly pervasive presence
leads to wonder about the significance of their status among mathematical beings.
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